JPH0753884B2 - Method for producing unidirectional electrical steel sheet with excellent magnetic properties - Google Patents

Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Info

Publication number
JPH0753884B2
JPH0753884B2 JP1095929A JP9592989A JPH0753884B2 JP H0753884 B2 JPH0753884 B2 JP H0753884B2 JP 1095929 A JP1095929 A JP 1095929A JP 9592989 A JP9592989 A JP 9592989A JP H0753884 B2 JPH0753884 B2 JP H0753884B2
Authority
JP
Japan
Prior art keywords
cold rolling
steel sheet
rate
hot
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1095929A
Other languages
Japanese (ja)
Other versions
JPH02274814A (en
Inventor
延幸 高橋
康成 吉冨
克郎 黒木
聡 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1095929A priority Critical patent/JPH0753884B2/en
Publication of JPH02274814A publication Critical patent/JPH02274814A/en
Publication of JPH0753884B2 publication Critical patent/JPH0753884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、トランス等の鉄心として使用される磁気特性
の優れた一方向性電磁鋼板の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which is used as an iron core of a transformer or the like.

〔従来の技術〕[Conventional technology]

一方向性電磁鋼板は、主にトランスその他の電気機器の
鉄心材料として使用されており、励磁特性、鉄損特性等
の磁気特性に優れていることが要求される。励磁特性を
表す数値としては、磁場の強さ800A/mにおける磁束密度
B8が通常使用される。また、鉄損特性を表す数値として
は、周波数50Hzで1.7テスラー(T)まで磁化したとき
の1kg当りの鉄損W17/50を使用している。磁束密度は、
鉄損特性の最大支配因子であり、一般的にいって磁束密
度が高いほど鉄損特性が良好になる。なお、一般的に磁
束密度を高くすると二次再結晶粒が大きくなり、鉄損特
性が不良となる場合がある。これに対しては、磁区制御
により、二次再結晶粒の粒径に拘らず、鉄損特性を改善
することができる。
The unidirectional electrical steel sheet is mainly used as a core material for transformers and other electric devices, and is required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. The magnetic flux density at a magnetic field strength of 800 A / m is used to express the excitation characteristics.
B 8 is usually used. As the numerical value showing the iron loss characteristic, the iron loss W 17/50 per kg when magnetized to 1.7 Tesler (T) at a frequency of 50 Hz is used. The magnetic flux density is
It is the most dominant factor of iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss characteristics. Generally, when the magnetic flux density is increased, the secondary recrystallized grains become large, which may result in poor iron loss characteristics. On the other hand, by controlling the magnetic domains, the iron loss characteristics can be improved regardless of the grain size of the secondary recrystallized grains.

この一方向性電磁鋼板は、最終仕上焼鈍工程で二次再結
晶を起こさせ、鋼板面に{110}、圧延方向に<001>軸
をもったいわゆるゴス組織を発達させることにより、製
造されている。良好な磁気特性を得るためには、磁化容
易軸である<001>を圧延方向に高度に揃えることが必
要である。
This unidirectional electrical steel sheet is produced by causing secondary recrystallization in the final finishing annealing step and developing a so-called Goss structure having {110} on the steel sheet surface and <001> axis in the rolling direction. There is. In order to obtain good magnetic properties, it is necessary to highly align <001>, which is the easy axis of magnetization, in the rolling direction.

このような高磁束密度一方向性電磁鋼板の製造方法とし
ては、80%以上の最終強圧下冷延を特徴とする方法(特
公昭40−15644号公報等)及び40〜85%の最終弱圧下冷
延を特徴とする方法(特公昭51−13469号公報等)が代
表的である。前者においてはMnSおよびAlNを後者ではMn
S、MnSe、Sb等を主なインヒビターとして用いており、
これらインヒビターの種類に応じて適正な磁気特性を得
られる最終冷延率が変るものと考えられてきた。
As a method for producing such a high magnetic flux density unidirectional electrical steel sheet, a method characterized by a final strong reduction cold rolling of 80% or more (Japanese Patent Publication No. 40-15644, etc.) and a final weak reduction of 40 to 85%. A typical method is cold rolling (Japanese Patent Publication No. 51-13469). MnS and AlN in the former and Mn in the latter
S, MnSe, Sb etc. are used as main inhibitors,
It has been considered that the final cold rolling rate at which appropriate magnetic properties are obtained varies depending on the type of these inhibitors.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、一方向性電磁鋼板の製造においては通常、熱
延後、組織の均一化、析出処理等を目的として熱延板焼
鈍が行われている。例えばAlNを主インヒビターとする
製造方法においては、特公昭46−23820号公報に示すよ
うに熱延板焼鈍においてAlNの析出処理を行ってインヒ
ビターを制御する方法がとられている。
In the production of unidirectional electrical steel sheets, hot-rolled sheet annealing is usually performed after hot rolling for the purpose of homogenization of the structure, precipitation treatment and the like. For example, in a production method using AlN as a main inhibitor, a method of controlling the inhibitor by performing precipitation treatment of AlN in hot-rolled sheet annealing is adopted as shown in JP-B-46-23820.

通常一方向性電磁鋼板は鋳造−熱延−焼鈍−冷延−脱炭
焼鈍−仕上焼鈍のような主工程を経て製造され、多量の
エネルギーを必要としており、加えて普通鋼製造プロセ
ス等と比較して製造コストも高くなっている。
Normally unidirectional electrical steel sheet is manufactured through the main processes such as casting-hot rolling-annealing-cold rolling-decarburizing annealing-finishing annealing and requires a large amount of energy. And the manufacturing cost is also high.

近年多量のエネルギー消費をするこのような製造工程に
対する見直しが進められ、工程の簡省略化の要請が強ま
ってきた。このような要請を答えるべく、例えば、AlN
を主インヒビターとする製造方法において、熱延板焼鈍
でのAlNの析出処理を、熱延後の高温巻取で代替する方
法(特公昭59−45730号公報)が提案された。確かにこ
の方法によって、熱延板焼鈍を省略しても、磁気特性を
ある程度確保することはできるが、5〜20トンのコイル
状で巻取られる通常の方法においては、冷却過程でコイ
ル内での場所的な熱履歴の差が生じ、必然的にAlNの析
出が不均一となり最終的な磁気特性はコイル内の場所に
よって変動し、歩留が低下する結果となる。
In recent years, a review has been made on such a manufacturing process that consumes a large amount of energy, and there has been an increasing demand for simplification of the process. To answer such a request, for example, AlN
In the production method using as a main inhibitor, a method (Japanese Patent Publication No. 59-45730) in which the precipitation treatment of AlN in hot-rolled sheet annealing is replaced by high-temperature winding after hot rolling has been proposed. Certainly, even if the hot-rolled sheet annealing is omitted by this method, the magnetic characteristics can be secured to some extent, but in the normal method of winding in a coil shape of 5 to 20 tons, in the coil during the cooling process As a result, there is a difference in the thermal history depending on the location, the precipitation of AlN is inevitably non-uniform, and the final magnetic characteristics vary depending on the location in the coil, resulting in a decrease in yield.

そこで本発明者らは、従来のこの様なインヒビターに主
眼をおいた硬直した工程設計を改め、金属物理の素現象
に立ち戻り、まったく異った観点から製品の磁気特性を
高める工程設計を行って、熱延板焼鈍の簡省略化を試み
ることとした。従来の一方向性電磁鋼板の適正冷延率と
インヒビターの関係に対する考え方の代表的なものは次
の2つである。
Therefore, the present inventors revised the conventional rigid process design focusing on such inhibitors, returned to the elementary phenomenon of metal physics, and designed the process to enhance the magnetic properties of the product from a completely different viewpoint. , It was decided to try to simplify the hot-rolled sheet annealing. The following are two typical ideas regarding the relationship between the appropriate cold rolling rate and the inhibitor of the conventional grain-oriented electrical steel sheet.

(1)最終冷延率が高いほど、一次再結晶粒の正常粒成
長の駆動力が高まるので、正常粒成長を抑制して、二次
再結晶を安定化させ集積度の高い{110}<001>二次再
結晶粒を発生させるには、微細析出分散相によるインヒ
ビター効果をより強くする必要があるという考え方。
(1) The higher the final cold rolling rate, the higher the driving force for the normal grain growth of the primary recrystallized grains. Therefore, the normal grain growth is suppressed, the secondary recrystallization is stabilized, and the degree of integration is high {110} <001> The idea that in order to generate secondary recrystallized grains, it is necessary to strengthen the inhibitor effect by the fine precipitation dispersed phase.

(2)最終冷延率が支配的である一次再結晶集合組織中
の{110}<001>方位又はその対応方位の集積度が高い
ほど、集積度の高い{110}<001>二次再結晶粒が発生
するが、発生する二次再結晶方位の分散の程度を決める
のがインヒビター強度(Zener因子)であるという考え
方。
(2) The higher the degree of integration of the {110} <001> orientation or its corresponding orientation in the primary recrystallization texture in which the final cold rolling rate is dominant, the higher the degree of integration is {110} <001> secondary recrystallization. Thought that crystal grains are generated, it is the inhibitor strength (Zener factor) that determines the degree of secondary recrystallization orientation dispersion.

この様な考え方は、二次再結晶現象のみに着目した工程
設計の考え方であり、その二次再結晶に先立つ、冷延で
の歪蓄積、結晶回転及び引き続く焼鈍での回復、再結晶
及び粒成長といった素現象に注意がほとんど払われてい
ない。本発明者らはこの様な素現象には冷延前鋼板の性
状が影響するだろうという予測の元に研究を進め、従来
とまったく異った観点から製品の磁気特性を高める工程
設計を行った。
Such an idea is an idea of a process design focusing only on the secondary recrystallization phenomenon, and prior to the secondary recrystallization, strain accumulation in cold rolling, recovery by crystal rotation and subsequent annealing, recrystallization and grain Little attention is paid to elementary phenomena such as growth. The present inventors proceeded research based on the prediction that the properties of the steel sheet before cold rolling would influence such elementary phenomena, and carried out a process design to enhance the magnetic properties of the product from a completely different viewpoint from the conventional one. It was

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明においては、その目的を達成するために通常の成
分からなる珪素鋼スラブを熱延し、引き続き通常の1回
冷延工程で得られた珪素鋼冷延板に通常の工程を施して
一方向性電磁鋼板を製造する方法において、再結晶率10
0%未満の冷延前鋼板に対して、冷延率77〜93%の冷延
を施すことを特徴とする。さらにこの特徴に加えて、冷
延前の鋼板の再結晶率(FR(%))、冷延率(CR
(%))とするとき、冷延は下記の式を満足する如く施
すことによって一層磁気特性の優れた一方向性電磁鋼板
が得られる。
In the present invention, in order to achieve the object, a silicon steel slab consisting of ordinary components is hot-rolled, and then the silicon steel cold-rolled sheet obtained by the normal single cold-rolling step is subjected to an ordinary step to obtain one. In the method of manufacturing grain-oriented electrical steel, the recrystallization rate is 10
It is characterized in that cold rolling of a cold rolling ratio of 77 to 93% is performed on a steel sheet before cold rolling of less than 0%. In addition to this feature, the recrystallization rate (FR (%)) and cold rolling rate (CR
(%)), The cold rolling is performed so as to satisfy the following formula, whereby a grain-oriented electrical steel sheet having more excellent magnetic properties can be obtained.

0.05×FR+77≦CR≦0.05×FR+88 〔作 用〕 本発明が対象としている一方向性電磁鋼板は、従来用い
られている製鋼法で得られた溶鋼を連続鋳造法或いは造
塊法で鋳造し、必要に応じて分塊工程を挟んでスラブと
し、引き続き熱間圧延して熱延板とし、次いでこの熱延
板に必要に応じて焼鈍を施し、次いで、冷延、脱炭焼
鈍、最終仕上焼鈍を順次行うことによって製造される。
0.05 × FR + 77 ≦ CR ≦ 0.05 × FR + 88 [Working] The unidirectional electrical steel sheet targeted by the present invention is obtained by continuously casting or ingoting molten steel obtained by the conventional steelmaking method, If necessary, the slab is sandwiched between slabs, then hot-rolled into hot-rolled sheets, then the hot-rolled sheets are annealed as required, then cold-rolled, decarburized annealed, and finally finished annealed. It is manufactured by sequentially performing.

本発明者らは、従来のインヒビターに主眼を置いた硬直
した工程設計を改め、まったく異った観点から工程設計
を行うことを考えた。具体的には、インヒビターの種
類、量等に応じて、冷延率を選ぶ従来のやり方を見直す
こととした。本発明者らは冷延前の鋼板の性状と製品の
磁気特性を良好とする冷延率(適正冷延率)との関係を
種々の観点から広範囲にわたって研究したところ、冷延
前鋼板の性状と適正冷延率との間に極めて密接な関係が
あることを確かめた。以下、実験結果を基に説明する。
The present inventors considered revising the conventional rigid process design focusing on the inhibitor and performing the process design from a completely different viewpoint. Specifically, it was decided to review the conventional method of selecting the cold rolling rate according to the type and amount of the inhibitor. The inventors of the present invention have extensively studied the relationship between the properties of the steel sheet before cold rolling and the cold rolling ratio (proper cold rolling ratio) that makes the magnetic properties of the product good from various viewpoints. It was confirmed that there is a very close relationship between the cold rolling rate and the appropriate cold rolling rate. Hereinafter, it demonstrates based on an experimental result.

第1図は冷延前鋼板の再結晶率(板厚方向の各点の平均
値)が100%又は100%未満の場合の冷延率と製品の磁束
密度の関係を表したグラフである。ここではC:0.021〜
0.100重量%、Si:3.2〜3.5重量%、酸可溶性Al:0.010〜
0.045重量%、N:0.0030〜0.0100重量%、S:0.0030〜0.0
300重量%、Mn:0.070〜0.500重量%を含有し、残部Fe及
び不可避的不純物からなるスラブを1150〜1400℃に加熱
し、1.6〜4.0mm厚の熱延板とした。この時、熱延開始温
度を700〜1350℃、熱延各パスの圧下率を10〜80%と
し、その配分も種々の条件で行い、熱延後水冷開始まで
の時間を0.1秒〜100秒までとり、また、巻取温度を100
〜800℃とした。次いでこの熱延板を700〜1200℃の温度
で熱延板焼鈍又は熱延板焼鈍なしの条件で処理し、次い
で70〜98%の冷延率で最終強圧下冷延を行って最終板厚
0.100〜0.480mm厚の冷延板とし、830〜1000℃の温度で
脱炭焼鈍を行い、引き続いてMgOを主成分とする焼鈍分
離剤を塗布して最終焼鈍を行った。
FIG. 1 is a graph showing the relationship between the cold rolling rate and the magnetic flux density of the product when the recrystallization rate (average value of each point in the sheet thickness direction) of the steel sheet before cold rolling is 100% or less than 100%. Here C: 0.021 ~
0.100% by weight, Si: 3.2-3.5% by weight, acid-soluble Al: 0.010-
0.045% by weight, N: 0.0030 to 0.0100% by weight, S: 0.0030 to 0.0
A slab containing 300% by weight and Mn: 0.070 to 0.500% by weight and the balance Fe and unavoidable impurities was heated to 1150 to 1400 ° C to obtain a hot rolled sheet having a thickness of 1.6 to 4.0 mm. At this time, the hot rolling start temperature is 700 to 1350 ° C, the rolling reduction of each hot rolling pass is 10 to 80%, and the distribution is also performed under various conditions, and the time from the hot rolling to the start of water cooling is 0.1 to 100 seconds. And the winding temperature is 100.
It was set to ~ 800 ° C. Then, this hot-rolled sheet is processed at a temperature of 700 to 1200 ° C under the conditions of hot-rolled sheet annealing or without hot-rolled sheet annealing, and then final cold rolling with a final cold rolling rate of 70 to 98%.
A cold-rolled sheet having a thickness of 0.100 to 0.480 mm was subjected to decarburization annealing at a temperature of 830 to 1000 ° C., and subsequently, an annealing separator containing MgO as a main component was applied to perform final annealing.

第1図から明らかなように、100%未満の再結晶率の冷
延前鋼板を77〜93%の冷延率で冷延を施した場合に、B8
≦1.88Tの高い磁束密度が得られている。また本発明者
らはこの新知見をさらに詳細に検討した。
As is clear from FIG. 1, when the pre-cold-rolled steel sheet having a recrystallization rate of less than 100% was cold-rolled at a cold rolling rate of 77 to 93%, B 8
A high magnetic flux density of ≤1.88T is obtained. The present inventors also examined this new finding in more detail.

第2図は、第1図で磁束密度が良好であった冷延前鋼板
の再結晶率が100%未満で、かつ、77〜93%の冷延率の
条件における冷延前鋼板の再結晶率と冷延率が製品の磁
束密度に与える影響を表したグラフである。
FIG. 2 shows the recrystallization of the pre-cold-rolled steel sheet under the condition that the re-crystallization rate of the pre-cold-rolled steel sheet with good magnetic flux density in FIG. 1 is less than 100% and the cold-rolled rate of 77-93%. It is a graph showing the effect of the cold rolling rate and the cold rolling rate on the magnetic flux density of the product.

第2図から明らかなように、冷延前の鋼板の再結晶率
(FR(%))、冷延率(CR(%))とするとき、FRとCR
が 0.05×FR+77≦CR≦0.05×FR+88 なる条件を満す時に、B8≧1.90Tの高い磁束密度が得ら
れている。
As is clear from Fig. 2, when the recrystallization rate (FR (%)) and cold rolling rate (CR (%)) of the steel sheet before cold rolling are taken as FR and CR,
A high magnetic flux density of B 8 ≧ 1.90T is obtained when the condition of 0.05 × FR + 77 ≦ CR ≦ 0.05 × FR + 88 is satisfied.

この時、冷延前鋼板の再結晶率は、本発明者らが開発し
たECP(Electron channelling pattern)を画像解析し
て結晶歪を測定する方法(日本金属学会秋期講演大会概
要集(1988.11)P289)を用いて測定し、ほぼランダム
方位を有する標準試料の焼鈍板に1.5%冷延した場合のE
CPの鮮明度より高い値を示す粒の面積率(低歪粒の面積
率)を再結晶率と呼んでいる。従来、珪素鋼の熱延板又
は熱延板焼鈍後の鋼板の再結晶率は、目視判定で行われ
ていたが、この方法では当然のことながら測定者によっ
て値が異り、客観性に欠けていた。そしてこの主な原因
は、熱延及び熱延板焼鈍で起る再結晶の中に、(1)核
生成−成長型再結晶、(2)その場再結晶の2つの再結
晶が混じっているためであった。他方、例えば70〜90%
の冷延後の再結晶の場合、(1)の再結晶が主であり、
目視判定でも正確な再結晶率を測定することが可能であ
る。本発明者らは(1)型の再結晶が主である88%冷延
率の場合の珪素鋼の冷延再結晶過程を上記の方法で詳細
に調査し、ECP鮮明度が再結晶が生じると急激に高まる
こと及び焼鈍中再結晶完了後さらにECP鮮明度が高まる
(歪が低下する)ことを解明した。そして、上記標準試
料の焼鈍板に1.5%冷延した場合のECPの鮮明度より高い
場合には、上記88%冷延し、焼鈍した場合のECPの鮮明
度の測定箇所が再結晶状態にあると判定できることがわ
かった。そこで、この判定基準を用いて従来不可能であ
った熱延板、熱延板焼鈍後の板の再結晶率の正確な測定
を行っている。
At this time, the recrystallization rate of the cold-rolled steel sheet was measured by a method of measuring crystal strain by image analysis of ECP (Electron channeling pattern) developed by the present inventors (Summary of Autumn Meeting of the Japan Institute of Metals (1988.11) P289 ), And E when cold-rolled by 1.5% on an annealed plate of a standard sample with almost random orientation.
The area ratio of grains showing a value higher than the sharpness of CP (area ratio of low strain grains) is called the recrystallization rate. Conventionally, the recrystallization rate of a hot rolled sheet of silicon steel or a steel sheet after hot rolled sheet annealing has been performed by visual judgment, but this method naturally has different values depending on the measurer and lacks objectivity. Was there. The main cause of this is that two recrystallizations of (1) nucleation-growth type recrystallization and (2) in-situ recrystallization are mixed in the recrystallization caused by hot rolling and annealing of hot rolled sheet. It was because of it. On the other hand, for example 70-90%
In the case of recrystallization after cold rolling of (1), the recrystallization of (1) is mainly
It is possible to accurately measure the recrystallization rate by visual judgment. The present inventors conducted a detailed investigation on the cold rolling recrystallization process of silicon steel in the case of 88% cold rolling of which the type (1) type recrystallization is predominant, by the above method, and ECP sharpness causes recrystallization. It was clarified that the ECP sharply increased and the ECP sharpness further increased (strain decreased) after the completion of recrystallization during annealing. And, when the ECP sharpness is higher than that when the standard sample is annealed to 1.5% cold rolled, the 88% cold rolled and annealed ECP sharpness measurement point is in a recrystallized state. It turns out that it can be judged. Therefore, this criterion is used to accurately measure the recrystallization rate of the hot-rolled sheet and the sheet after hot-rolled sheet annealing, which has been impossible in the past.

冷延前の鋼板の再結晶率、冷延率と製品の磁束密度の間
に、第1図、第2図に示した関係が成立する理由につい
ては必ずしも明らかではないが、本発明者等は次のよう
に推察している。
The reason why the relationships shown in FIGS. 1 and 2 are established between the recrystallization rate of the steel sheet before cold rolling and the cold rolling rate and the magnetic flux density of the product is not necessarily clear, but the present inventors have I guess as follows.

第3図は熱延板焼鈍なし、熱延板焼鈍ありの場合の冷延
率と製品の磁束密度の関係を表したグラフである。ま
た、第4図は、冷延前鋼板の集合組織(板厚中心)(ベ
クトル法による三次元解析結果)の例である。この場
合、C:0.053重量%,Si:3.28%重量%,Mn:0.16重量%,S:
0.007%重量%,酸可溶性Al:0.027重量%,N:0.0076重量
%を含有し、残部Fe及び不可避的不純物からなる40mm厚
のスラブを1150℃に加熱した後、圧延開始温度を1051
℃、778℃の2水準とし、40→23→12→6→3.7→2.3
→1.8(mm)なるパススケジュールで熱延し、1秒後に
水冷を行い550℃まで水冷した後、550℃に1時間保持し
て炉冷する巻取りシミュレーションを施した。この時圧
延終了温度は各々925℃、754℃であった。この熱延
板を引き続き、(a)熱延板焼鈍なし、(b)1120℃に
30秒保持後900℃に30秒保持して急冷なる熱延板焼鈍あ
り、の2水準の条件で処理した。この時の冷延前鋼板の
再結晶率は各々−(a):55%、−(b):100%、
−(a):8%、−(b):100%であった。次いでこ
の冷延前鋼板を冷延率70〜94%で冷延し、0.100〜0.54m
m厚の最終冷延板とし、次いで脱炭焼鈍、最終仕上焼鈍
を施した。
FIG. 3 is a graph showing the relationship between the cold rolling rate and the magnetic flux density of the product when the hot rolled sheet is not annealed and when the hot rolled sheet is annealed. Further, FIG. 4 is an example of the texture (center of plate thickness) of the steel sheet before cold rolling (three-dimensional analysis result by the vector method). In this case, C: 0.053% by weight, Si: 3.28% by weight, Mn: 0.16% by weight, S:
After heating a 40 mm thick slab containing 0.007% by weight, acid-soluble Al: 0.027% by weight, N: 0.0076% by weight and the balance Fe and unavoidable impurities to 1150 ° C, the rolling start temperature was 1051%.
2 levels of ℃ and 778 ℃, 40 → 23 → 12 → 6 → 3.7 → 2.3
→ Winding simulation was conducted by hot rolling with a pass schedule of 1.8 (mm), water cooling after 1 second, water cooling to 550 ° C, holding at 550 ° C for 1 hour, and furnace cooling. At this time, the rolling finish temperatures were 925 ° C and 754 ° C, respectively. This hot-rolled sheet is then (a) without hot-rolled sheet annealing, (b) at 1120 ° C.
There was hot-rolled sheet annealing in which the material was held for 30 seconds and then held at 900 ° C for 30 seconds to be rapidly cooled. At this time, the recrystallization rate of the steel sheet before cold rolling was − (a): 55%, − (b): 100%,
-(A): 8%,-(b): 100%. Then, this cold rolled steel sheet is cold rolled at a cold rolling rate of 70 to 94% to obtain 0.100 to 0.54 m.
The final cold-rolled sheet having a thickness of m was subjected to decarburization annealing and final finishing annealing.

第3図より明らかなように冷延前鋼板の再結晶率が低い
ほど製品の磁束密度を最高とする冷延率(最適冷延率)
が低くなることがわかる。また、第4図から明らかなよ
うに、冷延前鋼板の再結晶率が低いほど冷延前鋼板の
{100}<011>方位粒が多いことがわかる。
As is clear from FIG. 3, the lower the recrystallization rate of the steel sheet before cold rolling, the higher the magnetic flux density of the product becomes (the optimum cold rolling rate).
It turns out that is low. As is clear from FIG. 4, the lower the recrystallization rate of the pre-cold-rolled steel sheet, the more {100} <011> oriented grains of the pre-cold-rolled steel sheet.

鉄鋼の冷延における結晶回転に関する研究においては、
例えば冷延前の{110}<001>方位は冷延後に{11
1}<112>方位へと回転する、冷延前の{111}<112
>方位は冷延後に{211}<011>方位へと回転する、
冷延の最終安定方位は{100}<011>又は{211}<011
>である等の報告がある。冷延における結晶回転は、特
定のすべり面とすべり方向(すべり系)に転位が運動し
て生じるものであり、当然、冷延前の結晶方位が異れ
ば、冷延後の結晶方位に差異が生じる。一方第4図から
明らかなように、冷延前鋼板の再結晶率が低いほど冷延
最終安定方位である{100}<011>が多いことがわか
る。これは、再結晶率100%未満である冷延前鋼板は再
結晶率100%である冷延前鋼板にあたかも冷延を加えた
かのような集合組織をもっていることを示している。従
って例えば、80%程度の冷延率での冷延後に同様の集合
組織を得るためには、冷延前鋼板の再結晶率が低いほど
冷延率を低める必要がある。
In the research on crystal rotation in cold rolling of steel,
For example, the {110} <001> orientation before cold rolling is {11} after cold rolling.
Rotating in the 1} <112> direction, {111} <112 before cold rolling
> Orientation rotates to {211} <011> orientation after cold rolling,
The final stable orientation of cold rolling is {100} <011> or {211} <011
There are reports such as>. Crystal rotation in cold rolling is caused by the movement of dislocations in a specific slip plane and slip direction (slip system). Naturally, if the crystal orientation before cold rolling is different, the crystal orientation after cold rolling is different. Occurs. On the other hand, as is clear from FIG. 4, the lower the recrystallization rate of the steel sheet before cold rolling is, the more {100} <011> which is the final stable orientation of cold rolling. This indicates that the pre-cold-rolled steel sheet having a recrystallization rate of less than 100% has a texture as if the cold-rolled steel sheet having a recrystallization rate of 100% was subjected to cold rolling. Therefore, for example, in order to obtain a similar texture after cold rolling at a cold rolling rate of about 80%, it is necessary to lower the cold rolling rate as the recrystallization rate of the steel sheet before cold rolling is lower.

冷延前鋼板の再結晶率が低いほど、{100}<011>が多
い理由について本発明者らは次のように推察している。
例えば、熱延における中心層の結晶回転は冷延での結晶
回転と類似しており、圧延によって{100}<011>方位
粒は増加する傾向にある。一方、パス間及び熱延終了後
の空冷中に再結晶に伴う結晶方位変化が生じるが、その
再結晶で{100}<011>方位粒が発生することはほとん
どなく、むしろ他の方位の再結晶粒に、{100}<011>
方位粒は侵食されて、減少していく。従って熱延での累
積圧下率が同じでも、熱延での再結晶が生じやすい条件
での熱延の場合{100}<011>方位粒が少ない傾向があ
る。また、熱延板焼鈍での再結晶に伴っても{100}<0
11>方位粒は他の方位の再結晶粒に侵食されて減少して
いく傾向がある。従って、温度が高い等再結晶しやすい
条件での熱延板焼鈍の場合{100}<011>方位粒が減少
する傾向がある。
The present inventors presume that the lower the recrystallization rate of the steel sheet before cold rolling is, the more the {100} <011> is.
For example, the crystal rotation of the central layer in hot rolling is similar to that in cold rolling, and {100} <011> oriented grains tend to increase by rolling. On the other hand, the crystal orientation changes due to recrystallization during air cooling between passes and after hot rolling is completed, but the {100} <011> oriented grains are rarely generated during the recrystallization, and rather the reorientation of other orientations occurs. {100} <011> on the crystal grains
The direction grains are eroded and decrease. Therefore, even if the cumulative rolling reduction in hot rolling is the same, the number of {100} <011> oriented grains tends to be small in the case of hot rolling under conditions where recrystallization is likely to occur in hot rolling. In addition, {100} <0 even with recrystallization during hot-rolled sheet annealing.
11> orientation grains tend to be eroded by recrystallized grains in other orientations and decrease. Therefore, in the case of hot-rolled sheet annealing under conditions such as high temperature where recrystallization is likely to occur, {100} <011> oriented grains tend to decrease.

一方、冷延再結晶での核発生頻度等再結晶現象に冷延後
の歪量(転位密度)が支配的影響を与えることは従来か
ら知られている。冷延前鋼板の再結晶率が低いほど歪量
は多く、冷延後でもその影響は継承され、歪量は多い傾
向がある。従って、例えば80%程度の冷延率での冷延で
同様の歪量を得るためには、冷延前鋼板の再結晶率が低
いほど、冷延率を低める必要がある。
On the other hand, it has been conventionally known that the strain amount (dislocation density) after cold rolling has a dominant effect on the recrystallization phenomenon such as the nucleus generation frequency in cold rolling recrystallization. The lower the recrystallization rate of the steel sheet before cold rolling, the larger the strain amount, and the effect is inherited even after cold rolling, and the strain amount tends to be large. Therefore, in order to obtain the same strain amount in cold rolling at a cold rolling rate of about 80%, for example, it is necessary to lower the cold rolling rate as the recrystallization rate of the pre-cold rolling steel sheet is lower.

上記の如く、冷延での結晶回転、冷延再結晶現象を製品
の磁束密度が良好になるような状態にするためには、冷
延前鋼板の再結晶率が低いほど、冷延率を低める必要が
ある。
As described above, in order to make the crystal rotation in cold rolling and the cold rolling recrystallization phenomenon such that the magnetic flux density of the product becomes good, the lower the recrystallization rate of the steel sheet before cold rolling, the lower the cold rolling rate. It needs to be lowered.

次いで、本発明の各要件について説明する。Next, each requirement of the present invention will be described.

本発明で使用されるスラブは重量でC:0.021〜0.100%、
Si:2.5〜4.5%ならびに通常のインヒビター成分を含み
残余はFeおよび不可避的不純物よりなる。
The slab used in the present invention has C: 0.021 to 0.100% by weight,
Si: 2.5-4.5% and the usual inhibitor components, with the balance consisting of Fe and inevitable impurities.

次に上記成分の限定理由について述べる。Next, the reasons for limiting the above components will be described.

Cは0.021%未満にすると二次再結晶が不安定となり、
かつ、二次再結晶した場合でもB8>1.80(T)が得がた
く好ましくなく、また、0.100%を超えると脱炭不良が
発生して好ましくない。
When C is less than 0.021%, secondary recrystallization becomes unstable,
Moreover, B 8 > 1.80 (T) is not obtained easily even in the case of secondary recrystallization, and if it exceeds 0.100%, decarburization failure occurs, which is not preferable.

又、Siについては4.5%を超えると冷延が困難となり好
ましくなく、2.5%未満では良好な磁気特性を得ること
が困難となり好ましくない。また、インヒビター構成元
素として、必要に応じてAl,N,Mn,S,Se,Sb,B,Cu,Bi,Nb,C
r,Sn,Ti等を添加することもできる。
Further, if Si exceeds 4.5%, cold rolling becomes difficult, which is not preferable, and if it is less than 2.5%, it is difficult to obtain good magnetic properties, which is not preferable. As an inhibitor constituent element, if necessary, Al, N, Mn, S, Se, Sb, B, Cu, Bi, Nb, C
It is also possible to add r, Sn, Ti and the like.

このスラブの加熱温度は、特に限定されるものではない
が、コストの面から1300℃以下とすることが好ましい。
The heating temperature of the slab is not particularly limited, but it is preferably 1300 ° C. or lower in terms of cost.

加熱されたスラブは、引き続き熱延されて熱延板とな
る。
The heated slab is subsequently hot rolled to form a hot rolled plate.

熱延工程は、通常、100〜400mm厚のスラブを加熱した
後、いづれも複数回のパスで行う粗圧延と仕上圧延より
成る。粗圧延の方法については特に限定するものではな
く、通常の方法で行われる。仕上圧延は通常4〜10パス
の高速連続圧延で行われる。通常、仕上圧延の圧下配分
は前段が圧下率が高く後段に行くほど圧下率を下げて形
状を良好なものとしている。圧延速度は通常、100〜300
0m/minとなっており、パス間の時間は0.01〜100秒とな
っている。仕上圧延の圧下率、圧下配分及び最終パス後
の冷却条件は熱延板の再結晶率に影響を与え、仕上後
段、特に最終パスの圧下率が高いほど、熱延終了後、鋼
板を高温に保つ時間が長いほど熱延板の再結晶率が高
い。また熱延後の巻取温度に関しては特に限定するもの
ではないが、700℃以上になると冷却時のコイル内の熱
履歴の差に起因して、コイル内にAlN等析出物の析出状
態のバラツキ、表面脱炭状態のバラツキ、金属組織のバ
ラツキ等が生じ、製品の磁気特性にバラツキが生じて好
ましくない。
The hot rolling process usually consists of heating a slab with a thickness of 100 to 400 mm, and then performing rough rolling and finish rolling each in multiple passes. The method of rough rolling is not particularly limited, and a general method is used. Finish rolling is usually performed by high speed continuous rolling with 4 to 10 passes. Normally, in the reduction distribution of finish rolling, the reduction ratio is high in the former stage and lower in the latter stage, and the shape is improved. Rolling speed is usually 100-300
It is 0 m / min, and the time between passes is 0.01 to 100 seconds. The reduction rate of finish rolling, reduction distribution, and cooling conditions after the final pass affect the recrystallization rate of the hot-rolled sheet, and the higher the reduction rate in the final stage, especially in the final pass, the higher the temperature of the steel sheet after hot rolling is finished. The longer the holding time, the higher the recrystallization rate of the hot rolled sheet. The coiling temperature after hot rolling is not particularly limited, but at 700 ° C or higher, variations in the precipitation state of precipitates such as AlN are caused in the coil due to the difference in thermal history in the coil during cooling. The surface decarburization varies, the metal structure varies, and the magnetic properties of the product vary, which is not preferable.

この熱延板は引き続き700〜1200℃の温度で焼鈍あり又
は焼鈍なしなる処理を行った後冷延される。
This hot rolled sheet is subsequently subjected to a treatment with or without annealing at a temperature of 700 to 1200 ° C., and then cold rolled.

本発明の特徴は、再結晶率100%未満の冷延前鋼板(熱
延板又は熱延板焼鈍後の鋼板)の冷延方法にある。具体
的に言うならば、再結晶率100%未満の冷延前鋼板に対
して、冷延率を77〜93%としなければならない。また、
さらに好ましくは、冷延前鋼板の再結晶率(FR
(%))、冷延率(CR(%))とするとき、冷延は下記
の式を満足する如く施されなければならない。
A feature of the present invention is a cold rolling method for a pre-cold-rolled steel sheet (hot-rolled sheet or steel sheet after hot-rolled sheet annealing) having a recrystallization rate of less than 100%. Specifically, the cold rolling rate must be 77 to 93% for the pre-cold rolling steel sheet having a recrystallization rate of less than 100%. Also,
More preferably, the recrystallization rate (FR of the steel sheet before cold rolling is
(%)) And cold rolling rate (CR (%)), cold rolling must be performed so as to satisfy the following formula.

0.05×FR+77≦CR≦0.05×FR+88 (A) 次いで上記条件の限定理由について述べる。0.05 × FR + 77 ≦ CR ≦ 0.05 × FR + 88 (A) Next, the reasons for limiting the above conditions will be described.

再結晶率100%未満の冷延前鋼板に対して、冷延率77〜9
3%としたのは、第1図から明らかなように、この範囲
で、B8≧1.88(T)の良好な磁束密度を得られるためで
ある。また、さらに好ましくは、式(A)を満足する必
要があるとしたのは、第2図から明らかなように、この
範囲で、B8≧1.90(T)の一層良好な磁束密度をもつ製
品が得られるためである。
For cold rolled steel sheet with recrystallization rate less than 100%, cold rolling rate is 77-9
The reason for setting it to 3% is that, as is clear from FIG. 1, a good magnetic flux density of B 8 ≧ 1.88 (T) can be obtained in this range. Further, more preferably, it is necessary to satisfy the formula (A), as is clear from FIG. 2, a product having a better magnetic flux density of B 8 ≧ 1.90 (T) in this range. Is obtained.

冷延後、鋼板は通常の方法で脱炭焼鈍、焼鈍分離剤塗
布、仕上焼鈍を施されて最終製品となる。なお、脱炭焼
鈍後の状態で、二次再結晶に必要なインヒビター強度が
不足している場合には、仕上焼鈍等においてインヒビタ
ーを強化する処理が必要となる。インヒビター強化法の
一例としては、Alを含有する鋼において仕上焼鈍雰囲気
ガスの窒素分圧を高めに設定する方法が知られている。
After cold rolling, the steel sheet is subjected to decarburization annealing, an annealing separator coating, and finish annealing in a usual manner to obtain a final product. If the inhibitor strength required for secondary recrystallization is insufficient after decarburization annealing, a treatment for strengthening the inhibitor in finish annealing or the like is required. As an example of the inhibitor strengthening method, a method is known in which a nitrogen partial pressure of a finish annealing atmosphere gas is set to be high in a steel containing Al.

〔実施例〕〔Example〕

以下、実施例を説明する。 Examples will be described below.

−実施例1− C:0.054重量%,Si:3.25重量%,Mn:0.16重量%,S:0.005
重量%,酸可溶性Al:0.026重量%,N:0.0078重量%を含
有し、残部Fe及び不可避的不純物からなる40mm厚のスラ
ブを1150℃の温度で加熱した後、1050℃で熱延を開始
し、6パスで熱延して2.3mm厚の熱延板とした。この
時、圧下配分を40→30→20→10→5→2.8→2.3(mm)と
した。この時熱延終了温度は915℃であった。熱延終了
後は1秒間空冷後550℃まで水冷し、550℃に1時間保持
した後炉冷する巻取シミュレーションを行った。この熱
延板を焼鈍なし、900℃に3分間均熱なる条件で処
理し、次いで圧下率(a)75%、(b)85%、(c)95
%の3水準で冷延し、0.115〜0.575mm厚の冷延板とし、
830℃で150秒保持する脱炭焼鈍を施した。得られた脱炭
焼鈍板に、MgOを主成分とする焼鈍分離剤を塗布し、N22
5%、H275%の雰囲気ガス中で10℃/時の速度で880℃ま
で昇温し、次いで、N275%、H225%の雰囲気ガス中で10
℃/時の速度で1200℃まで昇温し、引き続きH2100%雰
囲気ガス中で1200℃で20時間保持する最終仕上焼鈍を行
った。
-Example 1-C: 0.054 wt%, Si: 3.25 wt%, Mn: 0.16 wt%, S: 0.005
%, Acid-soluble Al: 0.026% by weight, N: 0.0078% by weight, and a 40 mm thick slab consisting of balance Fe and unavoidable impurities was heated at a temperature of 1150 ° C, and then hot rolling was started at 1050 ° C. Then, hot rolling was performed in 6 passes to obtain a hot rolled sheet having a thickness of 2.3 mm. At this time, the reduction distribution was set to 40 → 30 → 20 → 10 → 5 → 2.8 → 2.3 (mm). At this time, the hot rolling end temperature was 915 ° C. After the hot rolling was finished, a coiling simulation was conducted in which the material was air-cooled for 1 second, water-cooled to 550 ° C., held at 550 ° C. for 1 hour and then furnace-cooled. This hot-rolled sheet was not annealed and treated under the condition of soaking at 900 ° C. for 3 minutes, and then the rolling reductions (a) 75%, (b) 85%, (c) 95
% Cold-rolled at 3 levels to make 0.115-0.575mm thick cold-rolled sheet,
Decarburization annealing was performed at 830 ° C for 150 seconds. The decarburized and annealed sheet thus obtained was coated with an annealing separator containing MgO as a main component, and N 2 2
The temperature is raised to 880 ° C at a rate of 10 ° C / hour in an atmosphere gas of 5% and H 2 75%, and then 10% in an atmosphere gas of N 2 75% and H 2 25%.
The final finishing annealing was performed by raising the temperature to 1200 ° C. at a rate of ° C./hour and then maintaining the temperature at 1200 ° C. for 20 hours in H 2 100% atmosphere gas.

工程条件、冷延前鋼板の再結晶率と製品の磁気特性を第
1表に示す。
Table 1 shows the process conditions, the recrystallization rate of the steel sheet before cold rolling, and the magnetic properties of the product.

−実施例2− C:0.034重量%,Si:3.28重量%,Mn:0.14重量%,S:0.006
重量%,酸可溶性Al:0.027重量%,N:0.0079重量%を含
有し、残部Fe及び不可避的不純物からなる26mm厚のスラ
ブを1150℃の温度で加熱した後1050℃で熱延を開始し、
6パスで熱延して2.3mmの熱延板とした。この時、圧下
配分を26→15→10→7→5→3→2.3(mm)とした。こ
の時、熱延終了温度は892℃であった。熱延終了後の冷
却条件は実施例1と同じ条件で行い、次いで焼鈍な
し、850℃に3分間保持なる条件で処理し、引き続く
最終仕上焼鈍までの工程条件は実施例1と同じ条件で行
った。
-Example 2-C: 0.034 wt%, Si: 3.28 wt%, Mn: 0.14 wt%, S: 0.006
% By weight, acid-soluble Al: 0.027% by weight, N: 0.0079% by weight, and a 26 mm thick slab consisting of the balance Fe and unavoidable impurities was heated at a temperature of 1150 ° C. and then hot rolling was started at 1050 ° C.,
It hot-rolled in 6 passes to obtain a hot-rolled sheet of 2.3 mm. At this time, the reduction distribution was set to 26 → 15 → 10 → 7 → 5 → 3 → 2.3 (mm). At this time, the hot rolling finish temperature was 892 ° C. After completion of hot rolling, the cooling conditions were the same as those in Example 1, followed by no annealing, treatment at 850 ° C. for 3 minutes, and subsequent process conditions until final annealing were the same as in Example 1. It was

工程条件、冷延前鋼板の再結晶率、製品の磁気特性を第
2表に示す。
Table 2 shows the process conditions, the recrystallization rate of the steel sheet before cold rolling, and the magnetic properties of the product.

−実施例3− C:0.055重量%,Si:3.28重量%,Mn:0.15重量%,S:0.007
重量%,酸可溶性Al:0.028重量%,N:0.0080重量%を含
有し、残部Fe及び不可避的不純物からなる26mm厚のスラ
ブを1150℃の温度で加熱した後800℃で熱延を開始し、
6パスで熱延して1.8mm厚の熱延板とした。この時圧下
配分を26→15→10→7→4→2.6→1.8(mm)とした。こ
の時、熱延終了温度は749℃であった。熱延終了後の冷
却条件は実施例1と同じ条件で行い、熱延板焼鈍を施す
ことなく70%、79%の冷延率で冷延し、0.38〜0.54
mm厚の冷延板とした。引き続く最終仕上焼鈍までの工程
条件は実施例1と同じ条件で行った。
-Example 3-C: 0.055 wt%, Si: 3.28 wt%, Mn: 0.15 wt%, S: 0.007
%, Acid-soluble Al: 0.028% by weight, N: 0.0080% by weight, and a 26 mm thick slab consisting of the balance Fe and unavoidable impurities is heated at a temperature of 1150 ° C. and then hot rolling is started at 800 ° C.,
Hot rolling was performed in 6 passes to obtain a hot rolled sheet having a thickness of 1.8 mm. At this time, the reduction distribution was set to 26 → 15 → 10 → 7 → 4 → 2.6 → 1.8 (mm). At this time, the hot rolling end temperature was 749 ° C. After the hot rolling, the cooling conditions were the same as in Example 1, and cold rolling was performed at 70% and 79% cold rolling rates without hot rolling sheet annealing, to obtain 0.38 to 0.54.
A cold rolled sheet having a thickness of mm was used. The process conditions up to the subsequent final finish annealing were the same as in Example 1.

工程条件、冷延前鋼板の再結晶率と製品の磁気特性を第
3表に示す。
Table 3 shows the process conditions, the recrystallization rate of the steel sheet before cold rolling, and the magnetic properties of the product.

−実施例4− C:0.079重量%,Si:3.25重量%,Mn:0.080重量%,S:0.026
重量%、酸可溶性Al:0.028重量%,N:0.0082重量%,Sn:
0.11重量%,Cu:0.06重量%を含有し、残部Fe及び不可避
的不純物からなる40mm厚のスラブを1300℃の温度で加熱
した後、1100℃で熱延を開始し、6パスで熱延して2.3m
m厚の熱延板とした。この時圧下配分を40→30→20→10
→6→3.6→2.3(mm)とした。この時、熱延終了温度は
975℃であった。熱延終了後、2秒空冷した後に70℃/
秒の冷速で550℃まで水冷し、550℃に1時間保持した
後、炉冷する巻取りシミュレーションを施した。この熱
延板を、熱延板焼鈍なし、800℃に3分保持なる条
件で冷延率(a)84%、(b)94%で処理し0.14〜0.37
mm厚の冷延板とした。次いでこの冷延板を830℃で120秒
保持し、引き続き950℃に20秒保持する脱炭焼鈍を施し
た。引き続く最終仕上焼鈍までの工程条件は実施例1と
同じ条件で行った。
-Example 4-C: 0.079 wt%, Si: 3.25 wt%, Mn: 0.080 wt%, S: 0.026
% By weight, acid-soluble Al: 0.028% by weight, N: 0.0082% by weight, Sn:
A slab containing 0.11% by weight and Cu: 0.06% by weight and consisting of balance Fe and unavoidable impurities and having a thickness of 40 mm was heated at a temperature of 1300 ° C., then hot rolling was started at 1100 ° C., and hot rolling was performed in 6 passes. 2.3m
It was a hot rolled sheet with a thickness of m. The reduction distribution at this time is 40 → 30 → 20 → 10
→ 6 → 3.6 → 2.3 (mm). At this time, the hot rolling end temperature is
It was 975 ° C. After hot rolling, air-cool for 2 seconds and then 70 ℃ /
Water-cooling to 550 ° C. was performed at a cooling rate of 2 seconds, the temperature was kept at 550 ° C. for 1 hour, and then a furnace cooling simulation was performed. 0.14 to 0.37 of this hot rolled sheet was treated with cold rolling rate (a) 84% and (b) 94% under the condition that the hot rolled sheet was not annealed and kept at 800 ° C for 3 minutes.
A cold rolled sheet having a thickness of mm was used. Next, this cold rolled sheet was held at 830 ° C. for 120 seconds, and subsequently subjected to decarburization annealing at 950 ° C. for 20 seconds. The process conditions up to the subsequent final finish annealing were the same as in Example 1.

工程条件、冷延前鋼板の再結晶率と製品の磁気特性を第
4表に示す。
Table 4 shows the process conditions, the recrystallization rate of the steel sheet before cold rolling, and the magnetic properties of the product.

−実施例5− C:0.043重量%,Si:3.20重量%,Mn:0.066重量%,S:0.024
重量%,Cu:0.08重量%,Sb:0.018重量%を含有し、残部F
e及び不可避的不純物からなる26mm厚のスラブを1300℃
の温度で加熱した後1000℃で熱延を開始し、6パスで熱
延して1.6mm厚の熱延板とした。この時、圧下配分を40
→15→7→5→3.5→2.1→1.6(mm)とした。この時、
熱延終了温度は921℃であった。熱延終了後の冷却を実
施例1と同じ条件で行った。次いで、熱延板焼鈍な
し、850℃に3分保持なる条件で処理し、冷延率
(a)75%、(b)80%で冷延し、0.4〜0.32mm厚の冷
延板とした。次いで、この冷延板を830℃で120秒保持し
引き続き910℃に20秒保持する脱炭焼鈍を施した。引き
続く最終仕上焼鈍までの工程条件は実施例1と同じ条件
で行った。
-Example 5-C: 0.043 wt%, Si: 3.20 wt%, Mn: 0.066 wt%, S: 0.024
%, Cu: 0.08% by weight, Sb: 0.018% by weight, balance F
26 mm thick slab consisting of e and inevitable impurities at 1300 ℃
After heating at the temperature of 1000 ° C., hot rolling was started at 1000 ° C., and hot rolling was performed in 6 passes to obtain a 1.6 mm thick hot rolled sheet. At this time, the reduction distribution is 40
→ 15 → 7 → 5 → 3.5 → 2.1 → 1.6 (mm). At this time,
The hot rolling end temperature was 921 ° C. After the hot rolling was completed, cooling was performed under the same conditions as in Example 1. Then, the hot rolled sheet was not annealed, treated at 850 ° C. for 3 minutes, and cold rolled at a cold rolling rate (a) of 75% and (b) 80% to obtain a cold rolled sheet of 0.4 to 0.32 mm thickness. . Next, this cold rolled sheet was subjected to decarburization annealing at 830 ° C for 120 seconds and then at 910 ° C for 20 seconds. The process conditions up to the subsequent final finish annealing were the same as in Example 1.

工程条件、冷延前鋼板の再結晶率と製品の磁気特性を第
5表に示す。
Table 5 shows the process conditions, the recrystallization rate of the steel sheet before cold rolling, and the magnetic properties of the product.

(発明の効果) 以上説明したように、本発明においては、再結晶率100
%未満である冷延前鋼板に対して冷延率を77〜93%と
し、さらに好ましくは、冷延前鋼板の再結晶率に応じて
冷延率を選ぶことによって熱延板焼鈍が簡省略でき、か
つ良好な磁気特性を得ることができるので、その工業的
効果は極めて大である。
(Effect of the invention) As described above, in the present invention, the recrystallization rate is 100
%, The cold rolling rate is 77 to 93% with respect to the steel sheet before cold rolling, and more preferably, the hot rolling sheet annealing is simplified by selecting the cold rolling rate according to the recrystallization rate of the steel sheet before cold rolling. Since it is possible to obtain good magnetic properties, its industrial effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は、冷延前鋼板の再結晶率が100%又は100%未満
の場合の冷延率と製品の磁束密度の関係を表したグラフ
であり、第2図は冷延前鋼板の再結晶率と冷延率が製品
の磁束密度に与える影響を表したグラフであり、第3図
は、熱延板焼鈍なし、熱延板焼鈍ありの場合の冷延率と
製品の磁束密度の関係を表したグラフであり、第4図は
冷延前鋼板の集合組織の例である。
FIG. 1 is a graph showing the relationship between the cold rolling rate and the magnetic flux density of the product when the recrystallization rate of the cold rolling steel sheet is 100% or less than 100%, and FIG. FIG. 3 is a graph showing the influence of the crystallinity and the cold rolling rate on the magnetic flux density of the product. FIG. 3 is a graph showing the relationship between the cold rolling rate and the magnetic flux density of the product with and without annealing of the hot rolled sheet. 4 is an example of the texture of the pre-cold rolled steel sheet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 聡 福岡県北九州市八幡東区枝光1―1―1 新日本製鐵株式會社第3技術研究所内 (56)参考文献 特公 昭59−41488(JP,B2) 特公 昭50−37009(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Satoru Arai Satoshi Arai 1-1-1 Edamitsu, Yawatahigashi-ku, Kitakyushu, Fukuoka Prefecture (3) Technical Research Laboratories, Nippon Steel Co., Ltd. (56) References JP-B-59-41488 ( JP, B2) JP-B-50-37009 (JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量でC:0.021〜0.100%、Si:2.5〜4.5%
ならびに通常のインヒビター成分を含み、残余はFeおよ
び不可避的不純物よりなる珪素鋼スラブを熱延し、引き
続き通常の1回冷延工程で得られた珪素鋼冷延板に脱炭
焼鈍、最終仕上焼鈍を施して一方向性電磁鋼板を製造す
る方法において、再結晶率100%未満の冷延前鋼板に対
して、冷延率77〜93%の冷延を施すことを特徴とする磁
気特性の優れた一方向性電磁鋼板の製造方法。
1. C: 0.021 to 0.100% by weight, Si: 2.5 to 4.5% by weight
In addition, a silicon steel slab containing a usual inhibitor component and the balance Fe and unavoidable impurities is hot-rolled, followed by decarburization annealing and final finishing annealing on a silicon steel cold-rolled sheet obtained by a normal single cold rolling process. In the method for producing a grain-oriented electrical steel sheet by applying the above method, the steel sheet before cold rolling having a recrystallization rate of less than 100% is subjected to cold rolling at a cold rolling rate of 77 to 93%, which is excellent in magnetic properties. Method for producing unidirectional electrical steel sheet.
【請求項2】冷延前鋼板の再結晶率(FR(%))、冷延
率(CR(%))とするとき、冷延は下記の式を満足する
如く施されることを特徴とする請求項1記載の磁気特性
の優れた一方向性電磁鋼板の製造方法。 0.05×FR+77≦CR≦0.05×FR+88
2. When the recrystallization rate (FR (%)) and cold rolling rate (CR (%)) of a steel sheet before cold rolling are defined, cold rolling is performed so as to satisfy the following formula. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1. 0.05 x FR + 77 ≤ CR ≤ 0.05 x FR + 88
JP1095929A 1989-04-15 1989-04-15 Method for producing unidirectional electrical steel sheet with excellent magnetic properties Expired - Lifetime JPH0753884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1095929A JPH0753884B2 (en) 1989-04-15 1989-04-15 Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1095929A JPH0753884B2 (en) 1989-04-15 1989-04-15 Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH02274814A JPH02274814A (en) 1990-11-09
JPH0753884B2 true JPH0753884B2 (en) 1995-06-07

Family

ID=14150962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1095929A Expired - Lifetime JPH0753884B2 (en) 1989-04-15 1989-04-15 Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JPH0753884B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219793A (en) * 2010-04-06 2011-11-04 Nippon Steel Corp Hot-rolled plate for oriented electromagnetic steel sheet excellent in magnetic characteristic, and method of producing the same
EP4276204A1 (en) * 2021-03-04 2023-11-15 JFE Steel Corporation Method for manufacturing directional electromagnetic steel sheet, and hot-rolled steel sheet for directional electromagnetic steel sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037009A (en) * 1973-08-03 1975-04-07
JPS5941488A (en) * 1982-09-01 1984-03-07 Sumitomo Metal Ind Ltd Method for automatically controlling concentration of ferrous electroplating bath

Also Published As

Publication number Publication date
JPH02274814A (en) 1990-11-09

Similar Documents

Publication Publication Date Title
JPS6160896B2 (en)
JPH0832929B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH0567683B2 (en)
EP0391335B2 (en) Process for production of grain oriented electrical steel sheet having superior magnetic properties
JPH03294427A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH08269571A (en) Production of grain-oriented silicon steel strip
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
US5261971A (en) Process for preparation of grain-oriented electrical steel sheet having superior magnetic properties
JPH0753884B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2659655B2 (en) Thick grain-oriented electrical steel sheet with excellent magnetic properties
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
EP0392535B2 (en) Process for preparation of grain-oriented electrical steel sheet having superior magnetic properties
JPH0742504B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH0794689B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH0788531B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0791586B2 (en) Method for manufacturing thick unidirectional electrical steel sheet with excellent magnetic properties
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH0742506B2 (en) Method for manufacturing thick unidirectional electrical steel sheet with excellent magnetic properties
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH07116515B2 (en) Method for producing unidirectional silicon steel sheet having excellent magnetic properties

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 14

EXPY Cancellation because of completion of term