JPH075313B2 - Method for producing oxide superconducting thin film - Google Patents

Method for producing oxide superconducting thin film

Info

Publication number
JPH075313B2
JPH075313B2 JP63327955A JP32795588A JPH075313B2 JP H075313 B2 JPH075313 B2 JP H075313B2 JP 63327955 A JP63327955 A JP 63327955A JP 32795588 A JP32795588 A JP 32795588A JP H075313 B2 JPH075313 B2 JP H075313B2
Authority
JP
Japan
Prior art keywords
thin film
laminated
superconducting
oxide superconducting
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63327955A
Other languages
Japanese (ja)
Other versions
JPH02175613A (en
Inventor
秀臣 鯉沼
裕俊 永田
Original Assignee
住友セメント株式会社
新技術開発事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友セメント株式会社, 新技術開発事業団 filed Critical 住友セメント株式会社
Priority to JP63327955A priority Critical patent/JPH075313B2/en
Publication of JPH02175613A publication Critical patent/JPH02175613A/en
Publication of JPH075313B2 publication Critical patent/JPH075313B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸化物超伝導薄膜の作製方法に関する。特
に、Ba2YCu3O7-δ系よりも高いTc特性が期待されている
Bi−Sr−Ca−Cu−O系酸化物超伝導物質を薄膜化し、デ
バイス、配線等にその超伝導性を利用した薄膜製品の作
製方法に関する。
The present invention relates to a method for producing an oxide superconducting thin film. In particular, higher Tc characteristics than Ba 2 YCu 3 O 7- δ system are expected
The present invention relates to a method for manufacturing a thin film product in which a Bi-Sr-Ca-Cu-O-based oxide superconducting substance is thinned and its superconductivity is used for devices, wirings and the like.

[従来の技術] 酸化物超伝導物質の中でBi系酸化物超伝導物質では、特
にそのTc特性が100K以上の相が存在することが、確認さ
れてい、その超伝導薄膜を作製する方法は、スパッタリ
ング法、蒸着法、CVDなど種々の方法による薄膜化が考
えられる。然し乍ら、高いTc特性を与える組成、特に、
アルカリ土類の組成比が確定されておらず、また、組
成、結晶構造(c軸長さ)が異なると考えられている複
数の超伝導相、非超伝導相が存在するため、単一の超伝
導相、特に、高いTc特性を有する相を単独に得ること
が、非常に困難である。
[Prior Art] Among oxide superconducting materials, it has been confirmed that Bi-based oxide superconducting materials have a phase with a Tc characteristic of 100 K or more. Thinning can be considered by various methods such as sputtering, vapor deposition, and CVD. However, the composition that gives high Tc characteristics, in particular,
The composition ratio of alkaline earth is not determined, and there are multiple superconducting and non-superconducting phases that are thought to differ in composition and crystal structure (c-axis length). It is very difficult to obtain a superconducting phase alone, especially a phase having high Tc characteristics.

また、Bi系におけるPb添加のように、異種元素を添加す
ることにより、超伝導特性(Tc、Jcなど)を向上させる
可能性も考えられるが、この場合も、最適な添加量は、
経験的に得られているだけで、制御調整されて得られて
いるものでない。
Further, it is possible to improve superconducting properties (Tc, Jc, etc.) by adding a different element like Pb addition in Bi system, but in this case also, the optimum addition amount is
It is obtained empirically, not by control adjustment.

酸化物超伝導物質を薄膜に応用する場合には、焼結体と
同様な困難点が伴い、高い超伝導特性を有する超伝導薄
膜を得ることが、非常に困難である。その他に、超伝導
物質を薄膜にする場合には、その超伝導特性を向上させ
るために、焼結体の場合と同様に、異種元素の添加が検
討されている。
When an oxide superconducting material is applied to a thin film, it is very difficult to obtain a superconducting thin film having high superconducting properties because of the same difficulties as those of the sintered body. In addition, when a superconducting substance is formed into a thin film, in order to improve its superconducting property, addition of a different element is being studied as in the case of the sintered body.

即ち、そのような酸化物超伝導薄膜中に異種元素成分を
薄膜形成段階で添加しようとした場合、特に、K、Pb、
Tlという蒸気圧の高い元素では、スパッタリングターゲ
ット、蒸着源などの出原料と薄膜との間で、薄膜形成中
に組成のズレが生じることが多く、、また、出発原料中
の含有量が経時変化し、ロット間での組成ズレが生じ、
異種元素の添加量を薄膜形成段階で制御調整すること
は、非常に困難である。
That is, when it is attempted to add a different element component to such an oxide superconducting thin film at the thin film forming stage, in particular, K, Pb,
With Tl, which has a high vapor pressure, a compositional deviation often occurs during thin film formation between the sputtering target, vapor deposition source, and other source materials, and the content of the starting material changes over time. However, composition deviation between lots occurs,
It is very difficult to control and adjust the amount of different elements added in the thin film formation stage.

また、MBE(分子線蒸着法)、CVD(化学的蒸着法)など
の薄膜形成法で用いられる手法により、薄膜組成を制御
することは、可能であるが、酸化物超伝導物質への応用
には、原料、雰囲気制御、基板温度制御などでの点で、
未だ多くの問題が残されている。
In addition, although it is possible to control the thin film composition by methods used in thin film formation methods such as MBE (molecular beam evaporation method) and CVD (chemical vapor deposition method), it is possible to apply it to oxide superconducting materials. In terms of raw materials, atmosphere control, substrate temperature control, etc.
Many problems still remain.

また、薄膜形成した後に、結晶成長させ、超伝導特性付
与等のために熱処理する工程を行なう間に、薄膜中の添
加元素が更に蒸発して、最終的な異種元素の添加量を、
薄膜形成の段階で制御することは、不可能であった。
Further, after the thin film is formed, crystal growth is performed, and during the process of heat treatment for imparting superconducting properties, the additional element in the thin film is further evaporated, and the final addition amount of the different element is
It was impossible to control at the stage of thin film formation.

また、薄膜作製という焼結とは全く異なり工程を利用し
て、人工的に酸化物超伝導物質が持つ層状構造を作って
やることも、検討されている。これは、Y系、Bi系、Tl
系超伝導物質のように、長い同期の層状構造を持つ酸化
物超伝導薄膜には、有効である。この積層膜を人工的に
設計して作製する場合にも、異種元素を積層膜のどの位
置即ちどの層に添加すればよいか、不明な点が多く、薄
膜成形の段階で最も効果的な添加量又は添加位置を設定
することは、困難である。
In addition, it is also considered to artificially form a layered structure possessed by an oxide superconducting material by using a process that is completely different from the sintering of thin film production. This is Y system, Bi system, Tl
It is effective for the oxide superconducting thin film having a long synchronous layered structure such as a superconducting material. Even when artificially designing and manufacturing this laminated film, there are many unclear points at which position in the laminated film, that is, which layer of the laminated film should be added, and the most effective addition at the stage of thin film formation. It is difficult to set the amount or addition position.

[発明が解決しようとする問題点] 本発明は、そこで、上記のような技術的課題を解決する
ために、異種元素の添加を、積層薄膜形成後の熱処理の
間に、行ない、その添加量の制御調整が確実にできる酸
化物超伝導薄膜作製方法を提供することを目的とする。
また、本発明は、超伝導特性、Tc特性等の改良された超
伝導膜の製造できる方法を提供することを目的とする。
更に、本発明は、積層薄膜の形成された後の熱処理の間
に、Pb等の異種元素を気相添加した超伝導薄膜を結晶成
長せしめることのできる超伝導薄膜作製方法を提供する
ことを目的とする。
[Problems to be Solved by the Invention] In the present invention, therefore, in order to solve the above-mentioned technical problems, the addition of a different element is performed during the heat treatment after the formation of the laminated thin film, and the addition amount thereof is increased. It is an object of the present invention to provide a method for producing an oxide superconducting thin film, which can reliably control and adjust the above.
Another object of the present invention is to provide a method capable of producing a superconducting film having improved superconducting properties and Tc properties.
Further, the present invention aims to provide a method for producing a superconducting thin film, which allows crystal growth of a superconducting thin film to which a different element such as Pb is added in a vapor phase during heat treatment after a laminated thin film is formed. And

[問題点を解決するための手段] 本発明は、Bi2(Sr1-XCaXN+1CuNOY系(0<X0.6、Y
=2N+4、Nは、2〜4の整数)酸化物超伝導薄膜の作
製方法において、 基板表面に対して垂直な方向に、BiとSrを含む酸化物原
料を用いての(Bi、Sr)の第1層と、CaとCuを含む酸化
物原料を用いての(Ca、Cu)の第2の層を交互に積層
し、得られた形成積層薄膜は、各々の第1層と第2層で
(Bi、Sr)と(Ca、Cu)が互いに拡散混入した濃度勾配
を有する層状構造の積層薄膜であり、そして、交互に繰
り返す積層の周期は、数Å〜十数Åであり、その得られ
た平均組成が、前記のBi2(Sr1-XCaXN+1CuNOYのもの
であり、次に、この積層薄膜を、添加すべきPbの高い蒸
気圧による雰囲気を用いて、熱処理して、形成積層薄膜
中にPbを添加する酸化物超伝導薄膜の作製方法を提供す
る。そして、気相状態を利用して形成積層薄膜中に添加
するPbは、Pb自体或いはPbを含有する化合物が、薄膜の
熱処理温度下で、十分に蒸発する蒸気圧を有するもので
あり、この蒸気圧により、Pbが積層薄膜中に拡散させ得
る。また、添加されるPbの添加源として、PbO或いは金
属Pbを用い得る。更に、添加されるPbを、積層薄膜中に
気相状態を経て添加することにより、該積層薄膜の超伝
導特性を向上させることができる。
[Means for Solving Problems] The present invention provides a Bi 2 (Sr 1-X Ca X ) N + 1 Cu N O Y system (0 <X0.6, Y
= 2N + 4, N is an integer of 2 to 4) In the method for producing an oxide superconducting thin film, when an oxide raw material containing Bi and Sr is used in a direction perpendicular to the substrate surface, (Bi, Sr) The first layer and the second layer of (Ca, Cu) using an oxide raw material containing Ca and Cu are alternately laminated, and the obtained laminated thin film has the respective first and second layers. (Bi, Sr) and (Ca, Cu) are diffused and mixed into each other to form a laminated thin film having a layered structure, and the alternating repetition cycle is several Å to tens of Å. The obtained average composition is that of Bi 2 (Sr 1-X Ca X ) N + 1 Cu N O Y described above, and then this laminated thin film is used in an atmosphere with a high vapor pressure of Pb to be added. Then, a method for producing an oxide superconducting thin film in which Pb is added to the formed laminated thin film by heat treatment is provided. Then, Pb added to the formed laminated thin film by utilizing the vapor phase state, Pb itself or a compound containing Pb is one that has a vapor pressure that evaporates sufficiently at the heat treatment temperature of the thin film. The pressure can cause Pb to diffuse into the laminated thin film. Further, PbO or metallic Pb can be used as an addition source of Pb added. Furthermore, the superconducting property of the laminated thin film can be improved by adding the Pb to be added into the laminated thin film in a vapor phase state.

本発明に用いる酸化物超伝導薄膜の作製方法は、先ず、
ZrO2、SrTiO3、Al2O3(サファイア)、BaTiO3或いはMgO
などの酸化物基板表面に、スパッタリング、真空蒸着、
イオンプレーテイング、クラスターイオンビーム法など
のPVD(物理的蒸着)法により、積素薄膜を形成させる
ものである。
The method for producing the oxide superconducting thin film used in the present invention is as follows.
ZrO 2 , SrTiO 3 , Al 2 O 3 (sapphire), BaTiO 3 or MgO
On the surface of oxide substrate such as sputtering, vacuum deposition,
A PVD (physical vapor deposition) method such as ion plating or cluster ion beam method is used to form a stack of thin films.

即ち、Bi系酸化物超伝導薄膜の作製において、Bi系酸化
物超伝導結晶体が、有する(Bi、Sr、O)と(Ca、Cu、
O)の層状構造を、スパッタリング法により、人工的に
作製し、その後の熱処理例えば、700〜900℃により、高
いTc特性を有する長周期(30〜40Å)の結晶を容易に生
成させることができることを見出し、その知見に基づい
て本発明が成されたものである。
That is, in the production of the Bi-based oxide superconducting thin film, the Bi-based oxide superconducting crystal has (Bi, Sr, O) and (Ca, Cu,
The layered structure of (O) can be artificially produced by a sputtering method, and the subsequent heat treatment, for example, 700 to 900 ° C., can easily generate a long period (30 to 40 Å) crystal having high Tc characteristics. The present invention has been accomplished based on the findings.

即ち、スパッタリングのターゲットとして、各々BiSr酸
化物とCaCu酸化物を用いて、(Bi、Sr)を主成分として
含む層[BiとSrを含む酸化物が堆積形成された第1層;
(Bi、Sr)と略称する]と(Ca、Cu)を主成分として含
む層[CaとCuを含む酸化物が堆積形成された第2層;
(Ca、Cu)と略称する]を交互に積層堆積する。結果と
して、積層膜は、(Bi、Sr)と(Ca、Cu)の濃度変調を
基板に垂直な方向に有する。積層膜の平均組成は、所望
のBi−Sr−Ca−Cu−O系超伝導体組成に近付くように、
各層の組成を調整する。例えばCa1.0Cu0.5組成の酸化物
ターゲットと、Bi1.6Sr1.0組成の酸化物ターゲットを用
いると、実際に得られる各層の陽イオン組成は、Bi1.0S
r2.0Ca5.0Cu6.6とBi2.0Sr2.0Ca1.6Cu1.4が得られる(実
施例1に相当)。その結果、実際に得られた積層膜の平
均組成は、 Bi2.4Sr2.0Ca1.8Cu2.8であり、Bi2Sr2Ca2Cu3を所望の組
成とするものである。
That is, a layer containing (Bi, Sr) as a main component [a first layer on which an oxide containing Bi and Sr was deposited and formed, using BiSr oxide and CaCu oxide, respectively, as a sputtering target;
Abbreviated as (Bi, Sr)] and a layer containing (Ca, Cu) as a main component [a second layer on which an oxide containing Ca and Cu is deposited and formed;
(Ca, Cu) will be alternately stacked. As a result, the laminated film has concentration modulation of (Bi, Sr) and (Ca, Cu) in the direction perpendicular to the substrate. The average composition of the laminated film should be close to the desired Bi-Sr-Ca-Cu-O-based superconductor composition.
The composition of each layer is adjusted. For example, when an oxide target of Ca 1.0 Cu 0.5 composition and an oxide target of Bi 1.6 Sr 1.0 composition are used, the cation composition of each layer actually obtained is Bi 1.0 S
r 2.0 Ca 5.0 Cu 6.6 and Bi 2.0 Sr 2.0 Ca 1.6 Cu 1.4 are obtained (corresponding to Example 1). As a result, the average composition of the laminated film actually obtained is Bi 2.4 Sr 2.0 Ca 1.8 Cu 2.8 , and Bi 2 Sr 2 Ca 2 Cu 3 has a desired composition.

そして、(Bi、Sr)或いは(Ca、Cu)の陽イオン濃度
が、各層で、交互に高く或いは低くなった積層状態の薄
膜を作成する。具体的には、上記の具体的な(Bi、Sr)
と(Ca、Cu)の濃度勾配を有する薄膜層が交互に積まれ
た状態である。理想的には、(Bi、Sr)と(Ca、Cu)が
完全に分離された積層状態にあるが、積層時の界面拡散
等の影響により、実際には、(Bi、Sr)層に(Ca、Cu)
が、(Ca、Cu、O)層に(Bi、Sr)が若干拡散混入して
しまうので、得られる各薄膜層には、濃度勾配が発生し
てしまう。
Then, a thin film in a laminated state in which the cation concentration of (Bi, Sr) or (Ca, Cu) is alternately increased or decreased in each layer is formed. Specifically, the above specific (Bi, Sr)
In this state, thin film layers having a concentration gradient of (Ca, Cu) are alternately stacked. Ideally, (Bi, Sr) and (Ca, Cu) are completely separated, but due to the effect of interface diffusion during stacking, the (Bi, Sr) layer actually has ( Ca, Cu)
However, since (Bi, Sr) is slightly diffused and mixed into the (Ca, Cu, O) layer, a concentration gradient occurs in each thin film layer obtained.

更に、熱処理時に、異種元素例えばPbを、PbO又はPb金
属を添加源として、気相即ち、PbO又はPb蒸気を介し
て、積層薄膜中に添加することにより、超伝導相の結晶
成長の促進と超伝導特性の向上を図るものである。従っ
て、本発明の超伝導薄膜の製法は、他の酸化物超伝導薄
膜の作製にも応用可能である。
Further, at the time of heat treatment, a different element such as Pb is added to the laminated thin film via the gas phase, that is, PbO or Pb vapor using PbO or Pb metal as an addition source, thereby promoting the crystal growth of the superconducting phase. It is intended to improve superconducting properties. Therefore, the method for producing a superconducting thin film of the present invention can be applied to the production of other oxide superconducting thin films.

本発明に従って、超伝導薄膜内に添加する異種元素Pb
は、PbO或いはPb金属を添加源として用い、薄膜の熱処
理時に、気相即ちPbO蒸気或いはPb蒸気を介して、薄膜
中に添加した。従って、薄膜の熱処理温度(≦900℃)
で、十分に蒸気圧が高い元素、例えば、Tl、Kなどを用
いることもでき、同様な方法で薄膜中に添加が可能であ
る。更に、複数の異種元素を添加することも可能であ
る。
According to the present invention, the foreign element Pb added in the superconducting thin film
Was added to the thin film through a gas phase, that is, PbO vapor or Pb vapor during heat treatment of the thin film, using PbO or Pb metal as an addition source. Therefore, thin film heat treatment temperature (≤900 ℃)
It is also possible to use an element having a sufficiently high vapor pressure, such as Tl or K, and it is possible to add it to the thin film by the same method. Further, it is possible to add a plurality of different elements.

即ち、これらの元素(Pb、Tl、Kなど)は形成される所
望の結晶の主にBiサイトを部分置換することにより、超
伝導特性の向上に役立つ。これらの元素は、揮発性で、
スパッタリング法等により定量的に組成制御しながら、
薄膜化することが困難であり、本発明によると、熱処理
時に気相から膜中へ添加することを目的とする。
That is, these elements (Pb, Tl, K, etc.) serve to improve the superconducting properties by partially substituting mainly Bi sites of a desired crystal to be formed. These elements are volatile,
While quantitatively controlling the composition by the sputtering method,
It is difficult to form a thin film, and according to the present invention, the purpose is to add it from the gas phase into the film during heat treatment.

本発明において、積層膜は、(Bi、Sr、O)(Ca、Cu、
O)の各層が、各々5〜15Åの厚さを有する周期20Å程
度の積層薄膜をスパッタリング法により、作製するが、
薄膜形成後の異種元素の気相添加効果を得るには、積層
膜の周期、組合わせは、これ以外のものでも可能であ
る。積層膜の作製方法も、スパッタリング法以外のPVD
法或いはCVD法を用いることができる。
In the present invention, the laminated film is (Bi, Sr, O) (Ca, Cu,
Each layer of O) has a thickness of 5 to 15 Å and has a period of about 20 Å.
In order to obtain the vapor phase addition effect of the different elements after forming the thin film, the cycle and combination of the laminated films may be other than these. PVD other than sputtering method
Method or CVD method can be used.

即ち、Pb等の添加元素は、薄膜の処理温度下で、十分蒸
発する蒸気圧を有し、この蒸気圧を利用して、積層薄膜
中に気相添加され、拡散される。Pb等の異種元素の添加
される積層薄膜は、基板表面に対して垂直な方向に、
(Bi、Sr)と(Ca、Cu)の各層で、拡散による濃度勾配
が生じ、その繰り返し周期(積層周期)が、前記のよう
であり、その結果、得られる平均組成は、前記のように
なる。
That is, the additive element such as Pb has a vapor pressure that evaporates sufficiently at the processing temperature of the thin film, and by utilizing this vapor pressure, it is added to the laminated thin film in the vapor phase and diffused. Laminated thin films to which dissimilar elements such as Pb are added are
In each of the (Bi, Sr) and (Ca, Cu) layers, a concentration gradient due to diffusion occurs, and the repeating period (stacking period) is as described above, and as a result, the average composition obtained is as described above. Become.

そして、交互に積層堆積される第1層と第2層の層厚に
ついては、例えば、[10Å/15Å]とは、(BiSrO)ユニ
ットと(CaCuO)ユニットの厚さの比率を表わし、例え
ば、実施例1では、[10Å/10Å]であり、Bi2Sr2Ca2Cu
3O10の最小繰り返し単位である37Å(c軸長)/2≒18Å
を想定し、更に、この中の小さな仮想層厚として、Bi2S
r2O5ユニットとCa2Cu3O5ユニットにおよそ対応する厚さ
約10Åずつを割り振っている。このように、所望の構造
にできる限り近い構造(但し、アモルファス状態)を予
め作成しておき、低いエネルギー(低い熱処理温度)
で、結晶化することにした。これは、本発明による熱処
理時の気相からのPb添加による所望の結晶の育成でも効
果を上げている。
Then, regarding the layer thicknesses of the first layer and the second layer which are alternately laminated and deposited, for example, [10Å / 15Å] represents the ratio of the thicknesses of the (BiSrO) unit and the (CaCuO) unit, and, for example, In Example 1, [10Å / 10Å], and Bi 2 Sr 2 Ca 2 Cu
The minimum repeating unit of 3 O 10 is 37Å (c-axis length) / 2 ≈ 18Å
Assuming that, as a small virtual layer thickness in this, Bi 2 S
Approximately 10 Å of thickness is allocated to roughly correspond to r 2 O 5 unit and Ca 2 Cu 3 O 5 unit. In this way, a structure that is as close as possible to the desired structure (however, in the amorphous state) is created in advance, and low energy (low heat treatment temperature) is used.
So I decided to crystallize it. This is also effective in growing a desired crystal by adding Pb from the gas phase during the heat treatment according to the present invention.

本発明に用いる異種元素は、積層薄膜の熱処理温度(70
0〜900℃)で十分に蒸気圧が高い元素(例えばTl、Kな
ど)であれば、同様な方法で、積層薄膜中への添加が可
能である。更に、複数の元素の添加も可能である。
The different element used in the present invention is the heat treatment temperature (70
An element having a sufficiently high vapor pressure at 0 to 900 ° C. (for example, Tl, K, etc.) can be added to the laminated thin film by the same method. Furthermore, it is possible to add a plurality of elements.

単結晶基板上に積層薄膜を形成した後に、熱処理すると
きに、例えば、常温で積層薄膜をスパッタリング形成し
た後に、熱処理を行なうときに、異種元素の蒸気雰囲気
中で熱処理を行ない、異種元素例えばPbOの添加処理を
行なうものである。
After forming the laminated thin film on the single crystal substrate, when performing the heat treatment, for example, after forming the laminated thin film by sputtering at room temperature and then performing the heat treatment, the heat treatment is performed in the vapor atmosphere of the different elements such as PbO. Is added.

このような異種元素(Pb)の気相添加は、セラミックス
(Al2O3)製の不完全な密閉容器内に、積層薄膜試料とP
bO粉末或いはペレット或いはPb粒を一緒に置き、空気或
いは酸素気流中で、700〜900℃の温度で同時に熱処理し
て、PbOの蒸発を利用して、形成薄膜中に気相添加する
という簡便な方法で行なうものである。
The gas phase addition of such a different element (Pb) is carried out in a ceramic (Al 2 O 3 ) incomplete sealed container with the laminated thin film sample and P
Simply put bO powder or pellets or Pb grains together, heat-treat them simultaneously in air or oxygen at a temperature of 700-900 ° C, and use vaporization of PbO to add them to the formed thin film in the vapor phase. It is done by the method.

[作用] 本発明による異種元素PbOの気相添加する場合に、その
添加量は、熱処理する炉に中に置く蒸発源の量、熱処理
温度、時間により、制御調整することができる。
[Operation] When the heterogeneous element PbO according to the present invention is added in the vapor phase, the addition amount thereof can be controlled and adjusted by the amount of the evaporation source placed in the furnace for the heat treatment, the heat treatment temperature, and the time.

従って、このような本発明に従って作製される超伝導薄
膜の製法は、熱処理を伴うものであり、大面積を要する
薄膜作製にも適用でき、配線、アンテナ、コイル等の作
製にも応用できるものである。
Therefore, the method for producing a superconducting thin film produced according to the present invention involves heat treatment and can be applied to the production of a thin film that requires a large area, and can also be applied to the production of wiring, antennas, coils, etc. is there.

次に本発明の酸化物超伝導積層薄膜の作製方法を具体的
に実施例により説明するが、本発明はそれらによって限
定されるものではない。
Next, the method for producing the oxide superconducting laminated thin film of the present invention will be specifically described by way of Examples, but the present invention is not limited thereto.

[実施例1] MgO基板単結晶表面(100)上に高周波マグネトロンスパ
ッタリング法により積層薄膜を作製した。その積層膜の
各層の組成は、Bi2.6Sr2.0Ca1.6Cu1.4OX、膜厚約10Å及
びBi1.0Sr2.0Ca5.0Cu6.6OY、膜厚約10Åで、平均組成
は、Bi2.0Sr2.0Ca2.0Cu3.0Ozであり、従って積層周期20
Åを有している。従って、その積層薄膜は、基板表面に
垂直な方向に、10Å毎に(Bi、Sr)と(Ca、Cu)の濃度
分布を有し、総膜厚は、2000Åとした。
[Example 1] A laminated thin film was formed on a single crystal surface (100) of an MgO substrate by a high frequency magnetron sputtering method. The composition of each layer of the laminated film was Bi 2.6 Sr 2.0 Ca 1.6 Cu 1.4 O X , film thickness about 10 Å and Bi 1.0 Sr 2.0 Ca 5.0 Cu 6.6 O Y , film thickness about 10 Å, and the average composition was Bi 2.0 Sr 2.0. Ca 2.0 Cu 3.0 O z , so stacking period 20
Have Å. Therefore, the laminated thin film has a concentration distribution of (Bi, Sr) and (Ca, Cu) every 10Å in the direction perpendicular to the substrate surface, and the total film thickness was 2000Å.

比較のために、Bi−Sr−Ca−Cu−O系均質薄膜を、高周
波マグネトロンスパッタリング法により、MgO(100)単
結晶表面上に作製した。作製した均質膜は、膜厚2000Å
で、組成Ba2.0Sr1.9Ca1.9Cu2.6OZを有しており、アモル
ファス状態であった。
For comparison, a Bi—Sr—Ca—Cu—O-based homogeneous thin film was prepared on the MgO (100) single crystal surface by the high frequency magnetron sputtering method. The produced homogeneous film has a film thickness of 2000Å
And had the composition Ba 2.0 Sr 1.9 Ca 1.9 Cu 2.6 O Z and was in an amorphous state.

即ち、本発明による積層膜と上記の比較のための積層構
造を持たない均質膜を比較すると、本発明による積層膜
では、所望のBi2Sr2Ca2Cu3O10結晶の生成が観察される
に対して、均質膜では、観察されていない。
That is, when comparing the laminated film according to the present invention with the homogeneous film having no laminated structure for the above comparison, the formation of desired Bi 2 Sr 2 Ca 2 Cu 3 O 10 crystals was observed in the laminated film according to the present invention. On the other hand, it was not observed in the homogeneous film.

薄膜形成条件は、積層膜、均質膜いずれの場合も、基板
加熱なし、Ar:O2=9:1の雰囲気ガスであり、5ミリトー
ル圧力下で、高周波出力は、100Wである。
The thin film formation conditions are, without regard to substrate heating, an atmosphere gas of Ar: O 2 = 9: 1, in both laminated and homogenous films, and a high frequency output of 100 W under a pressure of 5 mTorr.

この熱処理は、アルミナ製ボート(内容積約10×10×60
mm3)中に積層薄膜及び均質薄膜サンプルを置いて、更
に、同じボート内にPbO粉末0.05gを置いて、アルミナ製
ボートで蓋をして、マッフル炉内にて、空気中で熱処理
した。熱処理温度は、880℃で8時間行なった。昇温
は、880℃に保持した炉内に、サンプルを入れることに
より、急激に行ない、冷却は炉内で放冷し、200℃以下
の温度に冷却した後に、サンプルを取り出した。
This heat treatment is performed on an alumina boat (internal volume of about 10 x 10 x 60
mm 3 ), the laminated thin film and the homogeneous thin film sample were placed, and 0.05 g of PbO powder was further placed in the same boat, the lid was covered with an alumina boat, and heat treatment was performed in air in a muffle furnace. The heat treatment temperature was 880 ° C. for 8 hours. The temperature was raised rapidly by putting the sample in a furnace maintained at 880 ° C., cooling was allowed to cool in the furnace, and the sample was taken out after cooling to a temperature of 200 ° C. or lower.

アルミナ製ボート中のPbO粉末は、熱処理により溶融し
ていた。
The PbO powder in the alumina boat was melted by the heat treatment.

熱処理後の均質膜サンプルを、オージェ(Auger)電子
分光分析(AES)にかけ、その結果を、第1図に示す。
この時のサンプルは、膜厚1000Åで、横軸に検出された
電子の運動エネルギー(eV)をとり、縦軸に、その微分
強度(E×dN/dE)を取った。僅かではあるが、Pbの存
在を示すオージェのピークが観察され、Pbは形成した薄
膜中に添加されていることが分かる。
The heat-treated homogeneous film sample was subjected to Auger electron spectroscopy (AES), and the results are shown in FIG.
The sample at this time has a film thickness of 1000 Å, the kinetic energy (eV) of the detected electron is plotted on the horizontal axis, and its differential intensity (E × dN / dE) is plotted on the vertical axis. Although a slight amount, an Auger peak indicating the presence of Pb was observed, indicating that Pb was added to the formed thin film.

また、熱処理後の積層及び均質の薄膜サンプルのX線回
折線を測定した。その結果を第2図に示す。積層膜、均
質膜のいずれにおいても、c軸配向して成長しているこ
とが分かる。然し乍ら、積層膜においては、均質膜より
も回折ピークの強度が強く、結晶性が良好であることが
分かる。
In addition, the X-ray diffraction lines of the laminated and homogeneous thin film samples after the heat treatment were measured. The results are shown in FIG. It can be seen that both the laminated film and the homogeneous film grow with c-axis orientation. However, it can be seen that the laminated film has a higher diffraction peak intensity and better crystallinity than the homogeneous film.

更に、積層膜においては、Tc=110K相と考えられてい
る。c軸長37Åの超伝導相が成長している。
Furthermore, in the laminated film, it is considered that Tc = 110K phase. A superconducting phase with a c-axis length of 37Å is growing.

更に、第3図に、熱処理後の薄膜サンプルの電気抵抗率
の温度依存性を示す。積層膜は、均質膜に比べ、Tc、ze
roは、数度高いものであった。また、c軸長37Åの結晶
相に由来する110Kでの抵抗率の落ちも、積層膜の方が大
きい。
Furthermore, FIG. 3 shows the temperature dependence of the electrical resistivity of the thin film sample after the heat treatment. Compared to homogeneous film, laminated film has Tc, ze
ro was several degrees higher. In addition, the decrease in the resistivity at 110 K due to the crystal phase having a c-axis length of 37 Å is also larger in the laminated film.

第3図に示すグラフは、880℃で8時間空気中で熱処理
した膜厚2000Åのものの電気抵抗を測定したものであ
る。そして、横軸に処理温度をとり、縦軸に電気抵抗率
をとったものである。
The graph shown in FIG. 3 is obtained by measuring the electric resistance of a film having a film thickness of 2000 Å which was heat-treated in air at 880 ° C. for 8 hours. The processing temperature is plotted on the abscissa and the electrical resistivity is plotted on the ordinate.

即ち、Pb気相添加処理により、超伝導相の結晶成長が促
進され、Tc、onset、室温抵抗などの特性が、積層膜で
は、均質膜に比べ向上していることが明らかになった。
That is, it was revealed that the Pb vapor phase addition treatment promotes the crystal growth of the superconducting phase, and the characteristics such as Tc, onset and room temperature resistance are improved in the laminated film as compared with the homogeneous film.

[実施例2] 実施例1と同様な薄膜形成条件で、同様な薄膜組成、膜
厚に形成した積層薄膜を、空気中で、880℃で、PbO蒸気
中で、8時間熱処理した。そのときの、アルミナボート
中に置いたPbO粉末量は、実施例1の20倍の1gにした。
[Example 2] Under the same thin film forming conditions as in Example 1, a laminated thin film having the same thin film composition and film thickness was heat-treated in air at 880 ° C in PbO vapor for 8 hours. At this time, the amount of PbO powder placed in the alumina boat was set to 1 g, which was 20 times the amount in Example 1.

以上のような熱処理して得られた薄膜サンプルのX線回
折(CuKα)を測定した結果を、第4図に示す。
The result of measuring the X-ray diffraction (CuKα) of the thin film sample obtained by the above heat treatment is shown in FIG.

熱処理時にボート中に置くPbOの量を増やしたことによ
り、薄膜中での超伝導相の結晶成長が促進され、特に、
c軸長37Åの回折ピーク(●印、2θ=4.8°)が鋭く
なり、Tc=110K相の結晶が成長したことが分かる。
Increasing the amount of PbO placed in the boat during heat treatment promotes crystal growth of the superconducting phase in the thin film,
It can be seen that the diffraction peak with a c-axis length of 37Å ( mark, 2θ = 4.8 °) became sharp, and the Tc = 110K phase crystal grew.

積層薄膜の熱処理されたものは、超伝導転移が開始する
温度は、約110Kであった。
In the heat-treated laminated thin film, the temperature at which the superconducting transition started was about 110K.

[実施例3] 実施例1と同様に、超伝導薄膜を形成し、膜厚2000Åの
積層膜を、MgO(100)面基板上に、作製した。
[Example 3] As in Example 1, a superconducting thin film was formed, and a laminated film having a film thickness of 2000Å was formed on a MgO (100) plane substrate.

このように作製した積層薄膜は、(Bi、Sr、O)と(C
a、Cu、O)の濃度変調幅が、各々10Å/10Å(実施例1
と同じ)と10Å/15Åの2種類の積層薄膜を作製した。
即ち、後者の積層膜の平均組成は、前者に比べ、Ca、Cu
が多い。熱処理は、実施例1と同様な方法(即ち、PbO
粉末0.05g)で、820℃で20時間行なった。
The laminated thin films produced in this manner are (Bi, Sr, O) and (C
The density modulation width of a, Cu, O) is 10Å / 10Å (Example 1)
Same as above) and 10Å / 15Å two kinds of laminated thin films were prepared.
That is, the average composition of the latter laminated film is Ca, Cu compared to the former.
There are many. The heat treatment was performed in the same manner as in Example 1 (that is, PbO).
Powder (0.05 g) at 820 ° C. for 20 hours.

このように熱処理した積層薄膜の超伝導特性を測定し、
その結果を第1表に示す。第1表 サンプル 10Å/10Å 10Å/15Å Tc、onset 108K 125K Tc、mid 81K 81K Tc、zero − 75K 室温抵抗 442mΩ・cm 2.6mΩ・cm 820℃の低熱処理温度において、10Å/10Åでは、Tc、ze
roは液体ヘリウム温度以上では得られなかったが、積層
膜の周期を変更し、例えば、10Å/15Åとすることで、T
c、zero=75Kという高い値が得られた。また、Tc、onse
tも125Kと高いものが得られた。
The superconducting property of the laminated thin film heat-treated in this way is measured,
The results are shown in Table 1. Table 1 Sample 10Å / 10Å 10Å / 15Å Tc, onset 108K 125K Tc, mid 81K 81K Tc, zero - at 75K room temperature resistance 442mΩ · cm low heat treatment temperature of 2.6mΩ · cm 820 ℃, the 10Å / 10Å, Tc, ze
ro was not obtained above the liquid helium temperature, but by changing the cycle of the laminated film, for example, 10Å / 15Å, T
A high value of c, zero = 75K was obtained. Also, Tc, onse
The t was as high as 125K.

このように積層膜の周期を適当に変更し、調整すること
により、PbO蒸気中での熱処理による効果に加えて、超
伝導特性を向上させることができる。
By appropriately changing and adjusting the cycle of the laminated film in this manner, the superconducting property can be improved in addition to the effect of the heat treatment in the PbO vapor.

820℃という、通常の熱処理温度よりも、数十℃以上低
い温度で、Tc、onset=125Kが得られた。
Tc and onset = 125K were obtained at a temperature of 820 ° C, which is lower than the usual heat treatment temperature by several tens of ° C.

[実施例4] 実施例1と同様な条件で、10Å/10Åの周期の積層膜
を、厚さ2000Åに作製した。この薄膜を実施例1と同様
な方法でPbO蒸気雰囲気中で、850℃、5時間又は10時間
熱処理した。この熱処理した超伝導薄膜を、同様に薄膜
特性を測定し、その結果を第2表に示す。第2表 熱処理時間 5時間 10時間 Tc、onset 115K 114K Tc、zero − 66K 室温抵抗 9.0mΩ・cm 1.6mΩ・cm 次に、これらサンプルについて、XRD分析を行ない、そ
の結果、いずれのサンプルでも、c軸長30Åの相が、c
軸配向して成長していた。
[Example 4] Under the same conditions as in Example 1, a laminated film having a period of 10Å / 10Å was formed to a thickness of 2000Å. This thin film was heat-treated in the same manner as in Example 1 in a PbO vapor atmosphere at 850 ° C. for 5 hours or 10 hours. The thin-film characteristics of this heat-treated superconducting thin film were similarly measured, and the results are shown in Table 2. Table 2 Heat treatment time 5 hours 10 hours Tc, onset 115K 114K Tc, zero-66K Room temperature resistance 9.0mΩ ・ cm 1.6mΩ ・ cm Next, XRD analysis was carried out on these samples, and as a result, any sample c The phase with an axial length of 30Å is c
It had grown axially.

実施例1、2の結果と合わせると、10Å/10Åの周期の
積層膜に、PbO蒸気中での熱処理で、超伝導性を与える
には、880℃程度の高い温度で処理する簡単な方法で可
能である。また、より低い温度で超伝導性を与えるに
は、850℃で10時間、820℃で20時間以上という長時間の
熱処理が必要である。
Combined with the results of Examples 1 and 2, in order to give superconductivity to a laminated film having a period of 10Å / 10Å by heat treatment in PbO vapor, a simple method of treating at a high temperature of about 880 ° C. It is possible. Further, in order to give superconductivity at a lower temperature, a long heat treatment such as 850 ° C. for 10 hours and 820 ° C. for 20 hours or more is required.

[発明の効果] 本発明による形成薄膜の熱処理による超伝導薄膜作製方
法は、次のような顕著な技術的効果をもたらした。
[Advantages of the Invention] The method for producing a superconducting thin film by heat-treating a formed thin film according to the present invention brings the following remarkable technical effects.

第1に、超伝導特性を著しく改善できる超伝導薄膜の作
製方法を提供することができた。
First, it was possible to provide a method for producing a superconducting thin film capable of significantly improving superconducting properties.

第2に、更に、基板上に積層薄膜の形成後の熱処理が、
最も効果的にでき、同時に超伝導特性のすぐれた超伝導
薄膜を容易に得ることのできる作製方法を提供した。
Secondly, the heat treatment after forming the laminated thin film on the substrate
The present invention provides a method for producing a superconducting thin film which is most effective and at the same time has excellent superconducting properties.

第3に、従来できなかった安定性、信頼性の高い酸化物
超伝導薄膜を容易に製造できる作製法を提供できる。
Thirdly, it is possible to provide a manufacturing method capable of easily manufacturing a highly stable and highly reliable oxide superconducting thin film, which was not possible in the past.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明により作製された超伝導薄膜のオージ
ェ(Auger)電子分光分析(AES)図である。 第2図は、本発明により作製された積層薄膜及び均質薄
膜のPbO蒸気中熱処理した後のX線回折図である。 第3図は、本発明により作製された超伝導薄膜の温度に
対する電気抵抗率の変化を示したグラフである。 第4図は、本発明により作製された超伝導薄膜のPbO蒸
気中熱処理後のX線回折図である。
FIG. 1 is an Auger electron spectroscopy (AES) diagram of a superconducting thin film prepared according to the present invention. FIG. 2 is an X-ray diffraction diagram of the laminated thin film and the homogeneous thin film produced by the present invention after heat treatment in PbO vapor. FIG. 3 is a graph showing a change in electric resistivity with respect to temperature of the superconducting thin film manufactured by the present invention. FIG. 4 is an X-ray diffraction diagram of the superconducting thin film produced by the present invention after heat treatment in PbO vapor.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 ZAA 7244−5G 565 D 7244−5G H01L 39/24 ZAA B 9276−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01B 13/00 ZAA 7244-5G 565 D 7244-5G H01L 39/24 ZAA B 9276-4M

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Bi2(Sr1-XCaXN+1CuNOY系 (0<X<0.6、Y=2N+4、Nは、2〜4の整数)酸
化物超伝導薄膜の作製方法において、 基板表面に対して垂直な方向に、BiとSrを含む酸化物原
料を用いての(Bi、Sr)の第1層と、CaとCuを含む酸化
物原料を用いての(Ca、Cu)の第2の層を交互に積層
し、得られた形成積層薄膜は、各々の第1層と第2層で
(Bi、Sr)と(Ca、Cu)が互いに拡散混入した濃度勾配
を有する層状構造の積層薄膜であり、そして、交互に繰
り返す積層の周期は、数Å〜十数Åであり、その得られ
た平均組成が、前記のBi2(Sr1-XCaXN+1CuNOYのもの
であり、次に、この積層薄膜を、添加すべきPbの高い蒸
気圧による雰囲気を用いて、熱処理して、形成積層薄膜
中にPbを添加することを特徴とする酸化物超伝導薄膜の
作製方法。
1. Preparation of Bi 2 (Sr 1-X Ca X ) N + 1 Cu N O Y system (0 <X <0.6, Y = 2N + 4, N is an integer of 2 to 4) oxide superconducting thin film. In the method, a first layer of (Bi, Sr) using an oxide raw material containing Bi and Sr and a (Ca , Cu) second layers are alternately laminated, and the formed laminated thin film has a concentration gradient in which (Bi, Sr) and (Ca, Cu) are diffused and mixed in each of the first and second layers. Is a laminated thin film having a layered structure, and the cycle of alternately repeating lamination is several Å to several tens of Å, and the obtained average composition is Bi 2 (Sr 1-X Ca X ) N +1 Cu N O Y. Next, this laminated thin film is heat-treated in an atmosphere with a high vapor pressure of Pb to be added, and Pb is added to the formed laminated thin film. Method of forming oxide superconducting thin film .
【請求項2】気相状態を利用して形成積層薄膜中に添加
するPbは、Pb自体或いはPbを含有する化合物が、薄膜の
熱処理温度下で、十分に蒸発する蒸気圧を有するもので
あり、この蒸気圧により、Pbが積層薄膜中に拡散させる
ことを特徴とする請求項1に記載の酸化物超伝導薄膜の
作製方法。
2. The Pb added to the formed laminated thin film by utilizing the vapor phase state is such that Pb itself or a compound containing Pb has a vapor pressure at which the thin film is vaporized sufficiently at the heat treatment temperature of the thin film. The method for producing an oxide superconducting thin film according to claim 1, wherein Pb is diffused in the laminated thin film by the vapor pressure.
【請求項3】添加されるPbの添加源として、PbO或いは
金属Pbを用いることを特徴とする請求項1或いは2に記
載の酸化物超伝導薄膜の作製方法。
3. The method for producing an oxide superconducting thin film according to claim 1, wherein PbO or metal Pb is used as an addition source of Pb to be added.
【請求項4】添加されるPbを、該積層薄膜中に気相状態
を経て添加することにより、該積層薄膜の超伝導特性を
向上させることを特徴とする請求項1、2或いは3に記
載の酸化物超伝導薄膜の作製方法。
4. The superconducting property of the laminated thin film is improved by adding Pb to be added to the laminated thin film in a vapor phase state. Method for producing oxide superconducting thin film of.
JP63327955A 1988-12-27 1988-12-27 Method for producing oxide superconducting thin film Expired - Lifetime JPH075313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63327955A JPH075313B2 (en) 1988-12-27 1988-12-27 Method for producing oxide superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63327955A JPH075313B2 (en) 1988-12-27 1988-12-27 Method for producing oxide superconducting thin film

Publications (2)

Publication Number Publication Date
JPH02175613A JPH02175613A (en) 1990-07-06
JPH075313B2 true JPH075313B2 (en) 1995-01-25

Family

ID=18204882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63327955A Expired - Lifetime JPH075313B2 (en) 1988-12-27 1988-12-27 Method for producing oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JPH075313B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316920A (en) * 1989-06-14 1991-01-24 Matsushita Electric Ind Co Ltd Oxide superconductive thin film and its production
JPH04154656A (en) * 1990-10-17 1992-05-27 Fujitsu Ltd Production of superconducting film
US5312803A (en) * 1990-10-17 1994-05-17 Fujitsu Limited Process for producing Bi- and Pb-containing oxide superconducting wiring films
JP3989167B2 (en) * 2000-09-01 2007-10-10 独立行政法人科学技術振興機構 Method for producing single crystal oxide thin film

Also Published As

Publication number Publication date
JPH02175613A (en) 1990-07-06

Similar Documents

Publication Publication Date Title
Ramesh et al. Ferroelectric bismuth titanate/superconductor (Y‐Ba‐Cu‐O) thin‐film heterostructures on silicon
KR20070112071A (en) Coated conductor and polycrystalline films useful for the production of high temperatures superconductor layers
EP0406126B2 (en) Substrate having a superconductor layer
US5276010A (en) Process for producing bismuth-based oxide superconducting films
JPH075313B2 (en) Method for producing oxide superconducting thin film
EP0372808B1 (en) Process for preparing a perovskite type superconductor film
US5361720A (en) Epitaxial deposition
JPH0297427A (en) Production of oxide superconducting thin film
JPS63310515A (en) Manufacture of superconductor membrane
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JP3579690B2 (en) A method and apparatus for producing a composite oxide thin film and a composite oxide thin film produced by the method.
EP0412986B1 (en) Epitaxial deposition
JP2741277B2 (en) Thin film superconductor and method of manufacturing the same
JP2669052B2 (en) Oxide superconducting thin film and method for producing the same
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JPH05170448A (en) Production of thin ceramic film
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
JPS63236794A (en) Production of superconductive thin film of oxide
JPH02174014A (en) Manufacture of oxide superconducting thin film
JPH07100609B2 (en) Method of manufacturing thin film superconductor
JP2555477B2 (en) Superconducting thin film and manufacturing method thereof
JPH02120229A (en) Production of superconducting thin film of oxide
JPH02120232A (en) Production of superconducting thin film of oxide
JPH02120231A (en) Production of superconducting thin film of oxide
JPH078760B2 (en) Method for manufacturing superconducting ceramic thin film