JPH078760B2 - Method for manufacturing superconducting ceramic thin film - Google Patents

Method for manufacturing superconducting ceramic thin film

Info

Publication number
JPH078760B2
JPH078760B2 JP62142834A JP14283487A JPH078760B2 JP H078760 B2 JPH078760 B2 JP H078760B2 JP 62142834 A JP62142834 A JP 62142834A JP 14283487 A JP14283487 A JP 14283487A JP H078760 B2 JPH078760 B2 JP H078760B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
superconducting ceramic
ceramic thin
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62142834A
Other languages
Japanese (ja)
Other versions
JPH013001A (en
JPS643001A (en
Inventor
文毅 中西
雅美 龍見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62142834A priority Critical patent/JPH078760B2/en
Publication of JPH013001A publication Critical patent/JPH013001A/en
Publication of JPS643001A publication Critical patent/JPS643001A/en
Publication of JPH078760B2 publication Critical patent/JPH078760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超電導セラミックス薄膜の製造方法に関す
るものである。
TECHNICAL FIELD The present invention relates to a method for producing a superconducting ceramic thin film.

〔従来の技術とその問題点〕[Conventional technology and its problems]

近年、Y-Ba-Cu-O系等の超電導セラミックスが、高い超
電導移転温度を有するものとして脚光をあびている。か
かる超電導セラミックスの高い超電導移転温度は、ペロ
ブスカイト型といわれる層状の結晶構造が反映してお
り、電子は層に沿って流れるものと考えられている。
In recent years, superconducting ceramics such as Y-Ba-Cu-O have been highlighted as having a high superconducting transfer temperature. The high superconducting transfer temperature of such superconducting ceramics is reflected by the layered crystal structure called perovskite type, and it is considered that electrons flow along the layers.

したがって、超電導セラミックスの結晶構造は一軸の方
向に配向していることが望ましく、配向性が悪いと、層
に沿って流れる電子の移動が粒界等で妨げられるので、
充分な電流容量がとれないという問題がある。
Therefore, it is desirable that the crystal structure of the superconducting ceramics be oriented in a uniaxial direction. If the orientation is poor, the movement of electrons flowing along the layer is hindered by grain boundaries and the like.
There is a problem that a sufficient current capacity cannot be obtained.

ところで、従来、スパッタリング法等によって基板上に
薄膜状の超電導セラミックスを生成させた場合、結晶の
方位が揃わず、配向性が悪くなる。
By the way, conventionally, when a thin-film superconducting ceramics is produced on a substrate by a sputtering method or the like, the crystal orientations are not aligned and the orientation is deteriorated.

そこで、この発明は、結晶の配向性が良好な超電導セラ
ミックス薄膜の製造方法を提供しようとするものであ
る。
Therefore, the present invention is intended to provide a method for producing a superconducting ceramic thin film having a good crystal orientation.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、基板上に超電導セラミックスを薄膜状に成
長させた後、熱処理する超電導セラミックス薄膜の製造
方法において、上記基板としてペロブスカイト系のもの
を使用し、超電導セラミックスの成長時および成長後の
熱処理時に基板面に電界を印加するようにしたものであ
る。
This invention is a method of manufacturing a superconducting ceramic thin film, which comprises heat-treating a superconducting ceramic in a thin film form on a substrate, and using a perovskite-based substrate as the substrate, during the superconducting ceramic growth and the heat treatment after the growth. The electric field is applied to the surface of the substrate.

〔作用〕[Action]

この発明では、基板として、超電導セラミックスの結晶
の格子定数に比較的近くて結晶構造も類似するペロブス
カイト系のものを使用するので、基板上には単結晶ある
いは一軸方向に配向した結晶が薄膜状に形成しやすく、
また、その薄膜成長時に電界を印加することによって、
基板に堆積中の結晶に分極が誘起され、結晶の方位が印
加方向に揃うため、生成される薄膜の結晶の配向性がよ
くなる。
In this invention, since a perovskite-based material having a crystal structure that is relatively close to the lattice constant of the crystal of the superconducting ceramic and has a similar crystal structure is used as the substrate, a single crystal or a uniaxially oriented crystal is formed into a thin film on the substrate. Easy to form,
Moreover, by applying an electric field during the growth of the thin film,
Polarization is induced in the crystal being deposited on the substrate, and the crystal orientation is aligned with the application direction, so that the crystal orientation of the thin film produced is improved.

さらに、薄膜形成後に電界を印加しながら熱処理する
と、薄膜形成時に不完全であった配向方向がさらに揃
う。
Furthermore, if a heat treatment is performed while applying an electric field after the thin film is formed, the orientation directions that were incomplete during the thin film formation are further aligned.

〔実施例〕〔Example〕

次に、この発明の実施例として、第1図に示すようなス
パッタリング装置を用いて、超電導セラミックス薄膜を
製造する方法について説明する。
Next, as an embodiment of the present invention, a method for producing a superconducting ceramic thin film using a sputtering apparatus as shown in FIG. 1 will be described.

まず、チタン酸ストロンチウムの基板1を第1図に示す
ようにセットする。この基板1には、電極2によって電
界が印加されている。イオンビームスパッタのターゲッ
ト3、4、5として、例えば、Y2O3、BaCO3、CuOの焼結
体およびY2O3、CuO単体の焼結体の三枚を用意してター
ゲット位置に設置する。
First, the substrate 1 of strontium titanate is set as shown in FIG. An electric field is applied to the substrate 1 by the electrode 2. As targets 3, 4 and 5 for ion beam sputtering, for example, three sintered bodies of Y 2 O 3 , BaCO 3 and CuO and sintered bodies of Y 2 O 3 and CuO alone are prepared and installed at target positions. To do.

次に、アルゴンイオンビーム源6からアルゴンイオンビ
ームをターゲット3、4、5に照射して、Y、Ba、Cuを
スパッタする。
Next, the targets 3, 4, and 5 are irradiated with an argon ion beam from the argon ion beam source 6 to sputter Y, Ba, and Cu.

このスパッタされた原子、分子等は、イオン化部7を通
って一部イオン化され、電界の印加された空間をドリフ
トして、酸素雰囲気中で基板1上に堆積して薄膜8を形
成する。この際、イオンの電荷が効果的に配向を促進す
る。
The sputtered atoms and molecules are partially ionized through the ionization section 7, drift in the space to which the electric field is applied, and are deposited on the substrate 1 in the oxygen atmosphere to form the thin film 8. At this time, the charge of the ions effectively promotes the orientation.

このようにして基板1上に成長した薄膜8結晶中には、
酸素の欠損があるので、酸素雰囲気中でさらに熱処理し
て、結晶中の酸素欠損をなくすようにする。
In the thin film 8 crystal thus grown on the substrate 1,
Since there is oxygen deficiency, further heat treatment is performed in an oxygen atmosphere to eliminate oxygen deficiency in the crystal.

熱処理は、例えば、第2図に示すような熱処理炉9によ
って行なわれる。
The heat treatment is performed, for example, by a heat treatment furnace 9 as shown in FIG.

まず、反応管10中に薄膜8が堆積した基板1を導入し、
この薄膜8が堆積した基板1をタングステン等の電極板
11、12によって挟んだ後、酸素を導入し、電極板11、12
間に高電圧を印加しながら熱処理を行って結晶化及び配
向化を促進する。
First, the substrate 1 on which the thin film 8 is deposited is introduced into the reaction tube 10,
The substrate 1 on which the thin film 8 is deposited is an electrode plate made of tungsten or the like.
After sandwiched by 11 and 12, oxygen was introduced to the electrode plates 11 and 12
Heat treatment is performed while applying a high voltage to promote crystallization and orientation.

電界を印加する方向は、成長時、熱処理時のいずれの場
合も、基板1に対して垂直方向、水平方向のいずれかに
する。
The direction of applying the electric field is either vertical or horizontal to the substrate 1 during both growth and heat treatment.

また、印加する電界は1〜10KV/cmとする。10KV/cm以上
であると、放電あるいは絶縁破壊を起こす可能性があ
る。
The applied electric field is 1 to 10 KV / cm. If it is 10 KV / cm or more, discharge or dielectric breakdown may occur.

このようにして得られた薄膜8の結晶構造を調べたとこ
ろ、結晶の方位が電界の印加方向に揃っていた。
When the crystal structure of the thin film 8 thus obtained was examined, the crystal orientations were aligned with the direction in which the electric field was applied.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、結晶の方位が揃った
配向性の良好な超電導セラミックス薄膜を製造すること
ができるので、例えば、超電導状態の際に膜厚方向に電
流が流れやすくすることも可能となり、多層構造のジョ
セフソン接合を製作する場合に非常に有効である。
As described above, according to the present invention, it is possible to manufacture a superconducting ceramic thin film having a crystallographic orientation and good orientation. For example, in the superconducting state, a current easily flows in the film thickness direction. Is also possible, which is very effective when manufacturing a Josephson junction having a multilayer structure.

【図面の簡単な説明】[Brief description of drawings]

第1図は薄膜形成装置の一例を示す概略図第2図は熱処
理装置の一例を示す概略図である。 1……基板、8……薄膜。
FIG. 1 is a schematic view showing an example of a thin film forming apparatus. FIG. 2 is a schematic view showing an example of a heat treatment apparatus. 1 ... Substrate, 8 ... Thin film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 14/08 K 0827−4K 14/58 A 0827−4K H01L 39/24 ZAA B 9276−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C23C 14/08 K 0827-4K 14/58 A 0827-4K H01L 39/24 ZAA B 9276-4M

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板上に超電導セラミックスを薄膜状に成
長させた後、熱処理する超電導セラミックス薄膜の製造
方法において、上記基板としてペロブスカイト系のもの
を使用し、超電導セラミックスの成長時および成長後の
熱処理時に基板面に電界を印加することを特徴とする超
電導セラミックス薄膜の製造方法。
1. A method for producing a superconducting ceramic thin film, comprising the steps of growing a superconducting ceramic in a thin film on a substrate and then heat-treating the substrate, wherein a perovskite-based substrate is used as the substrate, and heat treatment during and after the growth of the superconducting ceramic. A method for producing a superconducting ceramic thin film, which comprises applying an electric field to a substrate surface at times.
【請求項2】上記薄膜生成手段として、スパッタ法又は
イオン化蒸着法を使用することを特徴とする特許請求の
範囲第1項に記載の超電導セラミックス薄膜の製造方
法。
2. The method for producing a superconducting ceramic thin film according to claim 1, wherein a sputtering method or an ionized vapor deposition method is used as the thin film forming means.
【請求項3】上記熱処理を酸素雰囲気中で行うことを特
徴とする特許請求の範囲第1項に記載の超電導セラミッ
クス薄膜の製造方法。
3. The method for producing a superconducting ceramic thin film according to claim 1, wherein the heat treatment is performed in an oxygen atmosphere.
JP62142834A 1987-03-30 1987-06-08 Method for manufacturing superconducting ceramic thin film Expired - Lifetime JPH078760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62142834A JPH078760B2 (en) 1987-03-30 1987-06-08 Method for manufacturing superconducting ceramic thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-79359 1987-03-30
JP7935987 1987-03-30
JP62142834A JPH078760B2 (en) 1987-03-30 1987-06-08 Method for manufacturing superconducting ceramic thin film

Publications (3)

Publication Number Publication Date
JPH013001A JPH013001A (en) 1989-01-06
JPS643001A JPS643001A (en) 1989-01-06
JPH078760B2 true JPH078760B2 (en) 1995-02-01

Family

ID=26420376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62142834A Expired - Lifetime JPH078760B2 (en) 1987-03-30 1987-06-08 Method for manufacturing superconducting ceramic thin film

Country Status (1)

Country Link
JP (1) JPH078760B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2702711B2 (en) * 1987-04-13 1998-01-26 松下電器産業株式会社 Manufacturing method of thin film superconductor
JPS63270395A (en) * 1987-04-30 1988-11-08 Chichibu Cement Co Ltd Substrate material for thin film superconductor

Also Published As

Publication number Publication date
JPS643001A (en) 1989-01-06

Similar Documents

Publication Publication Date Title
EP0285030B1 (en) Process for producing superconducting thin films
Ramesh et al. Ferroelectric bismuth titanate/superconductor (Y‐Ba‐Cu‐O) thin‐film heterostructures on silicon
US4874741A (en) Non-enhanced laser evaporation of oxide superconductors
US5361720A (en) Epitaxial deposition
JPS63224116A (en) Manufacture of thin film superconductor
JPH078760B2 (en) Method for manufacturing superconducting ceramic thin film
JPS63239742A (en) Manufacture for film superconductor
EP0412986B1 (en) Epitaxial deposition
JPH013001A (en) Method for manufacturing superconducting ceramic thin films
Wasa Sputter deposition technology as a materials engineering
JPH026394A (en) Superconductive thin layer
EP0504804A1 (en) Bi system copper oxide superconducting thin film and method of forming the same
JP2598973B2 (en) Laminated superconducting element
JPH075313B2 (en) Method for producing oxide superconducting thin film
JP2547204B2 (en) Method for forming bismuth titanate thin film
JP2611332B2 (en) Manufacturing method of thin film superconductor
JPS63299019A (en) Manufacture of thin film superconductive material
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JP3315737B2 (en) Ferroelectric thin film and method of manufacturing the same
JP2505849B2 (en) Manufacturing method of superconducting ceramic thin film
JPH01203221A (en) Production of thin oxide superconducting film
JPH012218A (en) Manufacturing method of thin film superconductor
JPH0244782A (en) Superconductive element and manufacture thereof
JPH07100609B2 (en) Method of manufacturing thin film superconductor
JPH04273181A (en) Manufacture of josephson junction