JPH07506454A - Dispersion spinning method for coated rod-in-tube superconducting composite - Google Patents

Dispersion spinning method for coated rod-in-tube superconducting composite

Info

Publication number
JPH07506454A
JPH07506454A JP5519305A JP51930593A JPH07506454A JP H07506454 A JPH07506454 A JP H07506454A JP 5519305 A JP5519305 A JP 5519305A JP 51930593 A JP51930593 A JP 51930593A JP H07506454 A JPH07506454 A JP H07506454A
Authority
JP
Japan
Prior art keywords
ceramic
metal
poly
binder
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5519305A
Other languages
Japanese (ja)
Inventor
ザー,ジヨージ・エリアス
Original Assignee
イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー filed Critical イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー
Publication of JPH07506454A publication Critical patent/JPH07506454A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • C04B35/4525Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide also containing lead oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Lubricants (AREA)

Abstract

Methods of forming composite articles of superconducting materials and metal are disclosed. The composite articles are formed by applying a mixture of metal and binder to a ceramic oxide preform. The coated preform is heat treated to provide composite articles of superconducting ceramic and metal.

Description

【発明の詳細な説明】 被覆付き管内ロッド超伝導複合体の分散紡糸方法発明の分野 本発明は、一般に、複合体材料の製造を意図したものである。より詳細には、本 発明は、超伝導ワイヤーの製造を意図している。[Detailed description of the invention] Dispersion spinning method for coated rod-in-tube superconducting composite Field of the invention The present invention is generally directed to the production of composite materials. In more detail, the book The invention is intended for the production of superconducting wires.

発明の背景 高温超伝導体、即ち90度にの位の臨界温度を有する超伝導体が、WU池、Ph ys、Rev、Left、58.908−910 (1987)に開示されてい る。これらの高温超伝導体はY−Ba−Cu−0系を基にしている。米国特許第 4,929.594号には、式T12Ba2Cu064ヨ[式中、Xは0から約 15である〕で表される結晶相で構成されている超伝導組成物が開示されており 、これは約90度に以上の温度を示す。Subramanian他、5cien ce 239.1015−1017 (1988)には、式B i zs r  3−tc a *Cu 20B−Fで表される材料が開示されており、これは、 約116度にで抵抗降下を示し、91度にで見掛はゼロ抵抗を示す。Background of the invention High-temperature superconductors, ie, superconductors with critical temperatures on the order of 90 degrees, are described by WU Ike, Ph. ys, Rev. Left, 58.908-910 (1987). Ru. These high temperature superconductors are based on the Y-Ba-Cu-0 system. US Patent No. No. 4,929.594 contains the formula T12Ba2Cu064 [wherein X is from 0 to about A superconducting composition composed of a crystalline phase represented by [15] is disclosed. , which indicates temperatures above about 90 degrees. Subramanian et al., 5cien ce 239.1015-1017 (1988), formula B i zs r A material represented by 3-tc a *Cu 20B-F is disclosed, which is It shows a resistance drop at about 116 degrees and an apparent zero resistance at 91 degrees.

幅広い種類の超伝導材料用途が開発されている。これらの用途には、電力伝達お よび高速コンピューター電子機器が含まれる。超伝導体材料は主に焼結晶の形態 で用いられている、と言うのは、ワイヤーのように長く伸びた製品は製造が困難 であると共に不均一な特性を示すからである。米国特許第4.980.96=4 号に示されている如き公知の超伝導ワイヤー製造技術では、管内パウダー(po wder−in−tube)技術が用いられている。この技術は、金属管の中に 超伝導体材料の粉末を充填し、この管を密封した(麦、予め決めたワイヤーサイ ズが達成されるまでその密封した金属管を冷延伸することを伴っている。この延 伸ワイヤーを熱処理することで、この超伝導体材料に関する結晶度を確保する。A wide variety of superconducting material applications have been developed. These applications include power transfer and and high-speed computer electronics. Superconductor materials are mainly in the form of sintered crystals This is because long products like wire are difficult to manufacture. This is because, at the same time, it exhibits non-uniform characteristics. U.S. Patent No. 4.980.96 = 4 In the known superconducting wire manufacturing technology as shown in No. (wder-in-tube) technology is used. This technology is carried out in a metal tube. The tube was filled with powder of superconductor material and sealed (with a predetermined wire size). The process involves cold stretching the sealed metal tube until the desired temperature is achieved. This spread Heat treating the drawn wire ensures crystallinity for this superconductor material.

しかしながら、この技術で得られるワイヤーは長さが短くて不均一な特性を示す 。However, the wires obtained with this technique are short in length and exhibit non-uniform properties. .

管内パウダー技術に対する改良が、ヨーロッパ特許出願公開筒0292 385 号の中に記述されている。この公開には、超伝導酸化物の粉末と結合剤との混合 物を混練りしながらその得られる混練りペーストを押出し機または他の装置で成 形することで、長く伸びた前成形体(elongated pre−form) を生じさせることを経由して、長く伸びた超伝導複合体を製造することが記述さ れている。この前成形体を連続加熱することでその結合剤が除去されている。次 に、この前成形体に金属ノートを巻き付けた後、高温焼結が行われている。この 方法で得られる超伝導ワイヤーはより長くそしていくらか高い均一性を示すが、 この方法ては、その得られる焼結セラミックの拒食有量が変化する可能性があり 、従って超伝導特性が犠牲になる可能性がある。Improvements to in-tube powder technology have been published in European Patent Application No. 0292-385. It is written in the number. This publication involves mixing superconducting oxide powder with a binder. While kneading materials, the resulting kneaded paste is produced using an extruder or other equipment. By shaping, elongated pre-form The fabrication of elongated superconducting composites via producing It is. The binder is removed by continuously heating the preform. Next After wrapping the metal notebook around this pre-formed body, high-temperature sintering is performed. this Although the superconducting wires obtained with the method are longer and exhibit somewhat higher uniformity, This method may change the anorexia content of the resulting sintered ceramic. , thus the superconducting properties may be sacrificed.

ヨーロッパ特許出願公開筒306.034号には、金属被覆が備わっている超伝 導セラミックを成形する方法が示されている。1つの態様において、加熱するに 先立って、ポリマーと可塑剤とセラミック材料とから成る可塑性組成物の前成形 体を、金属とポリマーと可塑剤とから成るブレンド物で結合させることにより、 加熱時に金属被覆が焼結するセラミック品を生じさせている。しかしながら、こ の方法では、超伝導材料と金属被覆の間、に存在している材料が望ましくない滲 出を起こし易い。European patent application publication no. A method of forming conductive ceramics is presented. In one embodiment, upon heating prior to the preforming of a plastic composition consisting of a polymer, a plasticizer and a ceramic material; By bonding the body with a blend of metals, polymers, and plasticizers, This results in a ceramic article in which the metal coating sinters when heated. However, this In this method, the material present between the superconducting material and the metal coating is Easily causes bleeding.

従って、向上した長さと均一性を与えるが従来技術方法の欠点が回避されている ところの、ワイヤー用途で有効性を示す、長く伸びた超伝導セラミックの金属被 覆品を製造する方法に対する必要性が存在している。Thus, the disadvantages of prior art methods are avoided while providing improved length and uniformity. However, metal coatings of elongated superconducting ceramics have shown effectiveness in wire applications. There is a need for a method of manufacturing a counterfeit product.

発明の要約 本発明は、金属被覆の中に超伝導材料が入っている、長(伸びた超伝導複合品を 製造する連続方法を提供するものである。この方法は、セラミック粉末と有機結 合剤溶液との混合物から長(伸びた成形品を生じさせることを伴っている。この 長く伸びた品に、このセラミック粉末で用いた結合剤溶液とは異なる有機結合剤 溶液と金属粉末との混合物を被覆する。この金属被覆した品を加熱することで、 その有機結合剤を焼失させると共にそのセラミック粉末を結晶化させることによ り、金属で被覆されている長く伸びた超伝導複合品を生じさせる。Summary of the invention The present invention provides a long (extended) superconducting composite article containing a superconducting material within a metal coating. A continuous method of manufacturing is provided. This method uses ceramic powder and organic bond. This involves producing a long (elongated) molded product from the mixture with the mixture solution. An organic binder different from the binder solution used in this ceramic powder was added to the elongated product. Coating a mixture of solution and metal powder. By heating this metal-coated item, By burning out the organic binder and crystallizing the ceramic powder. This creates an elongated superconducting composite that is coated with metal.

図の説明 図1は、後で金属被覆するセラミック繊維を生じさせる目的で用いるスピンセル の図式図である。Illustration description Figure 1 shows a spin cell used to produce ceramic fibers that are later coated with metal. FIG.

図2は、金属被覆されている超伝導セラミックワイヤーを製造するための装置の 図式図である。Figure 2 shows an apparatus for producing metal-coated superconducting ceramic wires. It is a schematic diagram.

図3は、本発明に従う超伝導ワイヤーの図式的断面図である。FIG. 3 is a schematic cross-sectional view of a superconducting wire according to the invention.

発明の詳細な説明 本発明の実施で有効性を示す超伝導材料には、臨界温度(T、) 、即ち抵抗が 本質的にゼロにまで降下する温度が好適には約77度■く以上であるセラミック 材料が含まれる。このような材料は、例えばSong他、J、 Ma t c  r−、、Re s、 、5巻、No、1.27−32 (1990)およびPi er’je他、J、of Δpp1.Phys、、68.2296−2303  (1990)の中に記述されている。T、>77度■くのセラミック材料ニは、 Y −13a −Cu −0系(これにはY+Ba2Cu、0が含まれる);T l−Ba−Cu−0系、例えばTI、Ba、Cu0.4゜[ここで、x=0から 0.5] ; B i −3r−Ca−Cu−0系、例えばB i 2S r  3−aCa 、Cu zoa−y [ここで、x=0.4から0.9およびQ< y<11 ;並びにB 1−Pb−3r−Ca−Cu−0系、例えばB i +  sP bo4S r t aCat oc LIt、aOs、z*wおよびB  it、mPbo4srt ocaz、tcus。ola、s+t [ここで、 x=0.1がら0,5]など由来のセラミック酸化物が含まれる。Detailed description of the invention Superconducting materials that have been shown to be effective in the practice of the present invention have a critical temperature (T, ), i.e., a resistance Ceramic whose temperature drops to essentially zero is preferably about 77 degrees Celsius or higher. Materials included. Such materials are described, for example, in Song et al., J. Matc. r-,, Res s, , Volume 5, No. 1.27-32 (1990) and Pi er'je et al., J, of Δpp1. Phys, 68.2296-2303 (1990). Ceramic materials with T, >77 degrees, Y-13a-Cu-0 system (this includes Y+Ba2Cu, 0); T l-Ba-Cu-0 system, for example TI, Ba, Cu0.4° [where x=0 to 0.5]; Bi-3r-Ca-Cu-0 system, for example Bi2Sr 3-aCa, Cuzoa-y [where x=0.4 to 0.9 and Q< y<11; and B1-Pb-3r-Ca-Cu-0 system, for example Bi+ sP bo4S r t aCat oc LIt, aOs, z*w and B it, mPbo4srt ocaz, tcus. ola, s+t [where, x=0.1 to 0.5].

一般に、本発明が提供する超伝導ワイヤー材料は、有機結合剤の溶液と超伝導セ ラミック材料とを混合することによって製造され得る。その得られる超伝導セラ ミックと結合剤との混合物を成形して前成形体を生じさせ、これを金属と結合剤 溶液との混合物で被覆することにより、超伝導セラミックー金属複合体が得られ る。この金属と結合剤との混合物が入っている結合剤溶液で用いる溶媒は、この セラミックで用いる結合剤に入れて使用する溶媒とは異なっている。典型的には 、溶液もしくは蒸着方法のどちらかを用いて、このセラミック金r!!4複合体 にその金属被覆を取り付けことができる。この金属被覆したセラミックを熱処理 することで有機結合剤を除去することにより、金属が被覆されている長く伸びた 超伝導製品を生じさせる。Generally, the superconducting wire material provided by the present invention is prepared by combining a solution of an organic binder and a superconducting cell. It can be manufactured by mixing with lamic materials. The resulting superconducting cera The mixture of metal and binder is formed to form a preform, which is then combined with metal and binder. A superconducting ceramic-metal composite can be obtained by coating with a mixture of Ru. The solvent used in the binder solution containing this metal and binder mixture is This is different from the solvent used in the binder used in ceramics. typically , using either solution or vapor deposition methods, this ceramic gold r! ! 4 complex The metal coating can be attached to. This metal coated ceramic is heat treated By removing the organic binder, the metal is coated with a long elongated Produce superconducting products.

一般に、このセラミックおよび金属材料の両方と一緒に、商業的に入手可能な有 機結合剤またはそれらの混合物を用いることができる。しかしながら、好適には 、その用いる有機結合剤は、如何なる残渣も生じることなく焼失し→るものであ る。本発明に従う超伝導セラミックの金属酸セルロース、ポリ(ビニルアルコー ル)、ポリ(エチレンオキサイド)、ポリ(ビニルブチラール)、ポリ(メチル メタアクリル酸)、ポリ(メタアクリル酸メチル)、メチルセルロース、ポリ( イソブチレン)およびポリ(プロピレンカーボネート)が含まれ得るが、好適に はポリエチレンオキサイド、最も好適にはポリ(プロピレンカーボネート)であ る。Generally, both ceramic and metallic materials are used with commercially available Binders or mixtures thereof can be used. However, preferably , the organic binder used is one that burns off without leaving any residue. Ru. Superconducting ceramic metal acid cellulose, poly(vinyl alcohol) according to the invention ), poly(ethylene oxide), poly(vinyl butyral), poly(methyl methacrylic acid), poly(methyl methacrylate), methylcellulose, poly( isobutylene) and poly(propylene carbonate), but preferably is polyethylene oxide, most preferably poly(propylene carbonate). Ru.

好適には、このセラミンク酸化物および金属粉末の両方と一緒に、本質的に同じ 有機結合剤を用いる。しかしながら、これらの結合剤が異なる溶媒に溶解するこ とを条件として、用いる結合剤がそのセラミ5.り粉末と金属被覆との間て異な っていてもよい。Preferably, both the ceramic oxide and the metal powder are essentially the same. Use organic binders. However, these binders cannot be dissolved in different solvents. With the condition that the binder used is the ceramic 5. There is a difference between powder and metal coating. You may

この結合剤とセラミック材料の全体積を基準にして(如何なる溶媒も排除して) 20から80%で、このセラミックと結合剤との混合物内に存在している結合剤 の量を変化させ得る。好適には、30から45体積%でこの結合剤量を変化させ 得る。同様に、20から80体積%で、その結合剤と金属の混合物内に存在して いる結合剤量を変化させ得る。好適には、30から45%て、この結合剤と金属 の混合物内に存在している結合剤の体積%を変化させ得る。Based on the total volume of this binder and ceramic material (excluding any solvent) 20 to 80% of the binder present in the ceramic and binder mixture The amount of can be varied. Preferably, the amount of binder varies from 30 to 45% by volume. obtain. Similarly, 20 to 80% by volume is present in the binder and metal mixture. The amount of binder present can be varied. Preferably, 30 to 45% of the binder and metal The volume percent of binder present in the mixture can be varied.

このセラミ、りまたは金属粉末のどちらかと有機結合剤との密な混合物を得るに は、この結合剤を、この結合剤にとって少なくとも部分的に溶媒である有機溶媒 と混合する。本発明で有効な溶媒には極性および非極性両方の溶媒が含まれる。To obtain a dense mixture of either ceramic, porcelain or metal powder with an organic binder, binds the binder with an organic solvent that is at least partially a solvent for the binder. Mix with. Solvents useful in the present invention include both polar and non-polar solvents.

従って、有効な溶媒には、エチレングリコール、メチルエチルケトン、ンクロヘ キサノン、アセトン、酢酸エチル、メタノール、グリセロールおよび水が含まれ 、好適にはメチルエチルケトンである。しか七ながら、この金属粉末と混和させ る有機結合剤で用いる溶媒は、そのセラミック酸化物と一緒に用いる有機結合剤 にとっては溶媒とならない。選択する溶媒は、少なくとも部分的にその結合剤を 溶解させる必要があり、例えば極性を示す結合剤では極性溶媒を用いるべきであ る。Therefore, useful solvents include ethylene glycol, methyl ethyl ketone, Contains xanone, acetone, ethyl acetate, methanol, glycerol and water , preferably methyl ethyl ketone. However, when mixed with this metal powder, The solvent used in the organic binder used with the ceramic oxide is It is not a solvent for The solvent chosen should at least partially bind the binder. For example, polar binders should use polar solvents. Ru.

一般に、このセラミックおよび金属粉末と一緒に用いる溶媒と結合剤の混合物に 界面活性剤を混合してもよい。本発明で用いられ得る界面活性剤には、長鎖の有 機酸、例えばオレイン酸など、並びにポリアクリル酸、脂肪酸エステル類および 脂肪酸アルコキシレート類などが含まれ、好適には脂肪酸アルコキシレート類で ある。Generally, the solvent and binder mixture used with the ceramic and metal powders A surfactant may be mixed. Surfactants that can be used in the present invention include those with long chains. Organic acids such as oleic acid, polyacrylic acid, fatty acid esters and Contains fatty acid alkoxylates, preferably fatty acid alkoxylates. be.

このセラミック前成形体を被覆する目的で用いる金属粉末には、延性を示す伝導 材料が含まれ得る。適切な金属には、銀、金、白金、銅またはそれらの混合物が 含まれ、好適には銀である。The metal powder used to coat this ceramic preform contains a ductile conductive material. Materials may be included. Suitable metals include silver, gold, platinum, copper or mixtures thereof. preferably silver.

熱処理を行う前に金属で被覆する、超伝導セラミック粉末と有機結合剤との複合 品は、連続セラミック繊維を製造するに適した公知技術を用いることで容易に製 造され得る。例えば、Wedde11著、J、Text、In5t、 、199 0.81、No、4.333−359頁を参照のこと。好適には、図1の方法に 従ってこれらの複合品を製造する。Composite of superconducting ceramic powder and organic binder coated with metal before heat treatment The product can be easily manufactured using known techniques suitable for manufacturing continuous ceramic fibers. can be built. For example, Wedde11, J, Text, In5t, 199 0.81, No. 4, pp. 333-359. Preferably, the method of FIG. Therefore, these composite products are manufactured.

図1を参照して、セラミンク粉末と有機結合剤の混合物10をスピンセル20の 中に入れる。混合物10をピストン30でプレスすることでノズル40を通して 押し出すことにより、長く伸びた連続片50が得られる。スプールの上に巻き取 るか或は長く伸びた容器(示していない)の中に入れることによって、片50を 集めることができる。Referring to FIG. 1, a mixture 10 of ceramic powder and an organic binder is placed in a spin cell 20. insert. The mixture 10 is passed through the nozzle 40 by pressing it with the piston 30. By extruding, an elongated continuous piece 50 is obtained. Wind onto the spool strip 50 by placing it in a container or an elongated container (not shown). can be collected.

図2は、本発明の方法を連続様式で実施するための装置を説明している。図2に 示剖ように、セラミックと有機結合剤の混合物10をスピンセル20の中に′入 れ、そしてピストン30によりノズル40を通して押し出すことで、少なくとも 1本のセラミック繊維62が得られる。繊維62を被覆装置64に通すことによ り、金属と有機結合剤の混合物から成る被覆を繊維62に取り付ける。被覆装置 64は如何なる市販の被覆装置であってもよく、例えばC1ncinnati  Milicronが製造している電気ワイヤーコーター(coater)または 繊維補強プラスチックトウブレプレガー(tow prepreger)などで あってもよい。FIG. 2 illustrates an apparatus for carrying out the method of the invention in continuous mode. In Figure 2 As shown, the ceramic and organic binder mixture 10 is placed into the spin cell 20. and by pushing it through the nozzle 40 by the piston 30, at least One ceramic fiber 62 is obtained. By passing the fibers 62 through a coating device 64. A coating consisting of a mixture of metal and organic binder is attached to the fibers 62. coating equipment 64 may be any commercially available coating equipment, for example C1cinnati Electric wire coater manufactured by Milicron or Fiber-reinforced plastic tow prepregers, etc. There may be.

一般に、全てのセラミック繊維62が被覆されることを条件として、幅広い範囲 の厚さで、その金属と有機結合剤の被覆をセラミック繊維62に取り付けことが できる。20 x 10−’mから2X10−3mでこの金属被覆の厚さを変化 させてもよく、好適には2xlO”mである。この金属被覆を繊維62に取り付 けた後、この被覆された繊維をオーブン80に通ずことにより、その有機結合剤 を焼失させ、そのセラミックを結晶化させると共に、この金属被覆の高密度化を 行う。一般に、オーブン80内で用いる熱処理は、結合剤とセラミック材料と金 属とから成る特定の組成物に従って変化する。よく知られている操作に従って、 このセラミック酸化物材料の所望超伝導相が得られるようにその特定の熱処理温 度、雰囲気および時間を容易に決定することができる。Generally, a wide range of The metal and organic binder coating can be attached to the ceramic fiber 62 to a thickness of can. Varying the thickness of this metal coating from 20 x 10-’m to 2 x 10-3m This metal coating may be attached to the fiber 62, preferably 2×lO”m. After coating, the coated fibers are passed through an oven 80 to remove the organic binder. This method burns out the ceramic, crystallizes the ceramic, and increases the density of this metal coating. conduct. Generally, the heat treatment used in oven 80 involves bonding the bonding agent, the ceramic material, and the metal. The genus varies according to its specific composition. Following well-known operations, Its specific heat treatment temperature so as to obtain the desired superconducting phase of this ceramic oxide material temperature, atmosphere and time can be easily determined.

その得られる金属被覆超伝導セラミック繊維は、磁石、電力線などの用途で直接 用いられ得る。また、この金属被覆超伝導繊維をプレスロール、プレートまたは ダイス90に通すことで、この繊維のさらなる高密度化を行ってもよい。このよ うな場合、この高密度化した繊維を、その後再び、第二オーブン82に通し、こ こで、これらのさらなる熱処理を行うことにより、この繊維が示す電流担持容量 を増強することができる。The resulting metal-coated superconducting ceramic fibers can be directly used in applications such as magnets and power lines. can be used. In addition, this metal-coated superconducting fiber can be applied to press rolls, plates or This fiber may be further densified by passing it through a die 90. This way If this is the case, the densified fibers are then passed through the second oven 82 again. By performing these further heat treatments, the current carrying capacity of this fiber can be increased. can be strengthened.

次に、スプール85の如き集積手段または同様な装置を用いて、その得られる繊 維を集めることができる。The resulting fibers are then collected using a collecting means such as spool 85 or similar device. You can collect fiber.

本発明の、金属被覆された超伝導セラミック繊維を成形して種々の構造を生じさ せることができるが、ここでは、超伝導セラミック繊維から成る1本の繊維また は多数の繊維を金属の中に埋め込むか或は金属で被覆する。繊維62は、円いが 、楕円が、或は長方形であってもよい。図3は製品100の断面図を示しており 、ここでは、多数のセラミック繊維62が一緒になって束を形成しており、これ に金属68が被覆されている。The metal-coated superconducting ceramic fibers of the present invention can be formed into various structures. However, here we use a single fiber or superconducting ceramic fiber. A large number of fibers are embedded in or coated with metal. Although the fiber 62 is round, , an ellipse, or a rectangle. FIG. 3 shows a cross-sectional view of the product 100. , here, a large number of ceramic fibers 62 are joined together to form a bundle, which is coated with metal 68.

以下の非制限的実施例は本発明を説明するものである。The following non-limiting examples illustrate the invention.

実施例1 セラミックと結合剤の混合物の製造 セラミック酸化物と結合剤の混合物を下記の如く製造する。1番目の容器内で、 50mLのメチルエチルケトンの中で10gのBi、、Pb。Example 1 Production of ceramic and binder mixtures A mixture of ceramic oxide and binder is prepared as follows. In the first container, 10 g Bi,,Pb in 50 mL methyl ethyl ketone.

4Sr1.5ca2.ocuz、go粗粉末混合することにより、酸化物粉末の 分散液を製造する。商業的に入手可能な界面活性剤であるSo t exCW( Marton Chemical)の2滴を上記分散液と完全混合する。2番目 の容器内で、20mLのメチルエチルケトンの中に1゜4gのポリ(プロピレン カルボネート)結合剤が入っている溶液を製造する。この溶液と上記酸化物粉末 の分散液とを混合する。この混合物がゴム状ペーストを生じるまで加熱すること によって、そのメチルエチルケトンを部分的に蒸発させる。4Sr1.5ca2. By mixing ocuz, go coarse powder, the oxide powder Produce a dispersion. The commercially available surfactant SotexCW ( Two drops of Marton Chemical are mixed thoroughly with the above dispersion. second In a container, add 1.4 g of poly(propylene) to 20 mL of methyl ethyl ketone. carbonate) to prepare a solution containing the binder. This solution and the above oxide powder and a dispersion of the mixture. heating this mixture until it forms a gummy paste The methyl ethyl ketone is partially evaporated by .

長く伸びた繊維の製造 上で製造したゴム状ペーストを、図1に図式的に示す如き内部直径が1/2イン チである通常のステンレス鋼製スピンセルの中に挿入する。Manufacture of elongated fibers The rubbery paste prepared above was prepared with an internal diameter of 1/2 inch as schematically shown in Figure 1. The spin cell is inserted into a standard stainless steel spin cell.

そのペーストを押し出すためのピストンをそのスピンセルの中にtff1人した 後、このスピンセルを通常のスピンユニットの中に入れる。繊維を製造すること を可能にする紡糸口金をこのスピンセルに加える。この紡糸口金から繊維が得ら れるように、そのスピンユニットの速度を調整スる。One tff person put a piston inside the spin cell to push out the paste. Afterwards, this spin cell is placed into a normal spin unit. manufacturing fibers A spinneret is added to this spin cell that allows for. The fiber is obtained from this spinneret. Adjust the speed of the spin unit so that

用いる紡糸口金の開口部の直径が1/8インチ未渦の場合、その押し出した繊維 を直径が6インチのボビン上に集める。より大きな穴サイズを有する紡糸口金を 用いる場合、その押し出した繊維をトレーの上に集めることができる。どちらの 場合も、この集めた繊維を室温で乾燥させる。If the diameter of the spinneret opening used is 1/8 inch, the extruded fiber are collected on a 6 inch diameter bobbin. Spinneret with larger hole size When used, the extruded fibers can be collected on a tray. which In this case, the collected fibers are dried at room temperature.

金属被覆セラミックの製造 商業的に入手可能な銀粉末の2.0gと、平均分子量が約600. 000のポ リ(エチレンオキサイド)の0.24gと、メタノールの5mLとを混合するこ とによって、上で製造したセラミック繊維の被覆を行うための銀ペーストを製造 する。Production of metal-coated ceramics 2.0 g of commercially available silver powder with an average molecular weight of about 600. 000 points Mix 0.24 g of ethylene oxide and 5 mL of methanol. and produced a silver paste for coating the ceramic fibers produced above. do.

上で製造した押し出しセラミック繊維をその銀ペーストの中に浸漬した後、その 溶媒を蒸発させることにより、これらのセラミック繊維にその銀ペーストを均一 に被覆する。After dipping the extruded ceramic fibers produced above into the silver paste, Homogenize that silver paste onto these ceramic fibers by evaporating the solvent coated with

金属被覆した複合体超伝導ワイヤーの熱処理および成形上で製造した金属被覆セ ラミック繊維を空気中で加熱することによってその有機結合剤を除去したが、こ こでは、25℃で始めて、その温度を1針当たり3℃の割合で520’Cにまで 上昇させた後、5時間かけてこの温度を580℃にまで上昇させる。次に、5時 間がけてこの温度を520°Cにまで下げ、そしiて更に、1針当たり3℃で1 20’Cにまで下げる。次に、この熱処理した材料を2枚の金属プレート間でプ レスすることにより、金属被覆された複合体超伝導セラミックワイヤーを生じさ せる。次に、この熱処理してプレス加工したワイヤーを銀ペーストの中に浸漬す ることでこれの再被覆を行うことにより、その1番目の銀被覆で生じ得る全ての 開口部の目塗りを行う。この再被覆した繊維を再び、最初に用いた低温サイクル 下、空気中で熱処理することによって、その有機結合剤を除去する。この得られ る金属被覆セラミックワイヤーを再び、上と同様にプレス加工する。次に、その 得られるワイヤーを加熱することによって、残存している全ての有機溶媒をその 酸化物粉末と銀ペーストから追い出すことにより、B i 1.aP bo、< S r +、sCa t、oc ut、aOで表される銀被覆超伝導セラミック を生じさせる。7%が酸素で93%が窒素である雰囲気の中で温度を1針当たり 3℃の割合で25℃から842℃にまで上昇させそして842℃で25時間保持 することにより、この熱処理を実施する。次に、1針当たり3℃でこの温度を1 20℃にまで下げる。Metal-coated cells produced by heat treatment and forming of metal-coated composite superconducting wires The organic binder was removed by heating the ramic fiber in air; Here, we start at 25°C and increase the temperature to 520'C at a rate of 3°C per stitch. After rising, the temperature is increased to 580° C. over a period of 5 hours. Next, at 5 o'clock Over time, this temperature was lowered to 520°C, and then 1 Lower to 20'C. This heat-treated material is then pressed between two metal plates. A metal-coated composite superconducting ceramic wire is produced by let This heat-treated and pressed wire is then dipped into silver paste. By re-coating this with Paint the opening. This recoated fiber was again used for the first low temperature cycle. Then, the organic binder is removed by heat treatment in air. This result The metal-coated ceramic wire is again pressed in the same manner as above. Then, that By heating the resulting wire, all remaining organic solvent is removed from it. By expelling from the oxide powder and silver paste, Bi1. aP bo, < Silver-coated superconducting ceramic represented by S r +, sCa t, oc ut, aO cause The temperature is measured per stitch in an atmosphere of 7% oxygen and 93% nitrogen. Raised from 25°C to 842°C at a rate of 3°C and held at 842°C for 25 hours. This heat treatment is carried out by doing this. Next, increase this temperature by 1 at 3°C per stitch. Lower the temperature to 20℃.

集積リール 補正書の写しく翻訳文)提出書 (特許法第184条の8)平成6年10月26 日integrated reel Copy and translation of amendment) Submission (Article 184-8 of the Patent Law) October 26, 1994 Day

Claims (1)

【特許請求の範囲】 1.金属被覆が備わっているセラミック複合品を製造する方法において、 第一有機結合剤溶液とセラミック粉末との第一混合物を成形して長く伸びたセラ ミック前成形体を生じさせ、上記第一有機結合剤溶液で用いた結合剤のための溶 媒とは別の溶媒を用いた第二有機結合剤溶液と金属との第二混合物で、上記前成 形体を被覆することによって、被覆されたセラミック前成形体を生じさせ、そし て 上記被覆されたセラミック前成形体を加熱することによって、その上に均一な金 属被覆が備わっているセラミック複合品を生じさせる、ことを含む方法。 2.上記セラミックがBi1.6Pb0.4Sr1.6Ca2.0Cu2.8O 9.2+xおよびBi1.8Pb0.4Sr2.0Ca2.2Cu3.0O10 .3+x[ここで、x=0.1から0.5]の群から選択される超伝導セラミッ ク酸化物であり、そして上記金属が銀、金、白金、銅またはそれらの混合物の群 から選択される請求の範囲1の方法。 3.上記有機結合剤が酢酸セルロース、酢酸酪酸セルロース、ポリ(ビニルアル コール)、ポリ(エチレンオキサイド)、ポリ(ビニルブチラール)、ポリ(メ チルメタアクリル酸)、ポリ(メタアクリル酸メチル)、メチルセルロース、ポ リ(イソブチレン)およびポリ(プロピレンカーボネート)の群から選択される 請求の範囲1または2いずれか1項の方法。 4.上記加熱が850℃以下の温度である請求の範囲1または2いずれか1項の 方法。 5.上記セラミックがBi1.6Pb0.4Sr1.6Ca2.0Cu2.8O 9.2+x[ここで、x=0.1から0.5]でありそして上記金属が銀である 請求の範囲3の方法。 6.上記セラミックがBi1.8Pb0.4Sr2.0Ca2.2Cu3.0O 10.3+x[ここで、x=0.1から0.5]である請求の範囲3の方法。 7.上記複合品が少なくとも1種のセラミック前成形体を含んでいる請求の範囲 5の方法。 8.上記有機結合剤が上記第一および第二混合物各々の中に少なくとも10体積 %の量で存在している請求の範囲1または2いずれか1項の方法。 9.上記金属が銀でありそして上記結合剤がポリ(プロピレンカーボネート)で ある請求の範囲5または6いずれかの方法。[Claims] 1. In a method of manufacturing a ceramic composite article provided with a metal coating, The first mixture of the first organic binder solution and the ceramic powder is molded to form a long ceramic. The solution for the binder used in the first organic binder solution is A second mixture of a second organic binder solution and a metal in a different solvent than the preform. producing a coated ceramic preform by coating the feature; hand By heating the coated ceramic preform, a uniform gold layer is deposited thereon. producing a ceramic composite article having a metal coating. 2. The above ceramic is Bi1.6Pb0.4Sr1.6Ca2.0Cu2.8O 9.2+x and Bi1.8Pb0.4Sr2.0Ca2.2Cu3.0O10 .. 3+x [where x=0.1 to 0.5] and the metal is a group of silver, gold, platinum, copper or mixtures thereof. The method of claim 1 selected from. 3. The above organic binders are cellulose acetate, cellulose acetate butyrate, poly(vinyl alcohol) poly(ethylene oxide), poly(vinyl butyral), poly(metal) methyl methacrylate), poly(methyl methacrylate), methyl cellulose, poly(methyl methacrylate), selected from the group of poly(isobutylene) and poly(propylene carbonate) A method according to any one of claims 1 or 2. 4. Claim 1 or 2, wherein the heating is at a temperature of 850°C or lower. Method. 5. The above ceramic is Bi1.6Pb0.4Sr1.6Ca2.0Cu2.8O 9.2+x [where x=0.1 to 0.5] and the metal is silver The method according to claim 3. 6. The above ceramic is Bi1.8Pb0.4Sr2.0Ca2.2Cu3.0O 10.3+x, where x=0.1 to 0.5. 7. Claims wherein said composite article comprises at least one ceramic preform Method 5. 8. said organic binder is in each of said first and second mixtures at least 10 volumes; 3. A method according to any one of claims 1 or 2, wherein the method is present in an amount of %. 9. the metal is silver and the binder is poly(propylene carbonate) A method according to any one of claims 5 and 6.
JP5519305A 1992-04-28 1993-04-22 Dispersion spinning method for coated rod-in-tube superconducting composite Pending JPH07506454A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US87591792A 1992-04-28 1992-04-28
US875,917 1992-04-28
PCT/US1993/003582 WO1993022257A1 (en) 1992-04-28 1993-04-22 Method for dispersion spinning of sheathed rod-in-tube superconducting composites

Publications (1)

Publication Number Publication Date
JPH07506454A true JPH07506454A (en) 1995-07-13

Family

ID=25366607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5519305A Pending JPH07506454A (en) 1992-04-28 1993-04-22 Dispersion spinning method for coated rod-in-tube superconducting composite

Country Status (14)

Country Link
EP (1) EP0638054B1 (en)
JP (1) JPH07506454A (en)
KR (1) KR950701300A (en)
AT (1) ATE154924T1 (en)
AU (1) AU669717B2 (en)
CA (1) CA2134466A1 (en)
DE (1) DE69311900T2 (en)
DK (1) DK0638054T3 (en)
ES (1) ES2103475T3 (en)
GR (1) GR3024760T3 (en)
HK (1) HK1000627A1 (en)
NO (1) NO944092L (en)
SG (1) SG48244A1 (en)
WO (1) WO1993022257A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10235818B4 (en) * 2002-08-05 2005-01-05 Mtu Aero Engines Gmbh Method for producing a reinforcing fiber, use of reinforcing fibers produced in this way, and method for producing a semifinished product with reinforcing fibers produced in this way

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2170688A (en) * 1987-09-04 1989-03-09 W.R. Grace & Co.-Conn. Method and composition for forming superconducting ceramics and other ceramic materials with reduced electrical resistivity and electrically conductive metal-clad products therefrom
JPH03261006A (en) * 1990-03-08 1991-11-20 Sumitomo Electric Ind Ltd Manufacture of superconductive wire

Also Published As

Publication number Publication date
GR3024760T3 (en) 1997-12-31
ES2103475T3 (en) 1997-09-16
WO1993022257A1 (en) 1993-11-11
CA2134466A1 (en) 1993-11-11
NO944092D0 (en) 1994-10-27
DE69311900D1 (en) 1997-08-07
AU4288193A (en) 1993-11-29
KR950701300A (en) 1995-03-23
EP0638054B1 (en) 1997-07-02
DK0638054T3 (en) 1997-07-21
DE69311900T2 (en) 1997-10-16
EP0638054A1 (en) 1995-02-15
AU669717B2 (en) 1996-06-20
NO944092L (en) 1994-10-27
ATE154924T1 (en) 1997-07-15
HK1000627A1 (en) 1998-04-09
SG48244A1 (en) 1998-04-17

Similar Documents

Publication Publication Date Title
AU597148B2 (en) Process for manufacturing a superconducting wire of compound oxide-type ceramics
US5413753A (en) Method for dispersion spinning of sheathed rod-in-tube superconducting composites
JPH07506454A (en) Dispersion spinning method for coated rod-in-tube superconducting composite
US5814122A (en) Method of making hollow high temperature ceramic superconducting fibers
Risbud et al. Resistivity drops at> 240 K and diamagnetic ac susceptibility up to 300 K in rapidly consolidated YBCO
Poeppel et al. Shape forming high-T c superconductors
Ponnusamy et al. Extrusion of superconducting wires of YBa2Cu3O7− x
JPS63257132A (en) Manufacture of oxide superconductor
JPS63269418A (en) Manufacture of superconductive oxide wire rod
JP3179084B2 (en) Manufacturing method of oxide superconducting wire
JPH0346710A (en) Manufacture of superconductive wire
DE4210198A1 (en) Melt texturing of high temp. superconductor - in form of porous starting material prepd. from powder
JPS63274017A (en) Superconductive wire material
RU2008751C1 (en) Process of production of high-temperature-superconductive ceramics with metal additions
JPS63237314A (en) Manufacture of superconductive compound material
JPS63277554A (en) Oxide superconductive ceramic linear sintered material and production thereof
JPS63294622A (en) Manufacture of oxide superconductor wire materials
JPH02267816A (en) Superconductive ceramic wire material and manufacture thereof
JPH01257183A (en) Production of stabilized high-temperature superconducting ceramic wire and tape
JPH01176606A (en) Manufacture of oxide superconductive fiber
JPH027306A (en) Superconductive wire
JPH01264117A (en) Superconducting wire and manufacture thereof
JPH01246722A (en) Manufacture of superconductive wire material
JPH01265414A (en) Manufacture of oxide superconductive wire rod
WO1993016495A1 (en) Fabrication of superconductor-metal alloy composites