JPH01265414A - Manufacture of oxide superconductive wire rod - Google Patents

Manufacture of oxide superconductive wire rod

Info

Publication number
JPH01265414A
JPH01265414A JP63093231A JP9323188A JPH01265414A JP H01265414 A JPH01265414 A JP H01265414A JP 63093231 A JP63093231 A JP 63093231A JP 9323188 A JP9323188 A JP 9323188A JP H01265414 A JPH01265414 A JP H01265414A
Authority
JP
Japan
Prior art keywords
powder
oxide
atomized
linear base
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63093231A
Other languages
Japanese (ja)
Inventor
Ryoji Sedaka
良司 瀬高
Wataru Komatsu
亘 小松
Toshiaki Shibata
柴田 俊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63093231A priority Critical patent/JPH01265414A/en
Publication of JPH01265414A publication Critical patent/JPH01265414A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To enhance superconductive property and increase production efficiency by electrostatically sticking, on a linear base and heat-treating formed powder which is made by solving a raw material in a solvent, then atomizing and heat-reacting the solution. CONSTITUTION:Solution 2 which is made by solving chemical compounds each containing composing elements of oxide superconductor is set in a supersonic nebulizer in an electrostatical adhesion reactor and then atomized. Atomized substance 5 is selected by a particle diameter selecting DMA4 supplied into a reaction furnace 7 which has been heated to a defined temperature. The atomized substance 5 is heated in the reaction furnace 7 by a heating device 8 and reacted into the oxide superconductive powder. Simultaneously the powder formed by a electrostatic field generated by a pipe-shaped electrode 9 and the linear base 10 is electrocharged and collected and on stuck base and finally wound on a coiler 11 to manufacture an oxide superconductive wire rod. The powder is so speedily and densely stuck on the linear base 10 that a fine formation of oxide superconductive layer is possible by electrocharging thus formed powder and sticking it on the linear base 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物超電導線材の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing an oxide superconducting wire.

(従来の技術〕 近年、アルカリ土金属、希土類元素、銅、ビスマス、タ
リウム等の元素及び酸素からなるLaSr Cu、o、
−δ、YBazCusOt−δ、B15rCaCu、O
K等の化学式で示される酸化物超電導体が見出されてい
る。
(Prior art) In recent years, LaSr Cu, o,
-δ, YBazCusOt-δ, B15rCaCu, O
Oxide superconductors represented by chemical formulas such as K have been discovered.

これらの酸化物超電導体は、液体N2温度以上で超電導
となるため従来の液体He温度で超電導を示す金属超電
導体に較べて格段に経済的であり、各分野での利用が検
討されている。
These oxide superconductors are much more economical than conventional metal superconductors which exhibit superconductivity at liquid He temperatures because they become superconducting above the liquid N2 temperature, and their use in various fields is being considered.

ところで上記の酸化物超電導体は跪いため金属材料のよ
うに塑性加工ができず、これらを板材や線材等に加工す
るには、主に粉末冶金法が用いられ、例えば原料粉末を
仮焼成して仮焼粉となし、この仮焼粉を基体上に被覆成
形したり、又はAg管等に充填して伸延加工し、次いで
これを02含有雰囲気中で加熱焼結する方法がとられて
いる。
By the way, the above-mentioned oxide superconductors cannot be processed plastically like metal materials because they are bent, and powder metallurgy is mainly used to process them into plates, wires, etc. For example, by pre-sintering the raw material powder, A method is used in which the calcined powder is formed into a calcined powder, the calcined powder is coated on a substrate, or filled into an Ag tube or the like and stretched, and then heated and sintered in an atmosphere containing O2.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の粉末冶金法において、基体上に仮焼粉を被覆成形
する方法には、プラズマ溶射法、ペースト塗布法等が用
いられているが、前者は付着効率が悪く、又後者は乾燥
に長時間を要する上付着体がポーラスになり超電導特性
が低下するという問題があった。
In the above powder metallurgy method, plasma spraying, paste coating, etc. are used to coat and mold the calcined powder onto the substrate, but the former has poor adhesion efficiency, and the latter takes a long time to dry. There was a problem in that the superconducting body required for this process became porous and the superconducting properties deteriorated.

又仮焼粉をAg管等に充填する方法は、仮焼粉を管内に
連続して高密度に充填するのが難しく特に線材等の長尺
材において長手方向に特性のバラツキを生じ易いという
問題があった。
Another problem with the method of filling calcined powder into Ag tubes, etc. is that it is difficult to fill the tube with calcined powder continuously and at a high density, which tends to cause variations in properties in the longitudinal direction, especially in long materials such as wire rods. was there.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はかかる状況に迄みなされたものでその目的とす
るところは特性に優れた酸化物超電導線材を効率よく製
造する方法を提供することにある。
The present invention has been made in view of this situation, and its purpose is to provide a method for efficiently manufacturing an oxide superconducting wire with excellent properties.

即ち本発明は、酸化物超電導体の構成元素を各々含有す
る化合物をそれぞれ所定M溶媒に溶解し、この溶液を霧
状化して所定温度に加熱した反応炉内に供給して反応さ
せて上記霧状体を酸化物超電導体粉末となすと共に上記
反応炉内を電界状態となして生成させた酸化物超電導体
粉末を荷電せしめ、この荷電粉末を集塵極に荷電させた
線状基体上に付着させると共に熱処理することを特゛徴
とするものである。
That is, in the present invention, compounds containing each of the constituent elements of an oxide superconductor are dissolved in a predetermined M solvent, and this solution is atomized and supplied to a reactor heated to a predetermined temperature to cause a reaction. The oxide superconductor powder is made into an oxide superconductor powder, the oxide superconductor powder produced by creating an electric field in the reactor is charged, and the charged powder is attached to a charged linear substrate on a collecting electrode. It is characterized by being subjected to heat treatment as well as heat treatment.

本発明において酸化物超電導体の構成元素を各々含有す
る化合物としては、例えばYBa2Cu、。
In the present invention, the compound containing each of the constituent elements of the oxide superconductor is, for example, YBa2Cu.

01−δ(δ#0.1〜0.3)の超電導体につい例示
するとY、Ba、Cuのそれぞれ酢酸塩、硝酸塩、ハロ
ゲン化物或いは有機金属化合物等である。
Examples of superconductors of 01-δ (δ #0.1 to 0.3) include acetates, nitrates, halides, and organometallic compounds of Y, Ba, and Cu, respectively.

本発明において上記化合物を霧状化する方法としては、
例えば上記化合物をそれぞれ水等の溶媒に溶解し、これ
を超音波ネプライザ等により霧状化する方法が用いられ
る。
In the present invention, the method for atomizing the above compound is as follows:
For example, a method may be used in which each of the above compounds is dissolved in a solvent such as water and atomized using an ultrasonic nebulizer or the like.

上記の霧状体を火炎に連続供給する方法としては、これ
を空気、02、N2、Ar等のキャリアガスにのせて搬
送するのが供給量のコントロールが容易にできて好まし
いものである。
As a method for continuously supplying the above-mentioned atomized material to the flame, it is preferable to convey the atomized material in a carrier gas such as air, O2, N2, Ar, etc., since the amount of the atomized material to be supplied can be easily controlled.

本発明において上記霧状体を酸化物超電導体粉末に加熱
反応させる加熱方法としては、電気抵抗加熱、高周波誘
導加熱、バーナ加熱等の方法が特に適している。
In the present invention, methods such as electric resistance heating, high frequency induction heating, and burner heating are particularly suitable as heating methods for causing the atomized material to undergo a thermal reaction with the oxide superconductor powder.

本発明において生成させた酸化物超電導体粉末を荷電す
る方法としては、電界荷電法の他に拡散荷電法等も適用
することができる。
As a method for charging the oxide superconductor powder produced in the present invention, in addition to the electric field charging method, a diffusion charging method or the like can be applied.

本発明において火炎により加熱されて生成する酸化物超
電導体粉末は、例えばY−Ba−Cu−0系酸化物超電
導体について示すと、YBa、Cu、0.−δの化学式
で示される複合酸化物であるが上記の酸化物超電導体中
には酸素量が欠乏した組成からなる複合酸化物も含まれ
ており、この粉末に酸素含有雰囲気中で所定の加熱処理
を施すと超電導特性が更に向上するものである。
In the present invention, the oxide superconductor powder produced by heating with a flame includes, for example, Y-Ba-Cu-0 based oxide superconductors such as YBa, Cu, 0. Although it is a complex oxide represented by the chemical formula -δ, the above oxide superconductor also contains a complex oxide with a composition deficient in oxygen, and this powder is heated to a specified temperature in an oxygen-containing atmosphere. The treatment further improves the superconducting properties.

本発明方法において基体にはブロック状等の基体を用い
ることもできるが、長尺の線状基体に連続して酸化物超
電導体粉末を付着させる場合に特にその効果が発揮され
る。
In the method of the present invention, a block-shaped substrate or the like may be used as the substrate, but the effect is particularly exhibited when the oxide superconductor powder is continuously attached to a long linear substrate.

〔作用〕[Effect]

酸化物超電導体原料を溶媒に溶かして溶液となし、この
溶液を霧状化して加熱反応させるので微細な酸化物超電
導体粉末が生成され、更に生成させた粉末を電界内にお
いて荷電せしめ、この荷電粉末を集塵極に荷電された線
状基体上に静電付着させるので、生成した粉末は上記基
体上に歩留りよく、高速度且つ高密度に付着する。
The oxide superconductor raw material is dissolved in a solvent to form a solution, and this solution is atomized and heated to generate a fine oxide superconductor powder.The generated powder is then charged in an electric field, and this charge is Since the powder is electrostatically deposited onto the linear substrate charged with the dust collecting electrode, the generated powder is deposited on the substrate at a high yield, at high speed, and with high density.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例1 第1図は本発明方法を実施する装置の一例を示す荷電付
着型反応装置の概略説明図である。
Example 1 FIG. 1 is a schematic explanatory diagram of a charged adhesion type reaction apparatus showing an example of an apparatus for carrying out the method of the present invention.

荷電付着型反応装置は、原料溶液2を霧状化する為の超
音波式ネプライザ3、上記霧状体5を輸送する為のキャ
リアガス制御用M F C(Mass−Fl。
The charged adhesion type reaction device includes an ultrasonic nebulizer 3 for atomizing the raw material solution 2, and a carrier gas control MFC (Mass-Fl) for transporting the atomized material 5.

w−Controller)  1、上記霧状体5の粒
径選別用DMA (Differential−Mob
ility−Analyzer) 4、上記の選別され
た霧状体5を酸化物超電導体粉末に加熱反応させる為の
反応炉7からなり、この反応炉7は、外周に加熱体8が
配置され内部には上記粉末を荷電するための電界発生用
パイプ状電極9及び上記荷電粉末を付着する為の集塵極
に荷電された線状基体10とが配置されている。
w-Controller) 1. DMA for particle size selection of the atomized material 5 (Differential-Mob
ity-Analyzer) 4. It consists of a reaction furnace 7 for heating and reacting the selected atomized material 5 to oxide superconductor powder. A pipe-shaped electrode 9 for generating an electric field for charging the powder and a charged linear base 10 are arranged as dust collecting electrodes for adhering the charged powder.

本実施例においては、出発原料としてY (CH。In this example, Y (CH) was used as the starting material.

COO)3 ・4 Ht○、Ba (C1−!3COO
)!・H2O及びCu (CH,Coo)z・HzOを
用い、YBa、cu、o、−δ組成の酸化物超電導体粉
末を製造した。
COO)3 ・4 Ht○, Ba (C1-!3COO
)! - An oxide superconductor powder having a YBa, cu, o, -δ composition was produced using H2O and Cu (CH,Coo)z.HzO.

上記の各々の出発原料をY:Ba:Cuが原子比で11
:3になるように秤量し、これを水に溶解してYBa2
Cu、の組成で0.03モル/l濃度の水溶液を用意し
た。
Each of the above starting materials has an atomic ratio of Y:Ba:Cu of 11
: Weigh it so that it is 3, dissolve it in water and make YBa2
An aqueous solution having a composition of Cu and a concentration of 0.03 mol/l was prepared.

上記水溶液を第1図に示した荷電付着型反応装置の超音
波式ネプライザ3内にセットして50cc/ra i 
nの速度で霧状化し、次いでこの霧状体5をMFCIか
らIO3LMの流量で流入する02気流にのせてDMA
4に輸送し、上記DMA4により粒径4μ以下の霧状体
5を選別してこれを反応炉7内に供給した。
The above aqueous solution was set in the ultrasonic nebulizer 3 of the charged adhesion type reactor shown in FIG.
The atomized material 5 is atomized at a speed of n, and then this atomized material 5 is placed on the 02 air stream flowing in from the MFCI at a flow rate of IO3LM to DMA.
The atomized material 5 having a particle size of 4 μm or less was selected by the DMA 4 and supplied into the reactor 7.

反応炉7内に供給された上記霧状体5は加熱体8により
加熱されて反応して酸化物超電導体粉末となすと共に、
上記反応炉7内に組込まれたパイプ状電極9と炉内7を
走行する線状基体10間で電界を発生せしめて上記粉末
を荷電して上記基体10上に200−厚さに補集付着さ
せてコイラー11に巻取った。なお上記線状基体10は
0.5 +nnφのB572  No  6002 (
ASTM)のNi合金で、予熱炉6で550°Cに予熱
し10cm/minの速度で炉内7を走行させた。
The atomized material 5 supplied into the reactor 7 is heated by the heating element 8 and reacts to form an oxide superconductor powder, and
An electric field is generated between the pipe-shaped electrode 9 incorporated in the reactor 7 and the linear substrate 10 running inside the reactor 7 to charge the powder, which is then collected and deposited on the substrate 10 to a thickness of 200 mm. Then, it was wound on coiler 11. The linear substrate 10 is made of B572 No. 6002 (0.5 + nnφ).
ASTM) Ni alloy was preheated to 550°C in a preheating furnace 6 and moved through the furnace 7 at a speed of 10 cm/min.

上記線状基体10は、コイラー11側で接地し又DC電
圧30kvの高圧電源12のCo1d端子に接続して集
塵極となし、他方上記高圧電a12のHot端子はパイ
プ状電極9に接続し、これにより電界荷電強度10kv
/craを発生させた。
The linear substrate 10 is grounded on the side of the coiler 11 and connected to the Co1d terminal of a high voltage power source 12 with a DC voltage of 30 kV to serve as a dust collection electrode, while the Hot terminal of the high voltage power source a12 is connected to the pipe-shaped electrode 9. , this results in an electric field charging strength of 10kv
/cra was generated.

実施例2 出発原料としてB i  (C6H706)  ・7H
20、S r (C6H*06)z ・3H20、Ca
 (C6H,○、)2・5 H,OとCu (CaHq
Oa)z ・2HtOを用い、実施例1と同様にしてB
15rCaCu、O,組成の酸化物超電導体粉末を製造
した。
Example 2 B i (C6H706) 7H as starting material
20, S r (C6H*06)z ・3H20, Ca
(C6H,○,)2.5 H,O and Cu (CaHq
B was prepared in the same manner as in Example 1 using Oa)z ・2HtO.
An oxide superconductor powder having a composition of 15rCaCu,O was produced.

なお、上記の各々の出発原料はBi:Sr:Ca:CU
が1:1:1:2になるように秤量しこれをエタノール
50%十水50%の溶媒に溶かしてB15rCaCu、
の組成で0.1モル/!濃度のン容液となしたものを用
いた。
In addition, each of the above starting materials are Bi:Sr:Ca:CU
B15rCaCu,
The composition is 0.1 mol/! A concentrated solution was used.

本実施例においては、電界発生のためのパイプ状電極9
を板状電極に替え、又テープ状基体を粉末付着後管状体
に成形するためのダイスと溶接機をローラ13とコイラ
11の間に配置した他は第1図に示したと同じ反応装置
を用いて酸化物超電導線材を製造した。
In this embodiment, a pipe-shaped electrode 9 for generating an electric field is used.
The same reactor as shown in Fig. 1 was used, except that the electrode was replaced with a plate-shaped electrode, and a die and welding machine for forming the tape-shaped substrate into a tubular body after powder deposition were placed between the roller 13 and the coiler 11. An oxide superconducting wire was manufactured using this method.

原料物質を溶解した前記の溶液を、第1図に示した反応
装置の超音波式ネプライザ3内にセットして、これを6
0cc/minの速度で霧状化し、次いでこの霧状体5
をMFCIから20SLMの流量で流入する02気流に
のせてDMA4に輸送し、上記DMA4により7μ以下
の霧状体5を選別してこれを反応炉7内に供給した。
The solution containing the raw material dissolved therein is placed in the ultrasonic nebulizer 3 of the reaction apparatus shown in FIG.
Atomized at a speed of 0 cc/min, and then this atomized material 5
was transported to the DMA 4 on the 02 air flow flowing in from the MFCI at a flow rate of 20 SLM, and the atomized material 5 of 7 μ or less was selected by the DMA 4 and supplied into the reactor 7.

反応炉7内に供給された上記霧状体5は、加熱されて反
応して酸化物超電導体粉末となされると共に、上記反応
炉7内に組込まれた板状電極と炉内7を走行するテープ
状基体間で電界を発生せしめて上記粉末を荷電して上記
基体上に100n厚さに補集付着させ、ついでこのテー
プをガイドローラ13通過後ダイスによりパイプ状に丸
めローラ形の高周波溶接機により端部を溶接してコア部
直径1.12mm、外径2.26mmの管状体に成形し
てコイラ11に巻取った。
The atomized material 5 supplied into the reactor 7 is heated and reacted to form oxide superconductor powder, and travels in the reactor 7 with a plate-shaped electrode incorporated in the reactor 7. An electric field is generated between the tape-shaped substrates to charge the powder, and the powder is collected and deposited on the substrate to a thickness of 100 nm.Then, after passing through a guide roller 13, the tape is rolled into a pipe shape with a die using a roller-type high-frequency welding machine. The ends were welded to form a tubular body with a core diameter of 1.12 mm and an outer diameter of 2.26 mm, which was wound around a coiler 11.

なお、上記テープ状基体は、300ntX10(ト)“
の銅合金B572  A11ay  706 (AST
M)で予熱炉6で750°Cに予熱し15c+n/mi
nの速度で炉内7を走行させた。高圧電a12のDC電
圧は25kvに設定して、9kv/cmの電界荷電強度
を発生させた。
Note that the tape-shaped substrate has a size of 300 nt×10 (t)
Copper alloy B572 A11ay 706 (AST
M) preheated to 750°C in preheating furnace 6 at 15c+n/mi.
The inside of the furnace 7 was run at a speed of n. The DC voltage of the high-voltage electric a12 was set to 25 kV to generate an electric field charging strength of 9 kV/cm.

比較例I Y B a z Cu ;l Ooの仮焼粉を外径6胴
、内径5鵬のAg管に充填し、これを外径0.5 wn
まで冷間伸線し、次いでこれを02気流中で900 ’
C20H加熱したのち300 ’Cまで2°C/min
の速度で徐冷して酸化物超電導線材となした。
Comparative Example I A calcined powder of YB az Cu ; l Oo was filled into an Ag pipe with an outer diameter of 6 cylinders and an inner diameter of 5 mm.
The wire was then cold drawn to 900' in an 02 air stream
After heating at C20H, heat up to 300'C at 2°C/min.
An oxide superconducting wire was obtained by slow cooling at a speed of .

斯くの如(して得た各々の酸化物超電導線材について相
対密度J、及び耐久性を調べた。耐久性は液体N2中で
JCの80%の電流を通電し、1週間後のJCにより判
定した。結果は第1表に示した。
The relative density J and durability of each of the oxide superconducting wires obtained in this way were investigated.Durability was determined by passing a current of 80% of JC in liquid N2 and JC after one week. The results are shown in Table 1.

第   1   表 *液体窒素(77K)中4端子法で測定した。Chapter 1 Table *Measured using the 4-terminal method in liquid nitrogen (77K).

第1表より明らかなように本発明方法品(実施例1.2
)は比較方法品(比較例1)に較べて相対密度が高く、
Je及び耐久性がともに優れている。
As is clear from Table 1, the method of the present invention (Example 1.2
) has a higher relative density than the comparative method product (Comparative Example 1),
Both Je and durability are excellent.

これは本発明方法品は微細な酸化物超電導体粉末を基体
に荷電付着させるので酸化物超電導体層が緻密に形成さ
れる為である。
This is because in the method of the present invention, fine oxide superconductor powder is charged and adhered to the substrate, so that the oxide superconductor layer is formed densely.

また比較方法品の特性が低いのは、仮焼粉の粒径が粗大
で不均一な上Ag管に仮焼粉を充填するのが難しい為酸
化物超電導体層が低密度となり、更に仮焼粉の粉砕分級
時に不純物が混入した為である。
In addition, the characteristics of the comparison method product are low because the grain size of the calcined powder is coarse and uneven, and it is difficult to fill the upper Ag tube with the calcined powder, resulting in a low density of the oxide superconductor layer. This is because impurities were mixed in during the pulverization and classification of the powder.

(効果) 以上述べたように本発明方法によれば特性に優れた酸化
物超電導線材が効率よく製造し得るので、工業上顕著な
効果を奏する。
(Effects) As described above, according to the method of the present invention, an oxide superconducting wire with excellent properties can be efficiently produced, and therefore, a remarkable effect is produced industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する装置の一例を示す荷電付
着型反応装置の概略説明図である。 2・・・?PI液、 5・・・霧状体、 7・・・反応
炉、10・・・線状基体。
FIG. 1 is a schematic explanatory diagram of a charged adhesion type reaction apparatus showing an example of an apparatus for carrying out the method of the present invention. 2...? PI liquid, 5... Atomized body, 7... Reactor, 10... Linear substrate.

Claims (1)

【特許請求の範囲】[Claims] 酸化物超電導体の構成元素を各々含有する化合物をそれ
ぞれ所定量溶媒に溶解し、この溶液を霧状化して所定温
度に加熱した反応炉内に供給して反応させて上記霧状体
を酸化物超電導体粉末となすとともに、上記反応炉内を
電界状態となして生成させた酸化物超電導体粉末を荷電
せしめ、この荷電粉末を集塵極に荷電させた線状基体上
に付着させると共に熱処理することを特徴とする酸化物
超電導線材の製造方法。
A predetermined amount of a compound containing each of the constituent elements of an oxide superconductor is dissolved in a solvent, and this solution is atomized and supplied to a reactor heated to a predetermined temperature to react, and the atomized material is converted into an oxide. In addition to forming superconductor powder, the oxide superconductor powder produced by creating an electric field in the reactor is electrically charged, and this charged powder is attached to a charged linear substrate on a dust collecting electrode and heat-treated. A method for producing an oxide superconducting wire, characterized by:
JP63093231A 1988-04-15 1988-04-15 Manufacture of oxide superconductive wire rod Pending JPH01265414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63093231A JPH01265414A (en) 1988-04-15 1988-04-15 Manufacture of oxide superconductive wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63093231A JPH01265414A (en) 1988-04-15 1988-04-15 Manufacture of oxide superconductive wire rod

Publications (1)

Publication Number Publication Date
JPH01265414A true JPH01265414A (en) 1989-10-23

Family

ID=14076768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63093231A Pending JPH01265414A (en) 1988-04-15 1988-04-15 Manufacture of oxide superconductive wire rod

Country Status (1)

Country Link
JP (1) JPH01265414A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651805A (en) * 2015-02-04 2015-05-27 昆明理工大学 Ultrasonic atomizing microwave tube furnace and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651805A (en) * 2015-02-04 2015-05-27 昆明理工大学 Ultrasonic atomizing microwave tube furnace and application thereof

Similar Documents

Publication Publication Date Title
EP0285108A2 (en) Method of producing superconducting wire
JPH01265414A (en) Manufacture of oxide superconductive wire rod
JPH01321031A (en) Manufacture of oxide superconducting wire
US5077267A (en) Process for making composite high temperature superconductor copper wires
JPH025314A (en) Manufacture of oxide superconductive wire rod
JPH02208209A (en) Production of oxide superconductor precursor
JPH03109207A (en) Production of oxide superconducting powder occluding oxygen or gaseous ozone
US3420707A (en) Deposition of niobium stannide
USH1718H (en) Method of producing high temperature superconductor wires
JPH0477302A (en) Production of superconducting layer
JPH0362905A (en) Manufacture of superconducting coil
JPS63291318A (en) Manufacture of oxide superconductive wire
JPH01286211A (en) Manufacture of oxide superconducting wire rod
JP2575443B2 (en) Method for producing oxide-based superconducting wire
JPH01209607A (en) Manufacture of oxide superconductive wire rod
JPH0247296A (en) Formation of superconductor
JPH0322313A (en) Manufacture of superconducting oxide-coated wire
JPH01225013A (en) Manufacture of oxide superconductive compact
JPH01252508A (en) Production of oxide superconductor
JPH01281612A (en) Manufacture of oxide superconducting wire material
JPH02208208A (en) Production of oxide superconductor precursor film
JPS63294622A (en) Manufacture of oxide superconductor wire materials
JPS63291320A (en) Manufacture of oxide superconductive wire
JPH01146214A (en) Manufacture of superconductor wire material
JPH0197322A (en) Manufacture of oxide superconductor wire