JPH02208208A - Production of oxide superconductor precursor film - Google Patents

Production of oxide superconductor precursor film

Info

Publication number
JPH02208208A
JPH02208208A JP1029143A JP2914389A JPH02208208A JP H02208208 A JPH02208208 A JP H02208208A JP 1029143 A JP1029143 A JP 1029143A JP 2914389 A JP2914389 A JP 2914389A JP H02208208 A JPH02208208 A JP H02208208A
Authority
JP
Japan
Prior art keywords
raw material
oxide superconductor
acid
material solution
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1029143A
Other languages
Japanese (ja)
Inventor
Makoto Furuguchi
古口 誠
Yoshikazu Matsuda
松田 美一
Kunio Ogura
邦男 小倉
Eiji Kinoshita
栄司 木下
Kazuto Hirabayashi
平林 和人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1029143A priority Critical patent/JPH02208208A/en
Publication of JPH02208208A publication Critical patent/JPH02208208A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a high-quality oxide superconductor precursor film over the whole length by supplying a misty raw material solution of an oxide superconductor raw material solution containing an acid added thereto into a flame, carrying out chemical reaction and applying the formed precursor onto a substrate. CONSTITUTION:A prescribed amount of a raw material substance convertible into an oxide superconductor is dissolved in a solvent and an acid is then added to the resultant raw material solution. The obtained solution is subsequently placed in an ultrasonic atomizer and atomized. The resultant misty raw material solution is then carried on a carrier gas, continuously fed through a burner into a flame and chemically reacted. The formed oxide superconductor precursor is subsequently applied onto a substrate placed in front of the flame to afford the objective precursor. If the raw material substance convertible into the oxide superconductor is composed of an acetate, acetic acid is used as the acid. If the raw material substance is composed of a nitrate, nitric acid is used as the acid. As described above, the same acid as the raw material substance is preferably used to rapidly dissolve solid substances into the raw material solution without contaminating the precursor with noxious substances.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物超電導体前駆物質膜の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an oxide superconductor precursor film.

〔従来の技術及びその課題〕[Conventional technology and its problems]

最近、周知のように液体窒素温度で使用できる酸化物超
電導体が見出され、この新超電導体の応用研究が内外で
活発になされている。
Recently, as is well known, an oxide superconductor that can be used at liquid nitrogen temperatures has been discovered, and research into the application of this new superconductor is being actively conducted both at home and abroad.

ところで、このような酸化物超電導体は脆いため、線材
等に加工するのが難しく、粉末焼結法等の特殊な加工法
が研究されている。しかしながらこの粉末焼結法は製造
工程が長く、又長尺材の製造が困難であった。
However, since such oxide superconductors are brittle, it is difficult to process them into wire rods, etc., and special processing methods such as powder sintering are being researched. However, this powder sintering method requires a long manufacturing process, and it is difficult to manufacture long materials.

このようなことから、酸化物超電導体の原料物質を溶媒
に溶かし、この原料溶液を超音波噴霧器に入れて霧状原
料溶液となして火炎中に供給し、火炎により化学反応せ
しめて酸化物超電導体の前駆物質となし、これを火炎前
方に配置した基体上に膜状に付着させてなる噴霧加熱反
応法が提案されている。
For this reason, the raw material for oxide superconductor is dissolved in a solvent, and this raw material solution is put into an ultrasonic atomizer to form a mist raw material solution and supplied into a flame, and the flame causes a chemical reaction. A spray-heating reaction method has been proposed in which a precursor material for the oxidizing agent is deposited in the form of a film on a substrate placed in front of a flame.

この方法は、工程が短く又反応速度が速いので生産性に
冨み、更に基体を走行させこれに酸化物超電導体前駆物
質を連続的に付着させるようにすると長尺材が容易に製
造し得るという利点がある。
This method has short steps and a high reaction rate, so it is highly productive. Furthermore, by running the substrate and continuously depositing the oxide superconductor precursor on it, it is possible to easily produce long materials. There is an advantage.

しかしながらこの製造方法によると、特に長尺材を製造
する場合に、得られる酸化物超電導体前駆物質膜は特性
が経時的に劣化するという問題があった。
However, according to this manufacturing method, there is a problem in that the characteristics of the obtained oxide superconductor precursor film deteriorate over time, especially when manufacturing a long material.

〔課題を解決するための手段及び作用〕本発明はかかる
状況に鑑み鋭意研究を行い、噴霧加熱反応法により製造
される酸化物超電導体前駆物質膜の特性が経時的に劣化
する原因は、第2図に示したように超音波噴霧器2の霧
状原料溶液3の出口近傍内壁15に霧状原料溶液3が付
着して濃縮し、これが外部から熱を受けて固形物16と
なって原料溶液1中に落下し沈澱して発振子17上に堆
積して超音波発振子17の機能を低下させ、その結果霧
状原料溶液3の発生量が低減して霧状原料溶液3による
火炎温度の低下が少なくなり、この高温のために酸化物
超電導体前駆物質膜の組成が適正値を外れる為に起きる
ことを突きとめ、更に研究を重ねた結果、使用する原料
溶液中に酸を添加してやることにより前述の如き現象が
緩和できることを見出し本発明を達成するに到ったもの
である。
[Means and effects for solving the problem] In view of the above situation, the present invention has conducted extensive research and has determined that the causes of deterioration over time of the properties of the oxide superconductor precursor film produced by the spray heating reaction method are as follows. As shown in Fig. 2, the atomized raw material solution 3 adheres to the inner wall 15 near the outlet of the atomized raw material solution 3 of the ultrasonic atomizer 2 and is concentrated, which receives heat from the outside and becomes a solid substance 16, and becomes the raw material solution. 1, the atomized raw material solution 3 is deposited on the oscillator 17, and the function of the ultrasonic oscillator 17 is deteriorated. After further research, we discovered that this was caused by the composition of the oxide superconductor precursor film deviating from the appropriate value due to this high temperature. The present invention has been achieved by discovering that the above-mentioned phenomenon can be alleviated by using the above method.

即ち本発明は、酸化物超電導体となし得る原料物質を所
定量溶媒に溶解し、この原料溶液を超音波噴霧器内に入
れて霧状化し、この霧状原料溶液をキャリアガスにのせ
てバーナを介して火炎中に連続供給して上記霧状原料溶
液を化学反応せしめ、生成した酸化物超電導体前駆物質
を火炎前方に配置した基体上に付着せしめる酸化物超電
導体前駆物質膜の製造方法において、使用する原料溶液
に酸が添加されていることを特徴とする酸化物超電導体
前駆物質膜の製造方法である。
That is, in the present invention, a predetermined amount of a raw material that can be made into an oxide superconductor is dissolved in a solvent, this raw material solution is put into an ultrasonic atomizer to atomize it, and this atomized raw material solution is placed on a carrier gas and a burner is turned on. In a method for producing an oxide superconductor precursor film, the atomized raw material solution is chemically reacted by being continuously supplied into a flame through a flame, and the produced oxide superconductor precursor is deposited on a substrate placed in front of the flame, This is a method for producing an oxide superconductor precursor film, characterized in that an acid is added to the raw material solution used.

本発明方法は、超音波噴霧器の霧状原料溶液出口近傍壁
に霧状原料溶液が付着し、濃縮固化して固形物となって
原料溶液中に落下して超音波発振子上に堆積し発振子の
機能を低下させることに対し、原料溶液に酸を添加する
ことにより、上記固形物は原料溶液中で溶解して、上記
発振子を正常に作動させ、霧状原料溶液の発生量の低減
を防止できるものである。
In the method of the present invention, the atomized raw material solution adheres to the wall near the atomized raw material solution outlet of the ultrasonic atomizer, becomes concentrated and solidified, becomes a solid, falls into the raw material solution, and deposits on the ultrasonic oscillator, causing oscillation. By adding acid to the raw material solution, the above-mentioned solids are dissolved in the raw material solution, allowing the above-mentioned oscillator to operate normally, and reducing the amount of atomized raw material solution generated. can be prevented.

上記において、固形物は、主に酸化物超電導体の構成元
素からなる金属化合物で、酢酸のような弱酸の溶液にも
容易に溶解するものであり、酸の添加量も原料溶液の酸
濃度が固形物が比較的短時間に溶解する濃度以上であれ
ば特に限定するものではない。しかしながら酸の濃度は
、3容量%未満では、固形物の溶解に時間がかかる為実
用的でなく、又15容量%を超えると固形物の溶解能力
が飽和してしまうので、3〜15容量%の範囲にするの
が好ましいものである。
In the above, the solid substance is a metal compound mainly composed of constituent elements of the oxide superconductor, and is easily dissolved in a solution of a weak acid such as acetic acid, and the amount of acid added depends on the acid concentration of the raw material solution. There is no particular limitation as long as the concentration is higher than that at which solids can be dissolved in a relatively short period of time. However, if the concentration of acid is less than 3% by volume, it is not practical because it takes time to dissolve solids, and if it exceeds 15% by volume, the ability to dissolve solids will be saturated, so 3 to 15% by volume. It is preferable to set it within the range of .

本発明方法において、原料溶液に添加する酸としては、
酸化物超電導体となし得る原料物質が酢酸塩からなる場
合は酢酸、又硝酸塩からなる場合は硝酸というように原
料物質と同じ酸を用いるのが、原料溶液への固形物の溶
解が迅速になされ、また前駆物質中に有害物質が混入す
るようなことがなく好ましいものである。
In the method of the present invention, the acid added to the raw material solution is
The use of the same acid as the raw material, such as acetic acid when the raw material that can be made into an oxide superconductor consists of acetate, or nitric acid when it consists of nitrate, allows the solids to quickly dissolve in the raw material solution. Moreover, it is preferable because no harmful substances are mixed into the precursor.

尚、原料溶液に添加する酸に塩酸や弗酸を用いた場合は
、得られる酸化物超電導体前駆物質中に(lやF等のハ
ロゲン元素が混入して超電導特性を低下させるので、塩
酸や弗酸の使用は避けた方がよい。
In addition, when hydrochloric acid or hydrofluoric acid is used as the acid added to the raw material solution, halogen elements such as It is best to avoid using hydrofluoric acid.

本発明方法において、酸は、溶媒に予め添加しておいて
も、又溶媒に原料物質を溶解した後添加してもよい。
In the method of the present invention, the acid may be added to the solvent in advance, or may be added after the raw material is dissolved in the solvent.

本発明方法において、基体には原料物質と加熱接触して
実質的に有害とならない程度に非反応性であり、且つ耐
熱性に富む材料、例えばAg、Au、Pt等の貴金属又
はM g O,Z r Ox 、B aA44.O,、
BaZrOs等のセラミックス或いはAg等の金属、M
gO等のセラミックスを被覆したFe、Ni、Coやこ
れらの合金例えばステンレススチール(SUS)、Fe
−Ni系、NiCu系、Ni−Cr−Fe系等の合金、
又はAlzos、ガラス、AIN、BN、S i C,
C等の材料が用いられる。
In the method of the present invention, the substrate is made of a material that is non-reactive to the extent that heating contact with the raw material does not cause substantial harm and is highly heat resistant, such as a noble metal such as Ag, Au, or Pt, or a material such as M g O, Z r Ox , B aA44. O,,
Ceramics such as BaZrOs or metals such as Ag, M
Fe, Ni, Co and alloys of these coated with ceramics such as gO, such as stainless steel (SUS), Fe
- Alloys such as Ni-based, NiCu-based, Ni-Cr-Fe-based, etc.
Or Alzos, Glass, AIN, BN, S i C,
A material such as C is used.

本発明方法において、酸化物超電導体となし得る原料物
質としては、例えばY−Ba−Cu−0系酸化物超電導
体について示すと、上記酸化物超電導体の各々の構成元
素の酢酸塩や硝酸塩等をY:Ba:Cuの原子比で1=
2:3になるように配合した任意の物質が用いられる。
In the method of the present invention, raw materials that can be used as oxide superconductors include, for example, for Y-Ba-Cu-0-based oxide superconductors, acetates and nitrates of each constituent element of the oxide superconductor. The atomic ratio of Y:Ba:Cu is 1=
Any material in a 2:3 ratio may be used.

父上記原料物質を溶液となし霧状化して火炎により加熱
して得られる酸化物超電導体前駆物質とは、これを酸素
含有雰囲気中で所定の加熱処理を施すことにより、02
の補給並びに結晶構造の調整がなされて酸化物超電導体
となるものである。
The oxide superconductor precursor obtained by turning the above raw material into a solution, atomizing it, and heating it with a flame can be obtained by subjecting it to a predetermined heat treatment in an oxygen-containing atmosphere.
It becomes an oxide superconductor through replenishment and adjustment of the crystal structure.

〔実施例〕〔Example〕

以下に本発明方法を実施例により第1図に示した装置を
参照して詳細に説明する。
The method of the present invention will be explained in detail below by way of example with reference to the apparatus shown in FIG.

実施例1 出発原料にY、、Ba及びCuの酢酸塩を用いて各々の
酢酸塩をY:Ba:Cuがi:2:3になるように秤量
し混合して、これを水にY、BazCu3の組成で0.
04モル/!溶解してこれを原料水となし、更にこれに
種々量の酢酸を添加して原料溶液1となした。次いでこ
の原料溶液1を超音波噴霧器2に入れて霧状原料溶液3
となし、これを流速0.60I!、/minのN2ガス
流にのせて噴霧火炎反応装置4内のバーナ5に供給し、
上記バーナ5により形成される酸水素火炎6にて所定温
度に加熱して酸化物超電導体前駆物質に化学反応せしめ
、更に上記前駆物質をアンコイラ13から供給され火炎
6前方を10mm/minの速度で走行する図示しない
加熱炉にて900°Cに加熱された基体7上に厚さ10
0戸の膜状に付着させて酸化物超電導体前駆物質膜8を
形成した。上記において基体7には0.2 mm’ X
 5 mm’のptテープを用いた。
Example 1 Using acetates of Y, Ba, and Cu as starting materials, each acetate was weighed and mixed so that Y:Ba:Cu was i:2:3, and this was added to water with Y, Ba, and Cu acetates. The composition of BazCu3 is 0.
04 mol/! This was dissolved and used as raw material water, and various amounts of acetic acid were added to this to prepare raw material solution 1. Next, this raw material solution 1 is put into an ultrasonic atomizer 2 to form an atomized raw material solution 3.
Assuming this, the flow rate is 0.60I! , /min to the burner 5 in the spray flame reactor 4,
The oxyhydrogen flame 6 formed by the burner 5 heats the oxide superconductor precursor to a predetermined temperature to cause a chemical reaction, and the precursor is further supplied from the uncoiler 13 and moves in front of the flame 6 at a speed of 10 mm/min. A film with a thickness of 10°C is placed on the substrate 7 heated to 900°C in a moving heating furnace (not shown).
The oxide superconductor precursor film 8 was formed by depositing it in the form of a single film. In the above, the base 7 has a diameter of 0.2 mm'
5 mm' PT tape was used.

而して上記基体7上に形成した酸化物超電導体前駆物質
膜8を400°Cに加熱した0□気流雰囲気の加熱反応
炉9にて酸化物超電導導体10に反応せしめた。
The oxide superconductor precursor film 8 formed on the substrate 7 was reacted with the oxide superconductor 10 in a heating reactor 9 heated to 400°C and in a 0□ air flow atmosphere.

次いで」二記酸化物超電導導体10に溶融樹脂槽11並
びに焼付炉12に通して樹脂を被覆して防湿処理を施し
たのち、コイラー14に巻取った。
Next, the oxide superconducting conductor 10 was passed through a molten resin tank 11 and a baking furnace 12 to be coated with a resin for moisture-proofing treatment, and then wound around a coiler 14.

このようにして連続3時間操業してY系酸化物超電導導
体を1.8m製造した。
In this way, the operation was continued for 3 hours to produce 1.8 m of Y-based oxide superconducting conductor.

実施例2 出発原料に、Bi、Sr、Ca、Cuの硝酸塩を用い、
各々Bi:Sr:Ca:Cuが原子比で2:2:1;2
.05になるように秤量して混合し、この混合体を2%
硝酸水にB1□S r 2 Ca Cu2、。5の組成
で0.01モル/℃溶解し、更にこれに種々量の硝酸を
添加した原料溶液を用いた他は実施例1と同様の方法に
よりBi系酸化物超電導導体を製造した。
Example 2 Using nitrates of Bi, Sr, Ca, and Cu as starting materials,
The atomic ratio of Bi:Sr:Ca:Cu is 2:2:1; 2, respectively.
.. Weigh and mix so that the amount is 0.05, and add this mixture to 2%
B1□S r 2 Ca Cu2 in nitric acid water. A Bi-based oxide superconducting conductor was produced in the same manner as in Example 1, except that a raw material solution having the composition No. 5 dissolved at 0.01 mol/° C. and various amounts of nitric acid added thereto was used.

比較例1 実施例1において、原料水に酢酸を添加せずに原料溶液
として用いた他は実施例1と同様の方法によりY系酸化
物超電導導体を製造した。
Comparative Example 1 A Y-based oxide superconducting conductor was produced in the same manner as in Example 1 except that acetic acid was not added to the raw water and used as a raw material solution.

比較例2 実施例2において、混合体を水に溶解し、そのまま硝酸
を添加せずに原料溶液として用いた他は、実施例2と同
様の方法によりBi系酸化物超電導導体を製造した。
Comparative Example 2 A Bi-based oxide superconducting conductor was produced in the same manner as in Example 2, except that the mixture was dissolved in water and used as a raw material solution without adding nitric acid.

斯くの如くして得られた各々の酸化物超電導導体につい
て、長手方向に3ケ所サンプリングして、臨界温度(T
、)及び臨界電流密度(J、)を測定した。結果は主な
条件等を併記して第1表に示した。
For each oxide superconducting conductor obtained in this way, three locations were sampled in the longitudinal direction, and the critical temperature (T
, ) and critical current density (J, ) were measured. The results are shown in Table 1 along with the main conditions.

第1表より明らかなように本発明方法品(実施例1.2
)は全長に亘りTc、Jcが高い値を示した。
As is clear from Table 1, the method of the present invention (Example 1.2
) showed high values of Tc and Jc over the entire length.

これに対し比較方法品(比較例1,2)は経時的にTc
、Jcが低下した。これは超音波噴霧器内の原料溶液に
固形物めく次第に沈澱しそれにつれて振動子の機能が低
下して霧状原料溶液の発生量が減少し、その結果酸水素
火炎により上記霧状原料溶液が所定温度以上に加熱され
、得られた酸化物超電導体前駆物質の組成が適正値を外
れた為である。
In contrast, the comparative method products (Comparative Examples 1 and 2) showed Tc over time.
, Jc decreased. This solid substance gradually settles in the raw material solution in the ultrasonic atomizer, and as a result, the function of the vibrator deteriorates and the amount of atomized raw material solution generated decreases.As a result, the oxyhydrogen flame causes the atomized raw material solution to be This is because the composition of the obtained oxide superconductor precursor material deviated from the appropriate value due to heating above the temperature.

上記実施例では、Y系又はBi系酸化物超電導体につい
て説明したが、本発明方法はLa−3r−Cu−0系や
Tj2−Ba−Ca−Cu−0系等の他の酸化物超電導
体にも適用し得るものである。
In the above embodiments, Y-based or Bi-based oxide superconductors were explained, but the method of the present invention can be applied to other oxide superconductors such as La-3r-Cu-0-based and Tj2-Ba-Ca-Cu-0-based. It can also be applied to

又原料溶液に添加する酸も酢酸や硝酸の他修酸や乳酸な
ど出発原料組成又は生成する固形物の組成に応じて任意
に選択できるものである。
Further, the acid added to the raw material solution can be arbitrarily selected from acetic acid, nitric acid, oxalic acid, lactic acid, etc. depending on the composition of the starting raw material or the composition of the solid product to be produced.

〔効果〕〔effect〕

以上述べたように本発明方法によれば、全長に亘り高品
質の酸化物超電導体前駆物質膜が得られ、この前駆物質
膜は酸素含有雰囲気中で所定の加熱処理を施すことによ
り、Tc、Jc等の超電導特性に優れた酸化物超電導導
体となし得るもので、工業上顕著な効果を奏するもので
ある。
As described above, according to the method of the present invention, a high-quality oxide superconductor precursor film can be obtained over the entire length, and this precursor film can be heated in an oxygen-containing atmosphere to form Tc, Tc, It can be made into an oxide superconductor having excellent superconducting properties such as Jc, and has a remarkable industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する装置の一例を示す要部説
明図、第2図は霧状原料溶液の発生量が低減する原因の
説明図である。 1・・・原料溶液、 2・・・超音波噴霧器、 3・・
・霧状原料溶液、 4・・・噴霧加熱反応装置、 5・
・・バーナ、 6・・・酸水素火炎、 7・・・基体、
 8・・・酸化物超電導体前駆物質膜、 9・・・加熱
反応炉、10・・・酸化物超電導導体、  17・・・
超音波発振子。
FIG. 1 is an explanatory view of essential parts showing an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is an explanatory view of the cause of the reduction in the amount of atomized raw material solution generated. 1... Raw material solution, 2... Ultrasonic atomizer, 3...
- Atomized raw material solution, 4... Spray heating reaction device, 5.
... Burner, 6... Oxyhydrogen flame, 7... Substrate,
8... Oxide superconductor precursor film, 9... Heating reactor, 10... Oxide superconductor conductor, 17...
Ultrasonic oscillator.

Claims (1)

【特許請求の範囲】[Claims] 酸化物超電導体となし得る原料物質を所定量溶媒に溶解
し、この原料溶液を超音波噴霧器内に入れて霧状化し、
この霧状原料溶液をキャリアガスにのせてバーナを介し
て火炎中に連続供給して上記霧状原料溶液を化学反応せ
しめ、生成した酸化物超電導体前駆物質を火炎前方に配
置した基体上に付着せしめる酸化物超電導体前駆物質膜
の製造方法において、使用する原料溶液に酸が添加され
ていることを特徴とする酸化物超電導体前駆物質膜の製
造方法。
A predetermined amount of a raw material that can be made into an oxide superconductor is dissolved in a solvent, and this raw material solution is placed in an ultrasonic atomizer to atomize it,
This atomized raw material solution is placed on a carrier gas and continuously fed into a flame via a burner to cause a chemical reaction in the atomized raw material solution, and the generated oxide superconductor precursor is deposited on a substrate placed in front of the flame. A method for producing an oxide superconductor precursor film, characterized in that an acid is added to the raw material solution used.
JP1029143A 1989-02-08 1989-02-08 Production of oxide superconductor precursor film Pending JPH02208208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1029143A JPH02208208A (en) 1989-02-08 1989-02-08 Production of oxide superconductor precursor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1029143A JPH02208208A (en) 1989-02-08 1989-02-08 Production of oxide superconductor precursor film

Publications (1)

Publication Number Publication Date
JPH02208208A true JPH02208208A (en) 1990-08-17

Family

ID=12268054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1029143A Pending JPH02208208A (en) 1989-02-08 1989-02-08 Production of oxide superconductor precursor film

Country Status (1)

Country Link
JP (1) JPH02208208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0681989A1 (en) * 1994-05-13 1995-11-15 MERCK PATENT GmbH Process for the preparation of multi-element metal oxide powders

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0681989A1 (en) * 1994-05-13 1995-11-15 MERCK PATENT GmbH Process for the preparation of multi-element metal oxide powders
AU696353B2 (en) * 1994-05-13 1998-09-10 Merck Patent Gesellschaft Mit Beschrankter Haftung Process for the preparation of multi-element metal oxide powders

Similar Documents

Publication Publication Date Title
US5034372A (en) Plasma based method for production of superconductive oxide layers
US5108983A (en) Method for the rapid deposition with low vapor pressure reactants by chemical vapor deposition
EP0453107A1 (en) Chemical deposition methods using supercritical fluid solutions
JPH0280303A (en) Process and apparatus for forming thin superconducting film
JPH02208208A (en) Production of oxide superconductor precursor film
US5140003A (en) Method for manufacturing layers from an oxide-ceramic superconductor material on a substrate using a cvd-process
JPH0597762A (en) Volatile alkaline earth metal complex and its application
JPH02263781A (en) Coating of ceramic with metal and apparatus for performing method thereof
JP2635677B2 (en) Method for producing oxide superconductor precursor
US5077267A (en) Process for making composite high temperature superconductor copper wires
JP2856859B2 (en) Method for producing oxide superconductor by metal organic chemical vapor deposition
JPS63310707A (en) Production of oxide superconducting powder
JPH03109207A (en) Production of oxide superconducting powder occluding oxygen or gaseous ozone
JPH025314A (en) Manufacture of oxide superconductive wire rod
JPH01321031A (en) Manufacture of oxide superconducting wire
JPH01298168A (en) Device for forming metallic compound
JP3342785B2 (en) Apparatus and method for producing oxide superconducting conductor
CH540855A (en) Cubic zirconium dioxide stabilsn - with a metal oxide for use as solid electrolyte in fuel cells
JPH01192709A (en) Production of superconductin oxide ceramic powder and sintered form therefrom
JPH01224208A (en) Method for synthesizing oxide superconductor precursor
JPH01320223A (en) Synthesizing method for oxide superconductor
JPH0477302A (en) Production of superconducting layer
JPH03265507A (en) Production of superconductor layer
Guidi et al. BPSCCO–Ag powders by a wet method and a low-carbon content for tape preparation
JPH03183619A (en) Production of oxide superconductor