JP2635677B2 - Method for producing oxide superconductor precursor - Google Patents

Method for producing oxide superconductor precursor

Info

Publication number
JP2635677B2
JP2635677B2 JP63108057A JP10805788A JP2635677B2 JP 2635677 B2 JP2635677 B2 JP 2635677B2 JP 63108057 A JP63108057 A JP 63108057A JP 10805788 A JP10805788 A JP 10805788A JP 2635677 B2 JP2635677 B2 JP 2635677B2
Authority
JP
Japan
Prior art keywords
precursor
flame
gas
oxide superconductor
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63108057A
Other languages
Japanese (ja)
Other versions
JPH01278416A (en
Inventor
誠 古口
美一 松田
栄司 木下
和人 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63108057A priority Critical patent/JP2635677B2/en
Publication of JPH01278416A publication Critical patent/JPH01278416A/en
Application granted granted Critical
Publication of JP2635677B2 publication Critical patent/JP2635677B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Y−Ba−Cu−O系酸化物超電導体前駆物質
の製造方法に関する。
The present invention relates to a method for producing a Y-Ba-Cu-O-based oxide superconductor precursor.

〔従来の技術とその課題〕 近年、Y1Ba2Cu3O7-δ(δ≒0.2〜0.3)等の希土類元
素、アルカリ土金属、銅及び酸素からなる酸化物超電導
体が見出されている。これらの酸化物超電導体は、液体
N2温度以上で超電導体となるため従来の液体He温度で超
電導を示す金属超電導体に較べて格段に経済的であり、
各分野での利用が検討されている。
[Prior art and its problems] In recent years, oxide superconductors composed of rare earth elements such as Y 1 Ba 2 Cu 3 O 7- δ (δ ≒ 0.2 to 0.3), alkaline earth metals, copper and oxygen have been discovered. I have. These oxide superconductors are liquid
A much economical compared to metal superconductors exhibiting superconductivity at conventional liquid He temperature for a superconductor with N 2 temperature or higher
Use in various fields is being considered.

ところで上記の酸化物超電導体は脆いため金属材料の
ように塑性加工ができず、これらを線材等に加工するに
は、主に粉末冶金法が用いられ、例えばY2O3、BaCO3、C
uOの原料粉末を仮焼成し、これを粉砕分級して仮焼粉と
なし、この粉末を基体上に被覆成形したり、又はAg管等
に充填して伸延加工し、次いでこれをO2含有雰囲気中で
加熱焼結して酸化物超電導成形体とする方法がとられて
いる。
By the way, the above-mentioned oxide superconductors are brittle and cannot be plastically processed like metal materials.To process them into wires etc., powder metallurgy is mainly used, for example, Y 2 O 3 , BaCO 3 , C
calcined raw material powder of uO, which pulverized and classified to calcined powder and without, or overmolding the powder onto a substrate, or distraction processed and filled into Ag tube or the like, which is then O 2 containing A method of heating and sintering in an atmosphere to obtain an oxide superconducting molded body has been adopted.

しかしながら上記の仮焼粉製造において、仮焼成体を
粉砕分級するのに長時間を要し、又得られる仮焼粉は粒
径にバラツキが大きく、更にはボールミル等の粉砕機か
ら不純物が混入する等の種々の問題があった。
However, in the above-mentioned calcined powder production, it takes a long time to pulverize and classify the calcined body, and the calcined powder obtained has a large variation in particle size, and further, impurities are mixed in from a grinder such as a ball mill. And so on.

このようなことから、酸化物超電導体の原料物質を溶
媒に溶かしこの溶液を霧状化して火炎中に供給し加熱反
応せしめて酸化物超電導体の前駆物質を製造する噴霧加
熱反応法が提案されている。
For this reason, a spray heating reaction method has been proposed in which a raw material of an oxide superconductor is dissolved in a solvent, and this solution is atomized, supplied to a flame, and heated and reacted to produce a precursor of the oxide superconductor. ing.

この方法は、反応時間が非常に短く且つ容器や治具と
の接触が殆とないため純度の高い前駆物質が得られる等
の利点がある。
This method has the advantage that the reaction time is very short and there is almost no contact with the container or jig, so that a precursor of high purity can be obtained.

ところでY−Ba−Cu−O系の場合、上記噴霧加熱反応
法においてY、Ba、Cuの各元素は霧状体を構成する個々
の液滴内でそれぞれ1:2:3の原子比で溶解しており、上
記のY、Ba、Cuの元素は火炎により加熱され液滴内もし
くは雰囲気中のO2をとり込んで反応してY1Ba2Cu3OXの化
学式で示される酸化物超電導体前駆物質となるものであ
る。
By the way, in the case of the Y-Ba-Cu-O system, in the above-mentioned spray heating reaction method, each element of Y, Ba, and Cu is dissolved at an atomic ratio of 1: 2: 3 in each droplet constituting the atomized body. The elements Y, Ba, and Cu are heated by a flame and take in O 2 in the droplet or in the atmosphere to react and react with the oxide superconductor represented by the chemical formula of Y 1 Ba 2 Cu 3 O X It becomes a body precursor.

上記酸化物超電導体前駆物質は、酸素含有雰囲気中で
所定の加熱処理を施され、Y1Ba2Cu3O7-δ(δ=0.2〜0.
3)の化学式で示される酸化物超電導体となるものであ
るが、構成元素のY、Ba、Cuの原子比がそれぞれ1:2:3
の比率の時に超電導特性が最もよく発現されるものであ
る。
The above-mentioned oxide superconductor precursor is subjected to a predetermined heat treatment in an oxygen-containing atmosphere, and Y 1 Ba 2 Cu 3 O 7- δ (δ = 0.2 to 0.
3) The oxide superconductor represented by the chemical formula of 3) has an atomic ratio of Y, Ba, and Cu of the constituent elements of 1: 2: 3, respectively.
The superconducting characteristics are best exhibited when the ratio is.

しかるに噴霧加熱反応法により生成する酸化物超電導
体前駆物質は往々にしてY等の希土類元素が欠乏もしく
は過剰な複合酸化物となり、このような前駆物質を酸素
含有雰囲気中で加熱処理しても高い超電導特性が得られ
ないという問題があった。
However, the oxide superconductor precursor produced by the spray heating reaction method often becomes a complex oxide deficient or excess of rare earth elements such as Y, and such a precursor is high even when heat-treated in an oxygen-containing atmosphere. There is a problem that superconductivity cannot be obtained.

〔課題を解決するための手段及び作用〕[Means and actions for solving the problem]

本発明はかかる状況に鑑み鋭意研究を行った結果、噴
霧加熱反応方法によるY−Ba−Cu−O系酸化物超電導体
前駆物質の製造において火炎を発生するH2ガスとO2ガス
の供給比率により、生成する前駆物質中のYの量が大き
く影響されることを突きとめこの点について更に研究を
行った結果、本発明方法を達成し得たものである。
The present invention has conducted intensive studies in view of such circumstances, and has found that the supply ratio of H 2 gas and O 2 gas that generate a flame in the production of a Y-Ba-Cu-O-based oxide superconductor precursor by a spray heating reaction method. As a result, the present inventors have found that the amount of Y in the precursor to be produced is greatly affected by the above-mentioned method, and further studied this point. As a result, the method of the present invention can be achieved.

即ち本発明はY、Ba及びCu等の元素を各々含有する化
合物をY:Ba:Cuが1:2:3の割合で秤量し、それぞれ溶媒に
溶解し、この溶液を霧状化して火炎中に供給し、この霧
状体を上記火炎により加熱してY1Ba2Cu3OXの化学式で示
される酸化物超電導体の前駆物質を製造する方法におい
て、霧状体の加熱の為の火炎発生用の水素ガスと酸素ガ
スの供給比率を水素ガス1容量に対し酸素ガス2.5〜3.5
容量とすることを特徴とする酸化物超電導体前駆物質の
製造方法である。
That is, the present invention weighs a compound containing an element such as Y, Ba, and Cu in a ratio of 1: 2: 3 of Y: Ba: Cu, respectively, dissolves each in a solvent, atomizes the solution, and sprays the solution in a flame. In the method of producing a precursor of the oxide superconductor represented by the chemical formula of Y 1 Ba 2 Cu 3 O X by heating the atomized material by the flame, the flame for heating the atomized material The supply ratio of hydrogen gas and oxygen gas for generation is 2.5 to 3.5 oxygen gas per 1 volume of hydrogen gas.
A method for producing an oxide superconductor precursor characterized by having a capacity.

本発明においてY1Ba2Cu3O7-δの化学式で示される酸
化物超電導体の構成元素を各々含有する化合物として
は、例えばY、Ba、Cuのそれぞれ酢酸塩、硝酸塩、ハロ
ゲン化物或いは有機金属化合物等である。
In the present invention, examples of the compound containing each of the constituent elements of the oxide superconductor represented by the chemical formula of Y 1 Ba 2 Cu 3 O 7- δ include, for example, acetate, nitrate, halide, and organic compound of Y, Ba, and Cu, respectively. Metal compounds and the like.

本発明において上記化合物を霧状化する方法として
は、例えば上記化合物をそれぞれ水等の溶媒に溶解し、
これを超音波ネプライザ等により霧状化する方法が用い
られている。
As a method of atomizing the compound in the present invention, for example, each of the compounds is dissolved in a solvent such as water,
A method of atomizing this with an ultrasonic nebulizer or the like is used.

上記の霧状体を火炎に連続供給する方法としては、こ
れを空気、O2、N2、Ar等のキャリアガスにのせて搬送す
るのが供給量のコントロールが容易にできて好ましいも
のである。
As a method for continuously supplying the above-mentioned mist to the flame, it is preferable to transport the mist on a carrier gas such as air, O 2 , N 2 , Ar because the supply amount can be easily controlled. .

本発明において火炎の燃料にはH2ガスが又支燃ガスに
はO2ガスが用いられ、両者の供給量をO2/H2の容量比で
2.5〜3.5に限定した理由は、上記範囲外では生成する前
駆物質中のY量が所定量含有されなくなる為である。即
ち第2図に示したように前駆物質中に含有されるY、B
a、Cu、原子のうちBa、Cuの原子比は、O2/H2の容量比に
よって全く変化しないが、Yの原子比は大きく変化して
おり、O2/H2が2.5〜3.5の範囲内においてYの原子比は
0.9〜1.1とほぼ1に近い値となるものである。
In the present invention, H 2 gas is used as the fuel for the flame and O 2 gas is used as the supporting gas, and the supply amounts of both are determined by the O 2 / H 2 volume ratio.
The reason for limiting the amount to 2.5 to 3.5 is that the amount of Y in the produced precursor is not contained in a predetermined amount outside the above range. That is, as shown in FIG. 2, Y, B contained in the precursor material
a, Cu, the atomic ratio of Ba and Cu among the atoms does not change at all by the capacity ratio of O 2 / H 2 , but the atomic ratio of Y greatly changes, and O 2 / H 2 is 2.5 to 3.5. Within the range, the atomic ratio of Y is
It is 0.9 to 1.1, which is almost a value close to 1.

上記においてYの原子比がO2/H2の容量比によって大
きく変化する理由は明確には把握していないが、火炎温
度や火炎中の過剰酸素量が前駆物質中への供給量に影響
する為と考えられる。
Although the reason why the atomic ratio of Y greatly changes depending on the capacity ratio of O 2 / H 2 in the above is not clearly understood, the flame temperature and the excess oxygen amount in the flame affect the supply amount to the precursor. It is thought that it is.

本発明において火炎により加熱されて生成するY−Ba
−Cu−O系超電導体前駆物質は、Y1Ba2Cu3OXの組成から
なる複数酸化物でこの複合酸化物は、酸素含有雰囲気中
で850〜1,000℃に加熱しこれを所定速度で徐冷すること
によりY−Ba−Cu−O系超電導体となすものである。
Y-Ba formed by heating with a flame in the present invention
-Cu-O superconductor precursor, the composite oxide of a plurality oxides having the composition of Y 1 Ba 2 Cu 3 O X is in an oxygen-containing atmosphere is heated to 850~1,000 ° C. this at a predetermined speed By gradually cooling, it forms a Y-Ba-Cu-O-based superconductor.

本発明において火炎温度は、H2ガス及びO2ガスの供給
量により設定されるものであるが、原料である霧状体の
供給量によって変動するので常時計測して制御すること
が好ましい。
In the present invention, the flame temperature is set based on the supply amounts of the H 2 gas and the O 2 gas. However, it is preferable that the flame temperature be constantly measured and controlled because it varies depending on the supply amount of the mist as the raw material.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to Examples.

実施例1 第1図は本発明方法を実施するのに用いた噴霧加熱反
応装置の一例を示す説明図である。
Example 1 FIG. 1 is an explanatory view showing one example of a spray heating reaction apparatus used for carrying out the method of the present invention.

噴霧加熱反応装置は原料化合物が溶解した溶液1を霧
状化する超音波ネプライザ2、上記原料霧状体3をバー
ナ4に搬送する為のキャリアガスパイプ5及びバーナ4
により加熱され反応した酸化物超電導体の前駆物質6を
付着させる厚さ0.5mmのYSZ(Y安定化ジルコニア)製基
体7から構成されている。
The spray heating reactor includes an ultrasonic nebulizer 2 for atomizing a solution 1 in which a raw material compound is dissolved, a carrier gas pipe 5 for conveying the raw material mist 3 to a burner 4, and a burner 4.
A YSZ (Y-stabilized zirconia) substrate 7 having a thickness of 0.5 mm to which the precursor 6 of the oxide superconductor which has been heated and reacted by the above method is attached.

本実施例においてはY−Ba−Cu−O系超電導体の構成
元素を含有する化合物としてY(CH3COO)・4H2O、Ba
(CH3COO)・H2O及びCu(CH3COO)・H2Oを用い、各
々の化合物をY:Ba:Cuがモル比で1:2:3になるように秤量
し、これを水にY1Ba2Cu3の組成で0.04モル/の濃度で
溶解し、この溶液1を超音波ネプライザ2内の容器に入
れ、これに超音波振動を付与して溶液1を霧状に浮遊せ
しめ、この原料霧状体3をキャリアガスパイプ5にN2
スを0.6/minの流量で流してバーナ4に搬送した。
In the present embodiment, Y (CH 3 COO) 3 .4H 2 O and Ba are used as compounds containing the constituent elements of the Y—Ba—Cu—O-based superconductor.
Using (CH 3 COO) 2 .H 2 O and Cu (CH 3 COO) 2 .H 2 O, weigh each compound so that the molar ratio of Y: Ba: Cu is 1: 2: 3, This is dissolved in water with a composition of Y 1 Ba 2 Cu 3 at a concentration of 0.04 mol /, and this solution 1 is placed in a container in an ultrasonic nebulizer 2, and ultrasonic vibration is applied thereto to atomize the solution 1. The raw material mist 3 was conveyed to the burner 4 by flowing N 2 gas through the carrier gas pipe 5 at a flow rate of 0.6 / min.

このバーナ4は4重管構造からなり中心管の第1ノズ
ルから原料の霧状体5を含むN2ガス、その外周の第2ノ
ズルから燃料となるH2ガス、更にその外周の第3ノズル
からバーナ先端を火炎熱から保護するためのシール用Ar
ガス、最外層の第4ノズルから支燃用のO2ガスを噴出さ
せるようにしたもので、上記第2ノズルから噴出するH2
ガスと第4ノズルから噴出する支燃用O2ガスにより火炎
9を発生せしめ、この火炎9中で上記原料霧状体3を加
熱してY−Ba−Cu−O系超電導体前駆物質を0.15g/min
の速度で生成せしめ、生成したY−Ba−Cu−O系超電導
体前駆物質6をバーナ4の前方に配置した矢印方向に移
動する基体7上に0.1mm厚さの膜体8として付着させ
た。
The burner 4 has a quadruple-tube structure. The first nozzle of the central tube has N 2 gas containing the mist 5 of the raw material, the second nozzle on the outer periphery thereof has H 2 gas as fuel, and the third nozzle on the outer periphery thereof. Ar for sealing to protect the burner tip from flame heat
Gas, which has as jetting O 2 gas combustion assisting from the fourth nozzle of the outermost layer, H 2 jetted from the second nozzle
A flame 9 is generated by the gas and the O 2 gas for combustion supporting ejected from the fourth nozzle, and the raw material mist 3 is heated in the flame 9 to reduce the Y-Ba-Cu-O-based superconductor precursor to 0.15%. g / min
The Y-Ba-Cu-O-based superconductor precursor 6 was deposited as a 0.1 mm thick film body 8 on a substrate 7 moving in the direction of the arrow disposed in front of the burner 4. .

上記において、火炎9を発生するH2ガス及びO2ガスは
供給比を種々変えてY−Ba−Cu−O系超電導体の前駆物
質6を生成した。
In the above, the precursors 6 of the Y—Ba—Cu—O-based superconductor were generated by changing the supply ratio of the H 2 gas and the O 2 gas that generate the flame 9.

斯くの如くして得た各々のY−Ba−Cu−O系超電導体
の前駆物質を酸素気流中で950℃ 20H加熱したのち950
℃から2℃/minの速度で徐冷して超電導体となし、Y
量、Tc及びJcを測定した。
Each precursor of the Y-Ba-Cu-O-based superconductor thus obtained was heated at 950 ° C for 20 hours in an oxygen stream, and then heated at 950 ° C.
Slowly cooled at a rate of 2 ° C / min from ℃ to make a superconductor, Y
The amounts, Tc and Jc were measured.

結果は主な製造条件を併記して第1表に示した。 The results are shown in Table 1 together with the main production conditions.

第1表より明らかなように本発明方法によるもの(1
〜3)は、Yの原子比が0.95〜1.05の範囲内にあって
Tc、Jcとも高い値を示した。これに対し比較方法による
もの(4,5)はYの原子比が1.0から大きくずれてTc、Jc
が低い値となった。
As is clear from Table 1, the method of the present invention (1
~ 3) means that the atomic ratio of Y is in the range of 0.95 to 1.05
Both T c and J c showed high values. On the other hand, according to the comparison method (4,5), the atomic ratio of Y greatly deviates from 1.0 and T c , J c
Was low.

上記実施例では基体上に付着したY−Ba−Cu−O系超
電導体前駆物質をそのまま加熱処理して超電導体となし
たが、付着体を基体から掻き落としてこれを粉砕分級し
圧粉成形して加熱処理を施しても同様の効果が得られ
る。
In the above embodiment, the Y-Ba-Cu-O-based superconductor precursor adhered on the substrate was heat-treated as it was to form a superconductor. A similar effect can be obtained by performing a heat treatment.

〔効果〕〔effect〕

以上述べたように本発明方法によれば、Yが所定量含
有されたY1Ba2Cu3OXの化学式で示されるY−Ba−Cu−O
系超電導体の前駆物質が容易に生成され、これを酸素含
有雰囲気中で所定の加熱処理を施して得られるY−Ba−
Cu−O系超電導体は、Tc、Jc等の特性に優れていて、工
業上顕著な効果を奏する。
According to the present invention the method as mentioned above, Y is represented by the chemical formula of Y 1 Ba 2 Cu 3 O X which is contained a predetermined amount Y-Ba-Cu-O
Y-Ba- obtained by subjecting a precursor of a system-based superconductor to a predetermined heat treatment in an oxygen-containing atmosphere is easily generated.
Cu-O-based superconductors, T c, and has excellent properties such as J c, exhibits the industrially remarkable effects.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法を実施するのに用いる噴霧加熱反応
装置の1例を示す説明図、第2図は火炎のO2/H2容量比
と前駆物質中のY、Ba、Cuの原子比の関係を示す図であ
る。 1……溶液、3……原料の霧状体、6……Y−Ba−Cu−
O系超電導体前駆物質。
FIG. 1 is an explanatory view showing one example of a spray heating reactor used to carry out the method of the present invention, and FIG. 2 is a diagram showing the O 2 / H 2 volume ratio of a flame and the atoms of Y, Ba, and Cu in a precursor. It is a figure showing the relation of a ratio. 1 ... solution, 3 ... mist of raw material, 6 ... Y-Ba-Cu-
O-based superconductor precursor.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−52071(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-64-52071 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Y、Ba及びCu等の元素を各々含有する化合
物をY:Ba:Cuが1:2:3の割合で秤量し、それぞれ溶媒に溶
解し、この溶液を霧状化して火炎中に供給し、この霧状
体を上記火炎により加熱してY1Ba2Cu3OXの化学式で示さ
れる酸化物超電導体の前駆物質を製造する方法におい
て、霧状体の加熱の為の火炎発生用の水素ガスと酸素ガ
スの供給比率を水素ガス1容量に対し酸素ガス2.5〜3.5
容量とすることを特徴とする酸化物超電導体前駆物質の
製造方法。
A compound containing an element such as Y, Ba and Cu is weighed in a ratio of 1: 2: 3 of Y: Ba: Cu, respectively dissolved in a solvent, and the solution is atomized to form a flame. In the method for producing a precursor of an oxide superconductor represented by the chemical formula of Y 1 Ba 2 Cu 3 O X by heating the atomized material by the above-mentioned flame and heating the atomized material, The supply ratio of hydrogen gas and oxygen gas for flame generation is 2.5 to 3.5 oxygen gas to 1 volume of hydrogen gas.
A method for producing an oxide superconductor precursor, wherein the precursor is a capacity.
JP63108057A 1988-04-30 1988-04-30 Method for producing oxide superconductor precursor Expired - Lifetime JP2635677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63108057A JP2635677B2 (en) 1988-04-30 1988-04-30 Method for producing oxide superconductor precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63108057A JP2635677B2 (en) 1988-04-30 1988-04-30 Method for producing oxide superconductor precursor

Publications (2)

Publication Number Publication Date
JPH01278416A JPH01278416A (en) 1989-11-08
JP2635677B2 true JP2635677B2 (en) 1997-07-30

Family

ID=14474819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63108057A Expired - Lifetime JP2635677B2 (en) 1988-04-30 1988-04-30 Method for producing oxide superconductor precursor

Country Status (1)

Country Link
JP (1) JP2635677B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9409660D0 (en) * 1994-05-13 1994-07-06 Merck Patent Gmbh Process for the preparation of multi-element metaloxide powders

Also Published As

Publication number Publication date
JPH01278416A (en) 1989-11-08

Similar Documents

Publication Publication Date Title
US5034372A (en) Plasma based method for production of superconductive oxide layers
US5081102A (en) Preparation of precursor superconductor metal oxide powders by spray calcination from atomized nitrate solution
CN88103399A (en) Form the method and apparatus of superconducting thin film
EP0326944B1 (en) Superconductive powder and method of making superconductive powder
JP2005170760A (en) Fine particle and method of manufacturing the same
JP2635677B2 (en) Method for producing oxide superconductor precursor
Merkle et al. Superconducting YBa2Cu3Ox particulate produced by total consumption burner processing
EP0351139B1 (en) Method of making composite ceramic and copper superconducting elements
JP3561008B2 (en) Method for producing high specific surface area composite oxide
JPH03109207A (en) Production of oxide superconducting powder occluding oxygen or gaseous ozone
JPH01224208A (en) Method for synthesizing oxide superconductor precursor
JPH02208209A (en) Production of oxide superconductor precursor
JPH02208208A (en) Production of oxide superconductor precursor film
JP2920001B2 (en) Method for producing rare earth oxide superconductor
JPH02196023A (en) Production of oxide-based superconductor
JPS63289722A (en) Manufacture of superconductor
JPH0251403A (en) Process for forming film of precursor for oxide superconductor on carrier surface
JPH01278402A (en) Synthesis of precursor substance for oxide superconductor
Thierauf et al. Crystallization behaviour of freeze-dried YBa2Cu3O7-delta powders at low temperatures
JPH0420842B2 (en)
JPH01294525A (en) Formation of thin film of oxide superconductor
JPH0774454B2 (en) Manufacturing method of oxide fine particle deposition film
JPH0251402A (en) Process for forming film of precursor for oxide superconductor on carrier surface
JPH01321031A (en) Manufacture of oxide superconducting wire
JPH01264912A (en) Production of oxide superconductor powder