JPH01321031A - Manufacture of oxide superconducting wire - Google Patents

Manufacture of oxide superconducting wire

Info

Publication number
JPH01321031A
JPH01321031A JP63154482A JP15448288A JPH01321031A JP H01321031 A JPH01321031 A JP H01321031A JP 63154482 A JP63154482 A JP 63154482A JP 15448288 A JP15448288 A JP 15448288A JP H01321031 A JPH01321031 A JP H01321031A
Authority
JP
Japan
Prior art keywords
powder
oxide
oxide superconductor
atomized
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63154482A
Other languages
Japanese (ja)
Inventor
Wataru Komatsu
亘 小松
Ryoji Sedaka
良司 瀬高
Toshiaki Shibata
柴田 俊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63154482A priority Critical patent/JPH01321031A/en
Publication of JPH01321031A publication Critical patent/JPH01321031A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Wire Processing (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To efficiently obtain oxide superconducting wire excellent in quality by dissolving compound containing constitutive elements of oxide superconductor, then, powdering the solution, attaching the powder to linear substrate, heating, sintering and annealing it. CONSTITUTION:A prescribed quantity of the compound containing each of constitutive elements of oxide superconductor is dissolved in solvent and atomized in a supersonic nebulizer 2 to carry the atomized substance 3 to DMA 5, to select and supply the atomized substance 3 into a reactor 6. The atomized substance 3 is heated in the reactor 6, reacts on oxide superconductor powder, is charged by a link pole 7 for generating an electric field and attached onto the silver wire 8 which is sent out of an uncoiler 14 and charged to a dust collecting pole. This silver wire 8 is passed through the die 10 arranged in a preliminary sintering furnace 9 to smoothen the surface 10, to sinter a powder layer in reserve, then, to be heated, sintered and annealed in sequence in a heating/sintering furnace 11 and an annealing furnace 12 and to obtain an oxide superconducting wire and to be taken up on an uncoiler 15.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物超電導線材の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing an oxide superconducting wire.

〔従来の技術〕[Conventional technology]

近年、アルカリ土金属、希土類元素、銅、ビスマス、タ
リウム等の元素及び酸素からなる酸化物超電導体が見出
されている。
In recent years, oxide superconductors made of oxygen and elements such as alkaline earth metals, rare earth elements, copper, bismuth, and thallium have been discovered.

これらの酸化物超電導体は、液体N!温度以上で超電導
となるため、従来の液体He温度で超電導を示す金属超
電導体に較べて格段に経済的であり、各分野での利用が
検討されている。
These oxide superconductors are liquid N! Because it becomes superconducting at temperatures above that temperature, it is much more economical than conventional metal superconductors that exhibit superconductivity at liquid He temperatures, and its use in various fields is being considered.

ところで上記の酸化物超電導体は脆いため金属材料のよ
うに塑性加工ができず、これらを線材等に加工するには
、主に粉末冶金法が用いられ、例えば原料粉末の仮焼粉
をペースト状にして線状基体上に塗布し、乾燥後酸素含
有雰囲気中で加熱焼結する方法がとられている。
By the way, the above-mentioned oxide superconductors are brittle and cannot be processed plastically like metal materials. Powder metallurgy is mainly used to process them into wire rods, etc. For example, by converting calcined raw material powder into a paste A method is used in which the coating material is coated on a linear substrate, dried, and then heated and sintered in an oxygen-containing atmosphere.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の粉末冶金法において、線状基体上にペースト状仮
焼粉を塗布する方法は、乾燥に長時間を要する上、得ら
れた酸化物超電導体層がポーラスな為、又上記超電導体
層の表面には細かい凹凸が存在していて使用中に屈曲し
たりするとクラックが生じて高い超電導特性が得られな
いという問題があった。
In the powder metallurgy method described above, the method of applying a pasty calcined powder onto a linear substrate requires a long time for drying, and the resulting oxide superconductor layer is porous. There is a problem in that the surface has fine irregularities, and if it is bent during use, cracks will occur, making it impossible to obtain high superconducting properties.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はかかる状況に鑑みなされたものでその目的とす
るところは、特性に優れた酸化物超電導線材を効率よく
製造する方法を提供することにある。
The present invention was devised in view of this situation, and an object of the present invention is to provide a method for efficiently manufacturing an oxide superconducting wire with excellent characteristics.

即ち本発明は、酸化物超電導体の構成元素を各々含有す
る化合物をそれぞれ所定量溶媒に溶解し、この溶液を霧
状化して所定温度に加熱した反応炉内に供給して反応さ
せて上記霧状体を酸化物超電導体粉末となすとともに、
上記反応炉内を電界状態となして生成させた酸化物超電
導体粉末を荷電せしめ、この荷電粉末を集塵極に荷電さ
せた線状基体上に付着させ、次いでこの酸化物超電導体
粉末が付着した線状基体を予備焼結するとともに、所定
温度に加熱したダイスに通して表面層を平滑化し、引続
き酸素含有雰囲気中で加熱焼結及びアニールを順次施す
ことを特徴とするものである。
That is, in the present invention, a predetermined amount of a compound containing each of the constituent elements of an oxide superconductor is dissolved in a solvent, and this solution is atomized and supplied to a reactor heated to a predetermined temperature to cause a reaction. While converting the shaped body into oxide superconductor powder,
The oxide superconductor powder generated by creating an electric field inside the reactor is charged, and this charged powder is deposited on a charged linear substrate on a collecting electrode, and then this oxide superconductor powder is deposited. The linear substrate is pre-sintered, passed through a die heated to a predetermined temperature to smooth the surface layer, and then heated and sintered and annealed in an oxygen-containing atmosphere.

本発明において酸化物超電導体の構成元素を各々含有す
る化合物としては、例えばYBa、C+g0?−6(δ
L50.1〜0.3)の超電導体について例示すると、
Y、Ba、Cuのそれぞれ酢酸塩、硝酸塩、ハロゲン化
物又は有機金属化合物等である。
In the present invention, examples of compounds containing each of the constituent elements of the oxide superconductor include YBa, C+g0? −6(δ
To illustrate the superconductor of L50.1 to 0.3),
These include acetates, nitrates, halides, or organometallic compounds of Y, Ba, and Cu, respectively.

本発明において上記化合物を霧状化する方法としては、
例えば上記化合物をそれぞれ水などの溶媒に溶解し、こ
れを超音波ネプライザ等により霧状化する方法が用いら
れる。
In the present invention, the method for atomizing the above compound is as follows:
For example, a method may be used in which each of the above compounds is dissolved in a solvent such as water and atomized using an ultrasonic nebulizer or the like.

上記の霧状体を反応炉に連続供給する方法としては、こ
れを空気、0!等のキャリアガスにのせて搬送するのが
供給量のコントロールが容易にできて好ましいものであ
る。
As a method of continuously supplying the above-mentioned atomized material to the reactor, it is possible to continuously supply the atomized material to the reactor using air, 0! It is preferable to transport the material on a carrier gas such as the like, since the supply amount can be easily controlled.

本発明において上記霧状体を酸化物超電導体粉末に加熱
反応させる加熱方法としては、電気抵抗加熱、高周波誘
導加熱、バーナ加熱等の方法が特に適している。
In the present invention, methods such as electric resistance heating, high frequency induction heating, and burner heating are particularly suitable as heating methods for causing the atomized material to undergo a thermal reaction with the oxide superconductor powder.

本発明において、生成させた酸化物超電導体粉末を荷電
する方法としては、電界荷電法の他に拡散荷電法も適用
することができる。
In the present invention, as a method for charging the produced oxide superconductor powder, in addition to the electric field charging method, a diffusion charging method can also be applied.

本発明において反応炉により加熱されて生成する酸化物
超電導体粉末は、例えばY−Ba−Cu−〇系酸化物超
電導体について示すと、YBa、Cu、0.の化学式で
示される複合酸化物であり、上記の酸化物超電導体中に
は酸素量が欠乏した組成からなる複合酸化物も含まれて
おり、この粉末に酸素含有雰囲気中で所定の加熱焼結並
びに加熱処理を施すと超電導特性が更に向上するもので
ある。
In the present invention, the oxide superconductor powder produced by heating in a reaction furnace includes, for example, Y-Ba-Cu-○-based oxide superconductors such as YBa, Cu, 0. It is a composite oxide represented by the chemical formula, and the above oxide superconductor also contains a composite oxide with an oxygen-deficient composition. In addition, when heat treatment is applied, the superconducting properties are further improved.

本発明において、線状基体にはAg、Ni、SUS等の
金属又は合金が用いられ、この線状基体は集塵極として
荷電させて、前記の荷電した酸化物超電導体粉末を静電
付着させる。
In the present invention, a metal or an alloy such as Ag, Ni, or SUS is used for the linear substrate, and this linear substrate is charged as a dust collection electrode to electrostatically adhere the charged oxide superconductor powder. .

このようにして線状基体上に付着した酸化物超電導体粉
末の表面層は凹凸がはげしく、この付着層を所定温度に
加熱したダイスに通して、表面を平滑化するとともに所
定形状に成形する。
The surface layer of the oxide superconductor powder thus deposited on the linear substrate is highly uneven, and this adhered layer is passed through a die heated to a predetermined temperature to smooth the surface and form it into a predetermined shape.

上記の線状基体上に付着した表面が平滑化した酸化物超
電導体粉末層は連続して酸素含有雰囲気中で加熱焼結が
なされ、引続きアニールが施されて酸化物超電導線材と
なる。
The oxide superconductor powder layer with a smooth surface deposited on the linear substrate is successively heated and sintered in an oxygen-containing atmosphere, and then annealed to form an oxide superconductor wire.

〔作用〕[Effect]

酸化物超電導体原料を溶媒に溶かして溶液となし、この
溶液を霧状化して加熱反応させるので微細な酸化物超電
導体粉末が生成され、更に生成させた粉末を電界内にお
いて荷電せしめ、この荷電粉末を集塵極に荷電された線
状基体上に静電付着させるので、生成した粉末は上記基
体上に歩留りよく、高速度且つ高密度に付着する。
The oxide superconductor raw material is dissolved in a solvent to form a solution, and this solution is atomized and heated to generate a fine oxide superconductor powder.The generated powder is then charged in an electric field, and this charge is Since the powder is electrostatically deposited onto the linear substrate charged with the dust collecting electrode, the generated powder is deposited on the substrate at a high yield, at high speed, and with high density.

又上記線状基体上に付着した酸化物超電導体粉末層は、
所定温度に加熱したダイスを通すので表面が平滑化し屈
曲等によるクランクの発生が防止される。
In addition, the oxide superconductor powder layer deposited on the linear substrate is
Since it passes through a die heated to a predetermined temperature, the surface becomes smooth and the occurrence of cranks due to bending etc. is prevented.

更に上記の表面が平滑化した酸化物超電導体粉末は酸素
含有雰囲気中で加熱焼結とアニールが施されて粉末間の
結合、酸素の補給、結晶構造の調整が連続してなされる
ので、酸化物超電導線材が効率よく製造できる。
Furthermore, the oxide superconductor powder with the smoothed surface is heated and sintered and annealed in an oxygen-containing atmosphere to successively bond the powders, supply oxygen, and adjust the crystal structure. Material superconducting wires can be manufactured efficiently.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

第1図は本発明方法を実施する酸化物超電導線材製造装
置の一例を示す要部説明図である。
FIG. 1 is an explanatory diagram of essential parts showing an example of an oxide superconducting wire manufacturing apparatus for carrying out the method of the present invention.

上記装置は、原料溶液1を霧状化する為の超音彼式ネプ
ライザ2、上記霧状体3を輸送する為のキャリアガス制
御用M F C(Mass−Flow−Control
ler) 4、上記霧状体3の粒径選別用DMA (D
ifferenLial−Mobili ty−^na
lyzer) 5、上記の選別された霧状体3を酸化物
超電導体粉末に加熱反応させる為の反応炉6、上記粉末
を荷電するための電界発生用リンク状電極7、上記の荷
電した酸化物超電導体粉末を集塵極となる線状基体8に
付着させこれを予備焼結する為の予備焼結炉9、上記線
状基体8上の酸化物超電導体粉末の表面層を平滑化する
為のダイス10、ダイス10通過後の酸化物超電導体粉
末層を加熱焼結し、アニールする為のそれぞれ加熱焼結
炉11並びにアニール炉12から構成されている。
The above device includes an ultrasonic nebulizer 2 for atomizing the raw material solution 1, and a carrier gas control MFC (Mass-Flow-Control) for transporting the atomized material 3.
ler) 4. DMA for particle size selection of the atomized material 3 (D
ifferenLial-Mobili ty-^na
lyzer) 5. Reaction furnace 6 for heating and reacting the selected atomized material 3 to oxide superconductor powder, Link-shaped electrode 7 for generating an electric field for charging the powder, and the charged oxide as described above. A pre-sintering furnace 9 for adhering superconductor powder to a linear substrate 8 serving as a dust collecting electrode and pre-sintering it; and a pre-sintering furnace 9 for smoothing the surface layer of the oxide superconductor powder on the linear substrate 8. 1, a heating sintering furnace 11 and an annealing furnace 12 for heating, sintering and annealing the oxide superconductor powder layer after passing through the dice 10.

上記において、リンク状電極7は反応炉6内を上下方向
に移動可能な構造になっていて、酸化物超電導体の種類
又は量により位置を制御し得るものである。
In the above, the link-shaped electrode 7 has a structure that allows it to move vertically within the reactor 6, and its position can be controlled depending on the type or amount of oxide superconductor.

実施例1 出発原料としてY (CHsCOO)s・4H20、B
 a (CHsCOO)z ・HzO及びCu (CH
3C00)! ・HtOを用い、上記出発原料をY:B
a:Cuが原子比で1:2:3になるように秤量し、こ
れを水に溶解してYBa2Cu3の組成で0.03のモ
ル/j2i11度の水溶液を用意した。
Example 1 Y (CHsCOO)s・4H20, B as a starting material
a (CHsCOO)z ・HzO and Cu (CH
3C00)!・Using HtO, convert the above starting material into Y:B
a:Cu was weighed to have an atomic ratio of 1:2:3 and dissolved in water to prepare an aqueous solution with a composition of YBa2Cu3 of 0.03 mol/j2i11 degrees.

上記水溶液を第1図に示した酸化物超電導線材製造装置
の超音波式ネプライザ2内にセットして50cc/s+
inの速度で霧状化し、次いでこの霧状体3をMFCI
から4ffi/T@inの流量で流入するOt気流にの
せてDMA5に輸送し、上記DMA5により粒径4−以
下の霧状体3を選別してこれを反応炉6内に供給した。
The above aqueous solution was set in the ultrasonic nebulizer 2 of the oxide superconducting wire manufacturing apparatus shown in Fig.
atomization at a speed of in, and then this atomized material 3 is
The atomized material 3 was transported to the DMA 5 on an Ot air flow flowing in at a flow rate of 4ffi/T@in, and the atomized material 3 with a particle size of 4 or less was selected by the DMA 5 and supplied into the reactor 6.

上記霧状体3は、反応炉6内において、加熱されて酸化
物超電導体粉末に反応するとともに、電界発生用リンク
状電極7により荷電し、アンコイラ−14から送出され
集塵極に荷電したLoam/Hの速度で走行する0゜2
1φの銀線8上に付着させた。
The atomized material 3 is heated in the reactor 6 and reacts with the oxide superconductor powder, and is charged by the link-shaped electrode 7 for generating an electric field, and sent out from the uncoiler 14 to form a loam that is charged to the dust collection electrode. 0゜2 traveling at a speed of /H
It was attached onto a 1φ silver wire 8.

上記において電界発生用リンク状電極7には、DC20
kvを負荷して8kv/cmの電界強度を発生せしめ、
銀線8は回転リール13を介してアースした。
In the above, the link-shaped electrode 7 for generating an electric field has a DC20
kv to generate an electric field strength of 8 kv/cm,
The silver wire 8 was grounded via a rotating reel 13.

而して前記酸化物超電導体粉末が付着した銀線8を予備
焼結炉9内に配置したダイス10に通して上記粉末層の
表面を平滑化するとともに、上記粉末層を予備焼結し、
次いで上記予備焼結炉9の下方に配置した加熱焼結炉1
1及びアニール炉12により加熱焼結並びにアニールを
順次施してYBazCuzOt−δ(δ=0.1〜0.
3)の酸化物超電導線材となし、コイラー15に巻取っ
た。。
Then, the silver wire 8 to which the oxide superconductor powder is attached is passed through a die 10 placed in a pre-sintering furnace 9 to smooth the surface of the powder layer, and to pre-sinter the powder layer.
Next, a heating sintering furnace 1 is placed below the preliminary sintering furnace 9.
1 and annealing furnace 12 to sequentially perform heating sintering and annealing to obtain YBazCuzOt-δ (δ = 0.1 to 0.
The oxide superconducting wire of 3) was prepared and wound around the coiler 15. .

尚、上記において、反応温度は1 、000 ’C1予
備焼結温度は650°C、ダイス温度は600″C1焼
結温度は、900°Cに設定し、アニールは900°C
から室温まで2”C/minの冷却速度で施し、ダイス
10孔径は2901IgAφ、入側径310−φとした
In the above, the reaction temperature is 1,000'C1 pre-sintering temperature is 650°C, the die temperature is 600''C1 sintering temperature is set to 900°C, and the annealing is 900°C.
The cooling was performed at a cooling rate of 2''C/min from to room temperature, and the die 10 hole diameter was 2901IgAφ and the entrance diameter was 310-φ.

実施例2 出発原料とし”t’B i  (C,H,O,)’ 7
H,01Sr (ChHqOb)t ・3HzO1Ca
 (C6H90b)t ・5 HzOとCu (CbH
qOh)z  ・2HzOを用い、上記出発原料をBi
:Sr:Ca:Cuが1=1:1:2になるように秤量
し、これをエタノール50%十水50%の溶媒に溶かし
てB15rCaCu、の組成で0.1モル1lfa度の
溶液を用意した。銀線の走行速度15 cra/ H1
反反応度950°C1予備焼結温度600°C、ダイス
温度550℃、焼結温度880℃とし、アニールは88
0°Cから室温まで2°C7/++inの冷却速度で施
し、ダイス孔径は275−φ、入側径2901rmφと
した他は、実施例Iと同じ方法により酸化物超電導線材
を製造した。
Example 2 "t'B i (C, H, O,)' 7 as a starting material
H,01Sr (ChHqOb)t ・3HzO1Ca
(C6H90b)t ・5 HzO and Cu (CbH
The above starting material was converted to Bi using qOh)z ・2HzO.
:Sr:Ca:Cu was weighed so that it was 1=1:1:2 and dissolved in a solvent of 50% ethanol and 50% water to prepare a solution of 0.1 mol 1lfa with the composition B15rCaCu. did. Silver wire running speed 15 cra/H1
The reaction rate was 950°C, the pre-sintering temperature was 600°C, the die temperature was 550°C, the sintering temperature was 880°C, and the annealing was 88°C.
An oxide superconducting wire was produced by the same method as in Example I, except that cooling was performed from 0°C to room temperature at a cooling rate of 2°C/++in, the die hole diameter was 275-φ, and the entrance diameter was 2901 rmφ.

比較例1 実施例1においてダイスを用いなかった他は、実施例1
と同じ方法により酸化物超電導線材を製造した。
Comparative Example 1 Example 1 except that no dice were used in Example 1.
Oxide superconducting wires were manufactured using the same method as described above.

従来例1 0、2 msφの銀線上にYBa、CuzO=組成のペ
ースト状仮焼成粉を40μ厚さに塗布し、これを酸素気
流中で900℃20時間加熱焼結したのち、900°C
から室温まで2°C/sinの速度で徐冷して酸化物超
電導線材を製造した。
Conventional Example 1 A paste-like pre-sintered powder having a composition of YBa and CuzO was applied to a thickness of 40 μm on a silver wire of 0.2 msφ, and this was heated and sintered at 900°C for 20 hours in an oxygen stream, and then sintered at 900°C.
An oxide superconducting wire was manufactured by slowly cooling the wire from the temperature to room temperature at a rate of 2°C/sin.

斯くの如くして得られた各々の酸化物超電導線材につい
て酸化物超電導体層の相対密度を測定した。又曲げ曲率
100Rの繰り返し曲げ試験を1゜000回行い試験前
後のJCを測定した。結果は主な製造条件を併記して第
1表に示した。
The relative density of the oxide superconductor layer of each of the oxide superconductor wires thus obtained was measured. Further, a repeated bending test with a bending curvature of 100R was performed 1°,000 times, and the JC before and after the test was measured. The results are shown in Table 1 along with the main manufacturing conditions.

第1表より明らかなように本発明方法品(実施例1.2
)は比較方法品(比較例1)又は従来方法品(従来例1
)に較べて酸化物超電導体層の相対密度及びJcが高い
値を示している。
As is clear from Table 1, the method of the present invention (Example 1.2
) is the comparative method product (Comparative Example 1) or the conventional method product (Conventional Example 1)
), the relative density and Jc of the oxide superconductor layer are higher.

比較方法品において繰り返し曲げ試験後のJcが極端に
低下したのは、比較方法品はダイスを通していないため
表面層の凹凸がはげしく、繰り返し曲げにより上記凹凸
部分から微細なりラックが発生したためである。
The reason why the Jc of the comparative product after the repeated bending test was extremely low is because the comparative method product was not passed through a die, so the surface layer had severe irregularities, and fine racks were generated from the uneven parts due to repeated bending.

本発明方法品と比較方法品を比較するとダイスを通す効
果は、酸化物超電導体層の表面を平滑にするばかりでな
く、上記超電導体層の高密度化又は結晶の再配列に関与
してJ、向上に寄与することが判る。
Comparing the products produced by the method of the present invention and those produced by the comparative method, the effect of passing through the die not only smoothes the surface of the oxide superconductor layer, but also contributes to the densification of the superconductor layer or the rearrangement of the crystals. , it can be seen that it contributes to improvement.

従来方法品は酸化物超電導体層がポーラスな為J、が低
く、又脆弱な為繰り返し曲げ試験により破壊してしまっ
た。
Products made using the conventional method have a low J because the oxide superconductor layer is porous, and are brittle, so they break when subjected to repeated bending tests.

〔効果] 以上述べたように本発明方法によれば、密度が高<J、
に優れた長尺の酸化物超電導線材が連続して効率よく製
造し得るので、工業上顕著な効果を奏する。
[Effect] As described above, according to the method of the present invention, the density is high < J,
Since long oxide superconducting wires with excellent properties can be manufactured continuously and efficiently, this method has a significant industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する酸化物超電導線材製造装
置の一例を示す要部説明図である。 1・・・溶液、 3・・・霧状体、 6・・・反応炉、
 7・・・リンク状電極、 8・・・線状基体、 9・
・・予備焼結炉、  10・・・ダイス、  11・・
・加熱焼結炉、12・・・アニール炉。
FIG. 1 is an explanatory diagram of essential parts showing an example of an oxide superconducting wire manufacturing apparatus for carrying out the method of the present invention. 1... Solution, 3... Atomized body, 6... Reactor,
7... Link-shaped electrode, 8... Linear base, 9.
...Preliminary sintering furnace, 10...Dice, 11...
- Heating sintering furnace, 12... annealing furnace.

Claims (1)

【特許請求の範囲】[Claims] 酸化物超電導体の構成元素を各々含有する化合物をそれ
ぞれ所定量溶媒に溶解し、この溶液を霧状化して所定温
度に加熱した反応炉内に供給して反応させて上記霧状体
を酸化物超電導体粉末となすとともに、上記反応炉内を
電界状態となして生成させた酸化物超電導体粉末を荷電
せしめ、この荷電粉末を集塵極に荷電させた線状基体上
に付着させ、次いでこの酸化物超電導体粉末が付着した
線状基体を予備焼結するとともに、所定温度に加熱した
ダイスに通して表面層を平滑化し、引続き酸素含有雰囲
気中で加熱焼結及びアニールを順次施すことを特徴とす
る酸化物超電導線材の製造方法。
A predetermined amount of a compound containing each of the constituent elements of an oxide superconductor is dissolved in a solvent, and this solution is atomized and supplied to a reactor heated to a predetermined temperature to react, and the atomized material is converted into an oxide. The oxide superconductor powder produced by creating a superconductor powder by creating an electric field inside the reactor is electrically charged, and this charged powder is deposited on a charged linear substrate on a collecting electrode, and then this The linear substrate to which the oxide superconductor powder is attached is pre-sintered, passed through a die heated to a predetermined temperature to smooth the surface layer, and then heated and sintered and annealed in an oxygen-containing atmosphere. A method for producing an oxide superconducting wire.
JP63154482A 1988-06-22 1988-06-22 Manufacture of oxide superconducting wire Pending JPH01321031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63154482A JPH01321031A (en) 1988-06-22 1988-06-22 Manufacture of oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63154482A JPH01321031A (en) 1988-06-22 1988-06-22 Manufacture of oxide superconducting wire

Publications (1)

Publication Number Publication Date
JPH01321031A true JPH01321031A (en) 1989-12-27

Family

ID=15585208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63154482A Pending JPH01321031A (en) 1988-06-22 1988-06-22 Manufacture of oxide superconducting wire

Country Status (1)

Country Link
JP (1) JPH01321031A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455030A (en) * 1990-06-26 1992-02-21 Daido Kikai Seisakusho:Kk Film lubrication treatment for forging and forging device having film lubrication treating means
CN104550996A (en) * 2013-10-21 2015-04-29 财团法人纺织产业综合研究所 Preparation method of nano silver wire and transparent conductive film comprising nano silver wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455030A (en) * 1990-06-26 1992-02-21 Daido Kikai Seisakusho:Kk Film lubrication treatment for forging and forging device having film lubrication treating means
CN104550996A (en) * 2013-10-21 2015-04-29 财团法人纺织产业综合研究所 Preparation method of nano silver wire and transparent conductive film comprising nano silver wire

Similar Documents

Publication Publication Date Title
EP0720244B1 (en) Superconducting oxide-metal composites
US4826808A (en) Preparation of superconducting oxides and oxide-metal composites
US5189009A (en) Preparation of superconducting oxides and oxide-metal composites
JPH01321031A (en) Manufacture of oxide superconducting wire
EP0351139B1 (en) Method of making composite ceramic and copper superconducting elements
JPH025314A (en) Manufacture of oxide superconductive wire rod
JPH01265414A (en) Manufacture of oxide superconductive wire rod
JPS63308810A (en) Superconductor which can be taken up by winding and manufacture of the same
JPH02208209A (en) Production of oxide superconductor precursor
JPS63274017A (en) Superconductive wire material
JPH0477302A (en) Production of superconducting layer
JPH01264930A (en) Production of oxide superconductor and applied product of said oxide superconductor
JPH01286211A (en) Manufacture of oxide superconducting wire rod
JPH0247296A (en) Formation of superconductor
JPH02208208A (en) Production of oxide superconductor precursor film
JPH0240813A (en) Manufacture of ceramic superconductive wire
JPH01241711A (en) Manufacture of oxide superconductor wire
JPH01252508A (en) Production of oxide superconductor
JPS63292528A (en) Method for obtaining superconductive wire
JPH01166416A (en) Manufacture of oxide superconductive wire material
JPH01219017A (en) Production of oxide superconductor
JPH01169817A (en) Manufacture of oxide superconductive wire
JPH01304614A (en) Manufacture of superconductive wire of ceramic
JPH01194214A (en) Manufacture of oxide superconductive compact
JPH01286208A (en) Oxide superconducting material and manufacture of oxide superconducting wire rod