JPS63308810A - Superconductor which can be taken up by winding and manufacture of the same - Google Patents

Superconductor which can be taken up by winding and manufacture of the same

Info

Publication number
JPS63308810A
JPS63308810A JP63122177A JP12217788A JPS63308810A JP S63308810 A JPS63308810 A JP S63308810A JP 63122177 A JP63122177 A JP 63122177A JP 12217788 A JP12217788 A JP 12217788A JP S63308810 A JPS63308810 A JP S63308810A
Authority
JP
Japan
Prior art keywords
mixed oxide
particles
continuous body
superconductor
metal strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63122177A
Other languages
Japanese (ja)
Inventor
ペーテル・ローネル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kabelmetal Electro GmbH
Original Assignee
Kabelmetal Electro GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabelmetal Electro GmbH filed Critical Kabelmetal Electro GmbH
Publication of JPS63308810A publication Critical patent/JPS63308810A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • H10N60/203Permanent superconducting devices comprising high-Tc ceramic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Processes peculiar to the manufacture or treatment of filaments or composite wires

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、内部の超伝導性の心と外部の金属スリーブと
から成る電気ケーブルおよび導線のための、特に巻取り
可能な様式の超伝導体およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconductor, particularly in the rollable manner, for electrical cables and conductors, consisting of an inner superconducting core and an outer metal sleeve, and a method of manufacturing the same.

先ず連続した金属の担持体上に超伝導性の層に金属をプ
ラズマの形で噴射して塗布することにより、可撓性の性
状の冒頭に記載した様式の超伝導体を造る方法が既に知
られている。その際積層された担持体は長手方向で走入
る釡属帯状体により被覆され、引続きこのようにして形
成されたスリット管は縦継ぎ目溶接され、最後に最低限
超伝導性の層の外径に縮径される(ドイツ連邦共和国公
開特許公報筒21088635号参照)。この場合、超
伝導性の層としては比較的低い遷移温度を有する金属間
混合物 Nb3Snが使用される。従ってこの化合物を
ベースとして造られた導体は設備費および冷却費が高く
つき従来のエネルギー伝達システムに比してその経済的
な選択汎用性に価値が認められることがなかった。
It is already known how to make superconductors of the type described at the beginning of the flexible properties by first applying a superconducting layer on a continuous metal support by spraying the metal in the form of a plasma. It is being The laminated support body is then covered with a longitudinally running metal strip, the slit tube thus formed is then welded longitudinally, and finally the outer diameter of the minimally superconducting layer is welded. The diameter is reduced (see DE 21088635). In this case, the intermetallic mixture Nb3Sn, which has a relatively low transition temperature, is used as the superconducting layer. Therefore, conductors made based on this compound have high equipment and cooling costs and have not been valued for their economic versatility compared to conventional energy transfer systems.

その間、100におよびそれ以上の超伝導を達し得る超
伝導性の化合物が知られて来たが、しかしこれらの化合
物は未だその技術的な使用が是認されていない。
During that time, superconducting compounds that can reach superconductivity of 100 and more have become known, but these compounds have not yet been approved for their technical use.

こう言った公知技術を踏まえて、本発明の根底をなす課
題は、高い遷移温度(Sprungtempera−t
ur)を備え、経済的に認容し得るような方法で、しか
も連続的な製造方法により造ることが可能であり、かつ
巻取り可能な、超伝導体を提供することである。
Based on these known techniques, the problem underlying the present invention is to solve the problem of high transition temperature (sprung temperature).
The object of the present invention is to provide a superconductor which can be manufactured in an economically acceptable manner by a continuous manufacturing method and can be wound.

上記の課題は本発明により、心が混合酸化物の粉末状の
乃至は顆粒状の粒子から成るか、或いは主としてこのよ
うな混合酸化物を含んでいることによって解決される。
The above object is achieved according to the invention in that the core consists of pulverulent or granular particles of mixed oxides or contains mainly such mixed oxides.

上記のような混合酸化物−文献ではセラミック材料とも
称せられるーは相応する純度で使用され、100に或い
はそれ以上の超伝導が与えられるように処理される。こ
のように高い遷移温度は自体冷却剤として液状窒素の使
用を許容し、かつ従来必要としたヘリウム−冷却に比し
て経済性の著しい向上を可能にする。混合酸化物を金属
スリーブ内に封じ込めることにより殆ど限り無い長さで
の超伝導体の製造を保証する。
Mixed oxides such as those mentioned above - also referred to in the literature as ceramic materials - are used in corresponding purity and treated to give them a superconductivity of 100 or more. This high transition temperature allows the use of liquid nitrogen as the coolant itself, and allows for significant improvements in economy over the previously required helium-cooling. Confinement of the mixed oxide within a metal sleeve ensures the production of superconductors in almost unlimited length.

例えば銅材料から造られるスリーブ自体結合位置或いは
接続位置においても機械的な支持体として働き、しかも
例えば冷却剤供給の点で障害が発生した際通常の導体と
しても使用し得る。
The sleeve itself, which is made of copper material, for example, also serves as a mechanical support in the connection or connection position, and can also be used as a normal conductor in the event of a failure, for example in the coolant supply.

本発明を実施する際、混合酸化物の心を形成する粒子を
圧縮して一貫して連続した連続体に成形するのが有利で
ある。この成形は、心の均一な幾何学的な形状とコンパ
クト性を可能にし、これらは本質的に超伝導状態にあっ
ての電気的抵抗の低減に寄与する。この際、混合酸化物
粒子から成る連続体が一体構造であることは特に製造に
とって、しかも超伝導体の機械的な安定性にとって好都
合である。これは例えば、混合酸化物に適当な結合剤を
添加することによって、また粒子を例えば担持体上に、
例えば心連続体上に盛付けることによっても達せられる
In carrying out the invention, it is advantageous to compress the particles forming the mixed oxide core into a consistently continuous continuum. This shaping allows for a uniform geometry and compactness of the core, which contributes to reduced electrical resistance in the essentially superconducting state. The monolithic structure of the continuum of mixed oxide particles is particularly advantageous for the production and for the mechanical stability of the superconductor. This can be done, for example, by adding a suitable binder to the mixed oxide or by placing the particles, for example on a support.
This can also be achieved, for example, by arranging it on the heart continuum.

更に、本発明を実施する際混合酸化物が、即ちいわゆる
セラミック材料が銅、鉛或いはビスマスを含んでいるの
が有利であることが分かった。本発明による超伝導体の
他の組成として周期表■族および■族の元素の少なくと
も一つが重要である。周期表■族元素のうち特にストロ
ンチウム(Sr)およびバリウム(Ba)、■族の元素
との組み合わせ、例えばイツトリウム(Y)およびラン
タン(La)が既に高い遷移温度を示すことが研究で確
認されている。
Furthermore, it has proven advantageous when carrying out the invention if the mixed oxides, that is to say the so-called ceramic materials, contain copper, lead or bismuth. As another composition of the superconductor according to the present invention, at least one of the elements of Groups I and II of the periodic table is important. Research has confirmed that strontium (Sr) and barium (Ba), especially strontium (Sr) and barium (Ba) among group II elements of the periodic table, and combinations with group II elements, such as yttrium (Y) and lanthanum (La), already exhibit high transition temperatures. There is.

実際に高い遷移温度を有する混合酸化物を超伝導体とし
て使用することは本発明にとって重要なことである。従
って本発明は、有利に任意の長さに造ることが可能であ
り、かつ巻取り可能な上記のような導体を造るための適
当な方法を構成することである。即ち、例えば長手方向
で走入する金属帯状体を管状のスリーブに成形し、この
金属帯状体の内部に混合酸化物の粒子を盛付ける。引続
き金属帯状体の縁部を例えば溶接により或いはろう付け
により固くかつ密に閉じ、このようにして形成された管
体の断面を縮径(herun terz 1ehen)
する。この際この断面の縮径を、この縮径の際混合酸化
物の粉末状の乃至は顆粒状の粒子の機械的な圧縮が行わ
れる程度に、行うのが有利である。粒子を超伝導性の電
気導体に被覆成形する以前に、その間に或いはその後に
混合酸化物を温度処理するので有利である。
The use of mixed oxides as superconductors that actually have high transition temperatures is important for the present invention. The invention therefore consists in constructing a suitable method for making such a conductor, which can advantageously be made to any length and can be wound. For example, a longitudinally extending metal strip is formed into a tubular sleeve, and the mixed oxide particles are placed inside the metal strip. Subsequently, the edges of the metal strip are tightly and tightly closed, for example by welding or brazing, and the cross section of the tube thus formed is reduced in diameter.
do. In this case, it is advantageous to reduce the diameter of this cross section to such an extent that the powdery or granular particles of the mixed oxide are mechanically compressed during the reduction. It is advantageous to heat-treat the mixed oxide before, during or after coating the particles into the superconducting electrical conductor.

本発明による超伝導体の製造の他の実施形は、混合酸化
物の粒子をプレス或いは押出し成形により連続的に圧縮
して連続体に成形し、この連続体を引続き連続的に管に
成形された肉薄の金属帯状体によって被覆し、この金属
帯状体の縁部を互いに溶接する。ここで密なスリーブを
縮径して連続体に成形し、この場合この被覆の以前、そ
の間或いはその後に圧縮された連続体の温度処理を行う
。しかし、このやり方と異なり連続体を圧縮した後書な
金属のスリーブでプレスにより継ぎ目無く周囲をプレス
成形し、他は同じ方法を行うことも可能である。
Another embodiment of the production of the superconductor according to the invention is to continuously compress the mixed oxide particles by pressing or extrusion into a continuum, which is then continuously formed into a tube. The edges of the metal strips are welded together. The dense sleeve is then reduced in diameter and formed into a continuous body, with the compacted continuous body being subjected to a temperature treatment before, during or after the coating. However, unlike this method, it is also possible to compress the continuous body and press-form the periphery seamlessly with a metal sleeve using a press, and otherwise perform the same method.

超伝導体を造るための本発明による他の有利な実施形は
、混合酸化物の粒子を連続体にプレス成形するか或いは
押出し成形し、この連続体を引続き温度処理する。この
ようにして処理された連続体を引続き粉末形成いは顆粒
形に成形し、この粉末或いは顆粒を金属帯状体を管体に
成形する間にこの金属帯状体内に装填し、この金属帯状
体の縁部を溶接した後管体を縮径し才′改めて連続体に
圧縮する。この方法によりセラミック材料(混合酸化物
)から成る超伝導体の均一な幾何学的な形状を成形する
のに、従ってまた高い遷移温度を得るのに好都合な条件
が与えらる。このやり方にあって、混合酸化物を、これ
が連続体形に移行するまで一回或いは多数回場合によっ
ては同時に熱処理を行いながら粉砕工程で処理すること
により、方法が更に最適なものとなる。
Another advantageous embodiment according to the invention for producing the superconductor is to press or extrude the particles of the mixed oxide into a continuous body and to subsequently subject this continuous body to a temperature treatment. The continuous body treated in this way is subsequently formed into a powder or granules, which powder or granules are loaded into the metal strip during the shaping of the metal strip into a tube. After welding the edges, the tube body is reduced in diameter and compressed again into a continuous body. This method provides favorable conditions for forming uniform geometries of superconductors made of ceramic materials (mixed oxides) and thus also for obtaining high transition temperatures. In this way, the process is further optimized by treating the mixed oxide in a milling step, with one or more simultaneous heat treatments, until it passes into the continuum form.

この場合の、しかも超伝導性の連続体を被覆する以前に
おける、その間における或いはその後における温度処理
は850℃と1650℃の間の温度領域で、特に100
℃と1500℃間の温度で行われる。被覆の間において
或いはその後に熱処理を行う場合、超伝導性な心を囲繞
しているスリーブとして相応して高い溶融温度を有する
材料が選択される。
In this case, the temperature treatment before, during or after coating the superconducting continuum is in the temperature range between 850°C and 1650°C, in particular at 100°C.
℃ and 1500℃. If a heat treatment is carried out during or after the coating, a material with a correspondingly high melting temperature is selected as the sleeve surrounding the superconducting core.

本発明を実施する際、スリーブが酸素を透過する金属或
いは金属合金から成るのが有利である。この構成は、混
合酸化物に超伝導可能性を得る目的で酸素の存在下に温
度処理工程を行わなければならない場合、および混合酸
化物を製造技術上の理由から既に前もって金属スリーブ
で外部に対してカプセル化しておかなければならない場
合に重要である。例えば銀或いは銀の合金を使用するの
が本発明にとって適当である。
In carrying out the invention, it is advantageous for the sleeve to consist of a metal or metal alloy that is permeable to oxygen. This configuration is useful when the mixed oxide has to be subjected to a temperature treatment step in the presence of oxygen for the purpose of obtaining superconducting potential, and when the mixed oxide is already exposed to the outside in a metal sleeve for manufacturing technology reasons. This is important when the data must be encapsulated. For example, it is suitable for the invention to use silver or silver alloys.

この場合、製造は例えば、長手方向で走入する眼帯状体
を管状のスリーブに成形し、この眼帯状体の内面上に混
合酸化物の粒子を盛付けする。
In this case, the production involves, for example, shaping a longitudinally running eyeband into a tubular sleeve and applying particles of the mixed oxide on the inner surface of this eyeband.

引続き恨帯状体の縁部を例えば溶接或いはろう付けによ
り固くかつ密に閉鎖し、このようにして形成された管体
を縮径する。この際この断面縮径を、この縮径の際に混
合酸化物の粉末状乃至は顆粒状の粒子が機械的に圧縮さ
れる程度に、行うのが有利である。粒子を超伝導性の電
気導体に被覆する以前に、その間に或いはその後に混合
酸化物を温度処理するのが有利である。この温度処理を
、例えば900℃の焼なまし工程は酸素雰囲気内で行わ
れる。この酸素雰囲気は本発明により例えば使用される
銀から成るスリーブは圧縮される混合酸化物粒子に関し
て酸素拡散を保証する。
Subsequently, the edges of the ribbon are tightly and tightly closed, for example by welding or brazing, and the diameter of the tube thus formed is reduced. In this case, it is advantageous to carry out the cross-sectional diameter reduction to such an extent that the powdered or granular particles of the mixed oxide are mechanically compressed during the diameter reduction. It is advantageous to subject the mixed oxide to a temperature treatment before, during or after coating the particles with the superconducting electrical conductor. This temperature treatment, for example, an annealing step at 900° C., is performed in an oxygen atmosphere. This oxygen atmosphere ensures that the sleeve made of silver used according to the invention, for example, ensures oxygen diffusion with respect to the compressed mixed oxide particles.

本発明による超伝導体の製造の他の実施形により、混合
酸化物の粒子をプレス或いは押出し成形により連続的に
圧縮して連続体に成形し、この連続体を引続き連続して
管体に成形された肉薄の、酸素透過性の材料から成る帯
状体により被覆し、この帯状体の縁部を互いに溶接する
According to another embodiment of the production of the superconductor according to the invention, the mixed oxide particles are continuously compressed by pressing or extrusion into a continuum, which continuum is subsequently continuously formed into a tube. The edges of the strips are welded together.

この閉鎖された金属のスリーブは縮径されて連続体に成
形され、この際圧縮された連続体を被覆する以前に、そ
の間に或いはその後にこの連続体の酸素の作用の下での
温度処理が行われる。
This closed metal sleeve is reduced in diameter and formed into a continuous body, with temperature treatment of this continuous body under the action of oxygen before, during or after coating the compressed continuous body. It will be done.

この方法と異なり、連続体を圧縮した後本発明により酸
素透過である金属スリーブで周囲をプレスして継ぎ目無
く成形し、他の方法工程は同じように行うことも可能で
ある。混合酸化物の粒子がプレス成形により或いは押出
し成形により連続体に成形され、引続き温度処理される
場合処理された連続体は引続き粉末形成いは顆粒形に成
形され、この粉末或いは顆粒は例えば眼帯状体を管体に
成形する間にこの管体内に装填され、この眼帯状体の縁
部を溶接した後管体は改めて縮径して連続体に圧縮され
る。
In contrast to this method, it is also possible, according to the invention, to compress the continuous body and then press around it with an oxygen-permeable metal sleeve to form it seamlessly, and the other process steps to be carried out in the same way. If the particles of the mixed oxide are formed into a continuous body by pressing or extrusion and subsequently subjected to temperature treatment, the treated continuous body is subsequently formed into a powder or granules, which powders or granules can be shaped into eyelids, for example. It is loaded into the tube while the body is being formed into a tube, and after welding the edges of the eyeband, the tube is again reduced in diameter and compressed into a continuous body.

以下に添付した第1図および第2図により本発明を説明
する。
The present invention will be explained with reference to FIGS. 1 and 2 attached below.

巻取り台l上に支承されている帯状貯蔵部2から金属帯
状体3、例えば眼帯状体が転向装置4を介して、場合に
よっては帯状体清浄部の様式の機械5に供給される。こ
の機械の領域内で金属帯状体3は図示していない、自体
公知の成形工具、例えば位置ずれして配置されているロ
ーラ或いはロールで管形6に成形される。この未だ上が
開いている管体6内に送り装置7により粉末形の混合酸
化物8が装填される。この粉末は例えば、La−5r−
Cu−0+Ba−Pb−B i −0,Ba−La−C
u−0,Y−Ba−Cu−0或いは類似の物質をベース
として混合酸化物からプレスおよび熱処理により成形さ
れた連続体を改めて粉末形に処理して造られる。更に機
械5を通過する間管体6の帯状体の縁部は溶接装置9に
より密に溶接され、管体6は口径調節工具10を通過す
る間先ず断面が縮径される。次いで一つ或いは多数の段
で混合酸化物8を充填されたもしくは混合酸化物を含ん
でいる管体6の断面が他の口径調節装置11で、管体6
内に存在している混合酸化物8の粒子が充分に圧縮され
るまで、縮径される。場合によってはこれに引続いて、
例えば焼なまし工程の様式の熱処理をもう一度行う。
From a strip storage 2, which is supported on a winding table l, metal strips 3, for example eye strips, are fed via a deflection device 4 to a machine 5, optionally in the form of a strip cleaning station. In the area of this machine, the metal strip 3 is formed into a tubular shape 6 by means of forming tools (not shown) which are known per se, for example offset rollers or rolls. Mixed oxide 8 in powder form is loaded into this tube 6, which is still open at the top, by means of a feeding device 7. This powder is, for example, La-5r-
Cu-0+Ba-Pb-B i -0, Ba-La-C
It is produced by processing a continuous body formed by pressing and heat treatment from a mixed oxide based on u-0, Y-Ba-Cu-0 or similar materials into powder form. Further, while passing through the machine 5, the edge of the strip of the tube body 6 is tightly welded by a welding device 9, and while the tube body 6 passes through the diameter adjusting tool 10, its cross section is first reduced in diameter. The cross-section of the tube 6 filled with or containing the mixed oxide 8 in one or more stages is then calibrated by another diameter adjusting device 11.
The diameter of the particles of mixed oxide 8 present therein is reduced until they are sufficiently compressed. In some cases, this is followed by
A heat treatment, for example in the form of an annealing step, is carried out again.

この方法の結果として第2図に第1図に比して拡大して
本発明による超伝導体の断面を示した。この超伝導体に
おいて混合酸化物8から成る心は金属管体6によって密
に被覆されている。
As a result of this method, FIG. 2 shows a cross-section of a superconductor according to the invention, enlarged compared to FIG. 1. In this superconductor, a core of mixed oxide 8 is closely covered by a metal tube 6.

この場合管体6は銀からなるか、或いは他の酸素を透過
する材料もしくは相当する合金で密に囲繞されている。
In this case, the tube body 6 is made of silver or is closely surrounded by another oxygen-permeable material or a corresponding alloy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による超伝導体を造るための装置の全体
図、 第2図は本発明による超伝導体自体の拡大断面図。 図中符号は、 1・・・巻取り台、2・・・帯状体貯蔵部、3・・・金
属帯状体、4・・・転向装置、5・・・機械、6・・・
管体、7・・・送り装置、8・・・混合酸化物、9・・
・溶接装置、10.11・・・口径調節工具
FIG. 1 is an overall view of an apparatus for producing a superconductor according to the present invention, and FIG. 2 is an enlarged sectional view of the superconductor itself according to the present invention. The symbols in the figure are as follows: 1... Winding table, 2... Strip storage section, 3... Metal strip, 4... Turning device, 5... Machine, 6...
Pipe body, 7... Feeding device, 8... Mixed oxide, 9...
・Welding equipment, 10.11...caliber adjustment tool

Claims (1)

【特許請求の範囲】 1、内部の超伝導性の心と外部の金属スリーブとから成
る電気ケーブルおよび導線のための、特に巻取り可能な
様式の超伝導体において、心が混合酸化物の粉末状の乃
至は顆粒状の粒子から成るか、或いは主としてこのよう
な混合酸化物を含んでいることを特徴とする、上記超伝
導体。 2、混合酸化物の心を形成している粒子が一貫した連続
体として圧縮されている、請求項1記載の超伝導体。 3、混合酸化物の粒子から成る連続体が一体構造から成
る、請求項2記載の超伝導体。 4、混合酸化物が銅、鉛或いはビスマスの元素の少なく
とも一つを含んでいる、請求項1から3までのいずれか
一つに記載の超伝導体。 5、混合酸化物が周期表IIおよび/またはIII族の元素
の少なくとも一つを含んでいる、請求項1から3までの
いずれか一つに記載の超伝導体。 6、ランタノイド、特にランタン自体が使用される、周
期表III族の元素との混合酸化物から成る、請求項3記
載の超伝導体。 7、スリーブが酸素を透過する金属もしくは合金から成
る、請求項1から6までのいずれか一つに記載の超伝導
体。 8、スリーブが銀或いは銀合金から成る請求項7記載の
超伝導体。 9、超伝導体を造る方法において、場合によっては酸素
を透過する金属から成る長手方向で走入する金属帯状体
を管状のスリーブに成形し、この金属帯状体の内表面上
に混合酸化物の粒子を盛付けること、および引続きこの
金属帯状体の縁部を密に閉じ、このようにして形成され
た管体の断面を縮小することを特徴とする、超伝導体の
製造方法。 10、断面縮小と共に混合酸化物の粉末状乃至顆粒状の
粒子の機械的な圧縮を行う、請求項9記載の方法。 11、混合酸化物の粒子を被覆する以前、その間或いは
その後においてこの粒子を、場合によっては酸素作用の
下で温度処理する、請求項9或いは10に記載の方法。 12、混合酸化物の粒子を先ずプレス或いは押出し成形
により連続的に連続体体に圧縮成形し、引続きこの連続
体を肉薄の長手方向で連続して管体に成形された金属帯
状体によって被覆し、この金属帯状体の縁部を互いに溶
接し、最後に密なスリーブを縮径して連続体に成形し、
この場合被覆を行う以前、その間或いはその後に圧縮さ
れた連続体の温度処理を場合によっては酸素作用の下で
行う、請求項9から11までのいずれか一つに記載の方
法。 13、混合酸化物の粒子を先ずプレス或いは押出し成形
により連続的に圧縮して連続体に成形し、引続きこの連
続体を密な金属スリーブによってプレスして継ぎ目無く
周囲を囲繞し、この場合被覆成形の以前、その間或いは
その後に圧縮された連続体の温度処理を場合によっては
酸素の作用下に行う、請求項9から12までのいずれか
一つに記載の方法。 14、プレス或いは押出し成形により造られた連続体を
一体構造に成形する、請求項12或いは13に記載の方
法。 15、混合酸化物の粒子を心連続体上に配列する請求項
12から14までのいずれか一つに記載の方法。 16、混合酸化物の粒子をプレス或いは押出し成形によ
り連続体に成形し、この連続体を場合によっては酸素作
用の下で温度処理し、引続き粉末契約いは顆粒形にし、
この粉末或いは顆粒を金属帯状体を成形する間にこの金
属帯状体内に装填して管体とし、帯体縁部を溶接した後
管体を圧縮縮径して連続体に成形する、請求項9から1
5までのいずれか一つに記載の方法。 17、混合酸化物を連続体形状に変形するまで一回或い
は多数回、場合によっては同時に温度処理を行いながら
、粉砕工程下に置く、請求項16記載の方法。 18、温度処理を850℃と1650℃の間の温度領域
、特に1000℃と1500℃間の温度で行う、請求項
9から17までのいずれか一つに記載の方法。
[Claims] 1. Superconductors for electrical cables and conductors consisting of an inner superconducting core and an outer metal sleeve, especially in the form of a rollable material, in which the core is a mixed oxide powder. The above-mentioned superconductor is characterized in that it consists of shaped or granular particles, or that it mainly contains such mixed oxides. 2. The superconductor of claim 1, wherein the particles forming the mixed oxide core are compacted as a coherent continuum. 3. The superconductor according to claim 2, wherein the continuum of mixed oxide particles has a monolithic structure. 4. The superconductor according to claim 1, wherein the mixed oxide contains at least one of the following elements: copper, lead, or bismuth. 5. The superconductor according to any one of claims 1 to 3, wherein the mixed oxide contains at least one element of Groups II and/or III of the Periodic Table. 6. Superconductor according to claim 3, in which a lanthanide, in particular lanthanum itself, is used, consisting of a mixed oxide with an element of group III of the periodic table. 7. The superconductor according to any one of claims 1 to 6, wherein the sleeve is made of an oxygen permeable metal or alloy. 8. The superconductor according to claim 7, wherein the sleeve is made of silver or a silver alloy. 9. A method for making superconductors in which a longitudinally running metal strip, optionally made of an oxygen-permeable metal, is formed into a tubular sleeve, and a mixed oxide layer is coated on the inner surface of the metal strip. A method for producing a superconductor, characterized in that the particles are piled up and the edges of the metal strip are subsequently closed tightly and the cross section of the tube thus formed is reduced. 10. The method according to claim 9, wherein mechanical compaction of the mixed oxide powder or granular particles is carried out together with the cross-sectional reduction. 11. Process according to claim 9, characterized in that before, during or after coating the mixed oxide particles, the particles are subjected to a temperature treatment, optionally under the action of oxygen. 12. Particles of mixed oxide are first compression-molded continuously into a continuous body by pressing or extrusion molding, and this continuous body is then covered with a thin, longitudinally continuous metal strip formed into a tube. , the edges of this metal strip are welded together, and finally the dense sleeve is reduced in diameter and formed into a continuous body,
12. The method as claimed in claim 9, wherein the compacted continuous body is subjected to a temperature treatment, optionally under the action of oxygen, before, during or after the coating. 13. The mixed oxide particles are first continuously compressed into a continuous body by pressing or extrusion, and this continuous body is subsequently pressed and seamlessly surrounded by a dense metal sleeve, in this case overmolding. 13. The method as claimed in claim 9, further comprising carrying out a temperature treatment of the compressed continuum before, during or after , optionally under the action of oxygen. 14. The method according to claim 12 or 13, wherein the continuous body made by pressing or extrusion molding is formed into an integral structure. 15. A method according to any one of claims 12 to 14, characterized in that the mixed oxide particles are arranged on a core continuum. 16. Forming the particles of the mixed oxide into a continuous body by pressing or extrusion, subjecting this continuous body to temperature treatment, optionally under the action of oxygen, and subsequently converting it into powder or granule form;
Claim 9: The powder or granules are loaded into a metal strip while the metal strip is being formed to form a tube, and after welding the edges of the strip, the tube is compressed and reduced in diameter to form a continuous body. from 1
The method described in any one of 5. 17. Process according to claim 16, characterized in that the mixed oxide is subjected to a grinding step with one or more temperature treatments, optionally simultaneously, until it is transformed into a continuum shape. 18. Process according to any one of claims 9 to 17, characterized in that the temperature treatment is carried out in a temperature range between 850°C and 1650°C, in particular at a temperature between 1000°C and 1500°C.
JP63122177A 1987-05-20 1988-05-20 Superconductor which can be taken up by winding and manufacture of the same Pending JPS63308810A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3716815.0 1987-05-20
DE3716815A DE3716815C2 (en) 1987-05-20 1987-05-20 Process for the continuous production of a superconductor
DE3730766.5 1987-09-12
DE3730766A DE3730766C2 (en) 1987-05-20 1987-09-12 Process for the continuous production of a superconductor in a reelable design

Publications (1)

Publication Number Publication Date
JPS63308810A true JPS63308810A (en) 1988-12-16

Family

ID=25855771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63122177A Pending JPS63308810A (en) 1987-05-20 1988-05-20 Superconductor which can be taken up by winding and manufacture of the same

Country Status (3)

Country Link
JP (1) JPS63308810A (en)
DE (2) DE3716815C2 (en)
FR (1) FR2615651B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410521A (en) * 1987-07-03 1989-01-13 Toshiba Corp Manufacture of compound superconductive wire

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3884029T2 (en) * 1987-03-31 1994-04-14 Sumitomo Electric Industries Process for the production of a superconducting wire.
DE3731266A1 (en) * 1987-09-17 1989-04-06 Kernforschungsz Karlsruhe COVER MATERIAL FOR SUPRAL-CONDUCTING WIRE
JP2775946B2 (en) * 1989-12-28 1998-07-16 住友電気工業株式会社 Manufacturing method of oxide superconducting wire
EP0704862B1 (en) 1994-09-30 2003-01-22 Canon Kabushiki Kaisha Method of manufacturing a superconducting wire
DE19727343A1 (en) * 1996-07-11 1998-01-15 Alsthom Cge Alcatel High current carrying capacity superconductive layer production

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252317A (en) * 1987-04-09 1988-10-19 Fujikura Ltd Manufacture of superconductive wire
JPS63252318A (en) * 1987-04-09 1988-10-19 Fujikura Ltd Manufacture of superconductive wire
JPS63264820A (en) * 1987-04-22 1988-11-01 Nippon Steel Corp Continuous manufacture of superconductive wire
JPS63279523A (en) * 1987-05-08 1988-11-16 Toshiba Corp Manufacture of compound superconductive wire
JPS63292523A (en) * 1987-05-26 1988-11-29 Hitachi Cable Ltd Manufacture of superconductor cable
JPH01140520A (en) * 1987-02-05 1989-06-01 Sumitomo Electric Ind Ltd Manufacture of composite oxide ceramic superconductive wire
JPH01211813A (en) * 1987-03-31 1989-08-25 Sumitomo Electric Ind Ltd Production of superconductive wire

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2108635A1 (en) * 1971-02-24 1972-08-31 Kabel Metallwerke Ghh Process for the continuous production of an elongated superconductor
DE3019980C2 (en) * 1980-05-24 1983-03-24 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Process for the production of superconducting wires from multifilaments containing niobium and aluminum, surrounded by copper or copper alloy
WO1982003941A1 (en) * 1981-04-30 1982-11-11 Imaizumi Mitsuyuki Compound-type superconductor and process for its preparation
EP0281474B2 (en) * 1987-02-28 2006-05-24 Sumitomo Electric Industries Limited Process for manufacturing a compound oxide-type superconducting wire
EP0503746B1 (en) * 1987-03-13 1997-05-14 Kabushiki Kaisha Toshiba Superconducting wire and method of manufacturing the same
US4885273A (en) * 1987-03-20 1989-12-05 Fujikura Ltd. Method of producing a superconducting wire using alloy preform
US4952554A (en) * 1987-04-01 1990-08-28 At&T Bell Laboratories Apparatus and systems comprising a clad superconductive oxide body, and method for producing such body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140520A (en) * 1987-02-05 1989-06-01 Sumitomo Electric Ind Ltd Manufacture of composite oxide ceramic superconductive wire
JPH01211813A (en) * 1987-03-31 1989-08-25 Sumitomo Electric Ind Ltd Production of superconductive wire
JPS63252317A (en) * 1987-04-09 1988-10-19 Fujikura Ltd Manufacture of superconductive wire
JPS63252318A (en) * 1987-04-09 1988-10-19 Fujikura Ltd Manufacture of superconductive wire
JPS63264820A (en) * 1987-04-22 1988-11-01 Nippon Steel Corp Continuous manufacture of superconductive wire
JPS63279523A (en) * 1987-05-08 1988-11-16 Toshiba Corp Manufacture of compound superconductive wire
JPS63292523A (en) * 1987-05-26 1988-11-29 Hitachi Cable Ltd Manufacture of superconductor cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410521A (en) * 1987-07-03 1989-01-13 Toshiba Corp Manufacture of compound superconductive wire

Also Published As

Publication number Publication date
DE3716815A1 (en) 1988-12-08
DE3716815C2 (en) 1997-07-31
DE3730766A1 (en) 1989-03-23
DE3730766C2 (en) 1998-05-20
FR2615651B1 (en) 1994-03-04
FR2615651A1 (en) 1988-11-25

Similar Documents

Publication Publication Date Title
EP0281444B1 (en) Process for manufacturing a superconducting wire of compound oxide-type ceramic
JPS6215968B2 (en)
JPH03501665A (en) Method for producing wire or band made of high-temperature superconductor and capsules used therein
JPS6331884B2 (en)
JPS63308810A (en) Superconductor which can be taken up by winding and manufacture of the same
EP0397943A1 (en) Method of producing a superconductive oxide cable and wire
JP2002506275A (en) Multi-core BSCOO room temperature superconductor
EP0304076A2 (en) Method of manufacturing superconductive products
JPS63285155A (en) Oxide type superconductive material and production thereof
JP2895495B2 (en) Manufacturing method of oxide superconducting conductor
JPS63276819A (en) Manufacture of ceramic superconductive filament
JPS63292523A (en) Manufacture of superconductor cable
JP2583575B2 (en) Manufacturing method of oxide superconducting wire
JPH02129812A (en) Manufacture of ceramic superconductor product
JPH06309967A (en) Manufacture of oxide type superconducting wire
JP3078857B2 (en) Manufacturing method of oxide superconducting wire
JP2549706B2 (en) Method for producing T1-based oxide superconducting wire
JPH02192401A (en) Production of oxide superconductor and oxide superconducting wire
JPS63289724A (en) Manufacture of oxide superconducting wire
JPS63264811A (en) Ceramic superconductive wire
JPH03173017A (en) Oxide superconducting wire-rod manufacture and coil manufacture
JPH01246719A (en) Manufacture of oxide superconductor
JPH01241711A (en) Manufacture of oxide superconductor wire
JPS63269411A (en) Ceramic superconductive filament
JPH02215017A (en) Manufacture of oxide superconductor