JPH01219017A - Production of oxide superconductor - Google Patents
Production of oxide superconductorInfo
- Publication number
- JPH01219017A JPH01219017A JP63047219A JP4721988A JPH01219017A JP H01219017 A JPH01219017 A JP H01219017A JP 63047219 A JP63047219 A JP 63047219A JP 4721988 A JP4721988 A JP 4721988A JP H01219017 A JPH01219017 A JP H01219017A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- layer
- copper
- superconducting
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000010949 copper Substances 0.000 claims abstract description 31
- 229910052802 copper Inorganic materials 0.000 claims abstract description 28
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 238000009792 diffusion process Methods 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims abstract description 13
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000005751 Copper oxide Substances 0.000 claims abstract description 3
- 229910000431 copper oxide Inorganic materials 0.000 claims abstract description 3
- 230000000737 periodic effect Effects 0.000 claims description 6
- 229910052693 Europium Inorganic materials 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- 229910052706 scandium Inorganic materials 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 229910052691 Erbium Inorganic materials 0.000 claims description 2
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 33
- 239000000843 powder Substances 0.000 abstract description 28
- 238000000034 method Methods 0.000 abstract description 16
- 238000010438 heat treatment Methods 0.000 abstract description 15
- 239000013078 crystal Substances 0.000 abstract description 5
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 abstract description 4
- 238000007747 plating Methods 0.000 abstract description 3
- 238000005245 sintering Methods 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 2
- 238000010298 pulverizing process Methods 0.000 abstract description 2
- 238000007740 vapor deposition Methods 0.000 abstract description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 6
- 239000011812 mixed powder Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000003746 solid phase reaction Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 2
- 229910052689 Holmium Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 241000254158 Lampyridae Species 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910018054 Ni-Cu Inorganic materials 0.000 description 1
- 229910018481 Ni—Cu Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 241001197925 Theila Species 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【発明の詳細な説明】
1−産業上の利用分野」
本発明は、核磁気共鳴装置や粒子加速器に用いられる超
電導マグネットなどの超電導機器用、あるいは送電線用
として開発が進められている酸化物系超電導体の製造方
法に関する。[Detailed Description of the Invention] 1-Field of Industrial Application The present invention relates to oxides that are being developed for use in superconducting devices such as superconducting magnets used in nuclear magnetic resonance devices and particle accelerators, or for use in power transmission lines. The present invention relates to a method for manufacturing a superconductor.
「従来の技術」
最近に至り、常電導状態から超電導状態に遷移する臨界
温度(T c)が液体窒素温度を超える値を示す酸化物
系の超電導体が種々発見されている。"Prior Art" Recently, various oxide-based superconductors have been discovered whose critical temperature (Tc) for transitioning from a normal conductive state to a superconducting state exceeds the liquid nitrogen temperature.
この種の酸化物超電導体は、液体ヘリウムで冷却するこ
とが必要であった従来の合金系あるいは金属間化合物系
の超電導体に比較して格段に有利な冷却条件で使用でき
ることから、実用上極めて有望な超電導材料として研究
がなされている。This type of oxide superconductor can be used under much more advantageous cooling conditions than conventional alloy-based or intermetallic compound-based superconductors, which require cooling with liquid helium. It is being studied as a promising superconducting material.
ところで従来、このような酸化物超電導体を具備する超
電導線の製造方法の一例として、酸化物超電導体を構成
する各元素を含む複数の原料粉末を混合して混合粉末を
調製し、次いでこの混合粉末を仮焼して不要成分を除去
するとともに、この仮焼粉末を金属管に充填して縮径加
工を施し、所望の直径の線材を得、この線材に熱処理を
施して金属管内部の圧密体に固相反応を生じさせ、酸化
物超電導体を生成させることにより酸化物超電導線を得
ろ方法が知られている。Conventionally, as an example of a method for manufacturing a superconducting wire including such an oxide superconductor, a plurality of raw material powders containing each element constituting the oxide superconductor are mixed to prepare a mixed powder, and then this mixed powder is The powder is calcined to remove unnecessary components, and the calcined powder is filled into a metal tube and subjected to diameter reduction processing to obtain a wire rod of the desired diameter, which is then heat treated to compact the inside of the metal tube. A method for obtaining an oxide superconducting wire by causing a solid phase reaction in a body to produce an oxide superconductor is known.
「発明が解決しようとする課題」
しかしながら前述の従来方法においては、原料粉末を完
全に均一に混合することが困難なことから、熱処理を施
しても圧密体の全体が完全に均一な超電導体とはならな
い問題があり、特に長尺の超電導線を製造した場合、線
材の全長にわたり均一な結晶構造の超電導体を生成でき
ないために、臨界電流密度の高い酸化物超電導線を得る
ことができない問題があった。``Problems to be Solved by the Invention'' However, in the conventional method described above, it is difficult to mix the raw material powders completely uniformly, so even if heat treatment is applied, the entire consolidated body does not become a completely uniform superconductor. In particular, when manufacturing long superconducting wires, there is a problem that it is not possible to obtain oxide superconducting wires with high critical current density because it is not possible to produce a superconductor with a uniform crystal structure over the entire length of the wire. there were.
また、而述の超電導線の内部に形成されている酸化物超
電導体は、粉末の圧密体を焼結し、固相反応させて生成
されたものであり、多数の粉末粒子が粒界に微細な気孔
を介在させて接合された構造をなし、粉末粒子の接触部
分を介して電流が流れるために、臨界電流密度が低い欠
点があった。In addition, the oxide superconductor formed inside the superconducting wire mentioned above is produced by sintering a compacted powder body and causing a solid phase reaction, and many powder particles are finely formed at the grain boundaries. The powder particles have a bonded structure with pores interposed between them, and current flows through the contact portions of the powder particles, so the critical current density is low.
更に、複数の原料粉末を混合して温容粉末を調製する場
合、酸化物超電導体を構成する元素を混合粉末内に均一
に分散させることが困難なことから、熱処理時の固相反
応が均一になされない傾向があり、均質な酸化物超電導
体を生成できない問題があった。なお、酸化物超電導体
の結晶粒界に面性の如く微細な空孔が形成されている場
合、応力が作用するとクラックが生じ易く、機械強度が
低い欠点があるために、超電導マグネットを製造するた
めにコイル加工などを行うと超電導体にクラックが入り
、超電導特性が著しく低下する問題があった。Furthermore, when preparing a hot powder by mixing multiple raw material powders, it is difficult to uniformly disperse the elements constituting the oxide superconductor in the mixed powder, so the solid phase reaction during heat treatment is not uniform. There was a problem that a homogeneous oxide superconductor could not be produced. In addition, when fine pores are formed in the grain boundaries of an oxide superconductor, as in the case of planarity, cracks are likely to occur when stress is applied, and the mechanical strength is low, so it is difficult to manufacture superconducting magnets. Therefore, when coil processing is performed, cracks appear in the superconductor, resulting in a significant deterioration of superconducting properties.
本発明は、前記問題に鑑みてなされたもので、空孔のな
い、緻密な構造の酸化物超電導体を均一に生成させるこ
とができ、機械強度も高い酸化物超電導体を製造する方
法の提供を目的とする。The present invention has been made in view of the above problems, and provides a method for producing an oxide superconductor that can uniformly produce an oxide superconductor with no pores and a dense structure and has high mechanical strength. With the goal.
「課題を解決するための手段」
本発明は前記問題点を解決するために、一般式A IB
tcu30’t−6(ただしAは、Y、Sc、La、
Yb。"Means for Solving the Problems" In order to solve the above-mentioned problems, the present invention solves the problems described above.
tcu30't-6 (A is Y, Sc, La,
Yb.
E r、E u、Ho、D y等の周期律表ma族元素
の1種以上を示し、Bは、Ca、Sr、Ba等の周期律
表Ifa族元素の1種以上を示す。)で示される組成の
酸化物超電導体の製造方法において、酸素存在雰囲気に
おける、A rB 3Cuzo Xなる組成の化合物相
と銅または酸化銅との間の拡散反応により、A、B2C
LI307−6なる組成の酸化物超電導体を生成させる
ものである。B represents one or more elements of the Ma group of the periodic table, such as E r, Eu, Ho, and Dy, and B represents one or more of the Ifa group elements of the periodic table, such as Ca, Sr, and Ba. ), A, B2C
This produces an oxide superconductor having a composition of LI307-6.
「作用」
A IB yCuto Xなる組成の酸化物相と銅また
は酸化銅の相互拡散反応によりA + B t’c L
ls O?−6なる組成の酸化物超電導体が生成する。"Action" A + B t'c L due to the interdiffusion reaction between the oxide phase with the composition A IB yCuto X and copper or copper oxide
Is O? An oxide superconductor having a composition of -6 is produced.
また、AlB5Cu1O)(なる組成の酸化物相に、銅
と酸素を拡散させてA IB *CLi2O7−6なる
組成の酸化物超電導体を生成させるので、拡散させる元
素数も少なく、しかも、酸化物相を元に酸化物超電導体
を生成させるので拡散反応が円滑かつ確実に進行する。In addition, since copper and oxygen are diffused into the oxide phase with the composition AlB5Cu1O) (to produce an oxide superconductor with the composition A IB *CLi2O7-6, the number of elements to be diffused is small, and the oxide phase Since the oxide superconductor is generated based on the , the diffusion reaction proceeds smoothly and reliably.
以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.
第1図ないし第5図は、本発明の製造方法をY−B a
−Cu−0系の酸化物超電導材の製造方法に適用した一
実施例を説明するためのものである。1 to 5 show the manufacturing method of the present invention in Y-B a
This is for explaining an example applied to a method for manufacturing a -Cu-0 based oxide superconducting material.
本実施例では、まず、Ni、Zr、Tiなどの融点80
0℃以上の純金属、あるいは、Ni−Cu、Ti−A
I、N i−A 1などの融点800℃以上の合金から
なる第1図に示すテープ状の長尺の基材lを用意する。In this example, first, melting point 80 of Ni, Zr, Ti, etc.
Pure metal at 0°C or higher, or Ni-Cu, Ti-A
A long tape-shaped base material l shown in FIG. 1 made of an alloy having a melting point of 800° C. or higher, such as I, N i-A 1, is prepared.
なお、基材!の形状は管状や線状であっても差し支えな
い。In addition, the base material! The shape may be tubular or linear.
次いでこの基材lの外面に、メツキ法、蒸着法、クラッ
ド法などの方法により純銅からなる銅層2を第2図に示
すように形成する。Next, a copper layer 2 made of pure copper is formed on the outer surface of the base material 1 by a plating method, a vapor deposition method, a cladding method, or the like, as shown in FIG.
次にこの銅層2の外面に、Y IB arc uto
xなる組成の酸化物層3を第3図に示すように形成して
被覆材4を形成する。Next, on the outer surface of this copper layer 2, Y IB arc auto
An oxide layer 3 having a composition x is formed as shown in FIG. 3 to form a covering material 4.
Y IB asc uto Xなる組成の酸化物を形成
するには、例えば、Y、0.粉末とBaCO3粉末とC
uO粉末をY:Ba:Cu=1:3:2の割合になるよ
うに混合し、この混合粉末を必要に応じて400〜80
0℃に加熱する仮焼処理を行って不要成分を除去し、こ
の後に大気中あるいは酸素気流中などの酸化雰囲気にお
いて、800〜1100℃で数時間〜数十時間加熱して
焼結し、焼結後に粉砕する処理を必要回数行う。次にこ
の焼結粉末を有機バインダーを含むエタノールなどの溶
媒に溶解してスラリー状とする。そして、このスラリー
を前記銅層2の外面に、溶融浸漬法またはスプレーガン
による吹き付は法あるいはスクリーン印刷機によるスク
リーン印刷法、ドクターブレード法などの方法により塗
布すれば酸化物層3を形成することができる。To form an oxide having the composition Y IB asc auto X, for example, Y, 0. Powder and BaCO3 powder and C
Mix uO powder at a ratio of Y:Ba:Cu=1:3:2, and add 400 to 80% of this mixed powder as necessary.
A calcining process is performed to remove unnecessary components by heating to 0°C, and then sintering is performed by heating at 800 to 1100°C for several hours to several tens of hours in an oxidizing atmosphere such as the air or an oxygen stream. After drying, pulverization is carried out as many times as necessary. Next, this sintered powder is dissolved in a solvent such as ethanol containing an organic binder to form a slurry. Then, this slurry is applied to the outer surface of the copper layer 2 by a melt dipping method, a spraying method using a spray gun, a screen printing method using a screen printing machine, a doctor blade method, or the like to form an oxide layer 3. be able to.
酸化物層3を形成したならば、被覆材4をArガス、H
eガス、N、ガスなどの不活性ガス雰囲気、あるいは真
空雰囲気中において、400〜700℃に加熱する中間
熱処理を行う。この中間熱処理によって、銅層2の銅と
酸化物層3に含有されるBaが相互拡散し、酸化物層3
と銅層2の境界部分にB aCuo tなる層が生成さ
れるとともに、銅層2の銅が酸化物層3側に拡散する。Once the oxide layer 3 is formed, the coating material 4 is heated with Ar gas, H
Intermediate heat treatment is performed by heating to 400 to 700° C. in an inert gas atmosphere such as e-gas, N gas, or a vacuum atmosphere. By this intermediate heat treatment, the copper in the copper layer 2 and Ba contained in the oxide layer 3 interdiffuse, and the oxide layer 3
A layer called BaCuot is generated at the boundary between the copper layer 2 and the copper layer 2, and the copper in the copper layer 2 is diffused toward the oxide layer 3 side.
次いで1気圧の酸素気流中などの酸素存在雰囲気におい
て800〜1100℃に数時間〜数百時間程度加熱し、
その後に室温まで、例えば100℃/時間の割合で徐冷
する最終熱処理を行う。Next, it is heated to 800 to 1100°C for several hours to several hundred hours in an oxygen-existing atmosphere such as in an oxygen stream of 1 atm,
Thereafter, a final heat treatment is performed in which the material is slowly cooled down to room temperature at a rate of, for example, 100° C./hour.
この最終熱処理により、銅層2から拡散される銅と、熱
処理雰囲気から供給されて拡散する酸素がY rB a
sCuto Xなる組成の酸化物層3に拡散して反応す
る。この結果、Y rB atc Li2O?−δなる
組成の酸化物超電導体が生成し、第4図に示す超電導層
6が生成されて酸化物超電導材(超電導テープ)Aが得
られる。Through this final heat treatment, the copper diffused from the copper layer 2 and the oxygen supplied from the heat treatment atmosphere and diffused become Y rBa
It diffuses into the oxide layer 3 having a composition of sCutoX and reacts. As a result, Y rB atc Li2O? An oxide superconductor having a composition of -δ is produced, a superconducting layer 6 shown in FIG. 4 is produced, and an oxide superconducting material (superconducting tape) A is obtained.
なお、前記した方法では、Y rB a3CL120
xなる組成の酸化物層3に対し、銅と酸素を拡散反応さ
せてY rB azc usO?−6なる組成の酸化物
超電導体を生成させるものであり、少数の元素を酸化物
層3に拡散反応させることによりY rB atc 0
307−6を生成させることができるので、従来のよう
に混合粉末の圧密体に拡散反応を生じさ仕、酸化物超電
導体を構成する元素の全てを拡散反応させる場合に比較
して元素の拡散が容易かつ円滑になされる。従って均一
な結晶構造であって、空孔のない緻密な酸化物超電導体
を生成させることができ、臨界温度と臨界電流密度の高
い高特性の超電導材Aを得ることができる。In addition, in the method described above, Y rB a3CL120
Copper and oxygen are caused to undergo a diffusion reaction with respect to the oxide layer 3 having a composition of x, so that Y rB azc usO? -6 is produced, and a small number of elements are diffused into the oxide layer 3 to produce Y rB atc 0
307-6 can be generated, which causes a diffusion reaction in a compacted body of mixed powder as in the past, and the diffusion of elements is much faster than when all the elements constituting the oxide superconductor are caused to undergo a diffusion reaction. is done easily and smoothly. Therefore, a dense oxide superconductor with a uniform crystal structure and no pores can be produced, and a superconducting material A with high critical temperature and high critical current density can be obtained.
また、前述のように製造された酸化物超電導材Aにあっ
ては、基材lの外方に形成した銅層2と酸化物層3の間
において元素が相互拡散反応することにより超電導層6
が生成されているので、超電導層6がその他の層に対し
て強く密着している。In addition, in the oxide superconducting material A manufactured as described above, the elements undergo a mutual diffusion reaction between the copper layer 2 and the oxide layer 3 formed on the outside of the base material l, so that the superconducting layer 6
is generated, so the superconducting layer 6 is strongly adhered to other layers.
また、中間熱処理によって酸化物層3に含有されるBa
を銅層2側に拡散させてB aCuo tなる層を生成
させた後に酸化物超電導層6を生成させるので、超電導
層6と基材1との密着性を向上させることができる。こ
のため超電導層6は基材1に対して密着性が良好であり
、超電導材Aは曲げなどに強い優れた構造になっている
。従って超電導材Aを超電導マグネット用に使用する場
合、クラックなどの欠陥を生じさけることなくコイル加
工して超電導マグネットを形成することができる。In addition, Ba contained in the oxide layer 3 due to intermediate heat treatment
Since the oxide superconducting layer 6 is generated after diffusing B aCuot to the copper layer 2 side to generate the layer BaCuot, the adhesion between the superconducting layer 6 and the base material 1 can be improved. Therefore, the superconducting layer 6 has good adhesion to the base material 1, and the superconducting material A has an excellent structure that is resistant to bending. Therefore, when superconducting material A is used for a superconducting magnet, the superconducting magnet can be formed by coil processing without causing defects such as cracks.
また、熱処理によって形成される超電導層6の厚さは、
銅層2および酸化物層3の厚さと熱処理温度と熱処理時
間を調節することによって制御することができる。Moreover, the thickness of the superconducting layer 6 formed by heat treatment is
It can be controlled by adjusting the thickness of the copper layer 2 and the oxide layer 3, and the heat treatment temperature and time.
ところで、前記超電導材Aは単独で超電導マグネットコ
イル用あるいは電力輸送用としての適用も可能であるが
、その他に、例えば、多数枚積層して、シースの内部に
収納し、大容蛍用の超電導導体として使用することもで
きる。By the way, the superconducting material A can be used alone as a superconducting magnet coil or for power transport, but it is also possible to stack a large number of superconducting materials and store them inside a sheath to create a superconducting material for large-capacity fireflies. It can also be used as a conductor.
なお、前記した例においては、Y −B a−Cu−0
系の酸化物超電導材の製造方法について説明したが、本
発明をその他のA −B −Cu−0系の超電導材の製
造方法に適用できるのは勿論である。また、Y −B
a−Cu−0系以外の酸化物超電導材を製造する場合に
は、酸化物層3の生成用に用いる原料粉末に別種のもの
を用い、周期律表Ila族元素としてBa以外の元素を
用いれば良い。即ち、原料粉末を調製する場合に、周期
律表ma族元素の化合物粉末として、Sc、Y、La、
Ce、Pr、Nd、Pi、Sm。In addition, in the above-mentioned example, Y-B a-Cu-0
Although the method for manufacturing the A-B-Cu-0-based oxide superconducting material has been described, it goes without saying that the present invention can be applied to other methods for manufacturing A-B-Cu-0-based superconducting materials. Also, Y-B
When producing an oxide superconducting material other than the a-Cu-0 series, a different type of raw material powder is used to generate the oxide layer 3, and an element other than Ba is used as the Ila group element of the periodic table. Good. That is, when preparing raw material powder, Sc, Y, La,
Ce, Pr, Nd, Pi, Sm.
Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、L
uなどの化合物粉末の1種以上を用い、周期律表IIa
族元素の化合物粉末として、S r、Mg、Ca、Ba
、Raなどの化合物粉末の1種以上を用いれば良い。Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, L
Using one or more compound powders such as u, periodic table IIa
Group element compound powders include Sr, Mg, Ca, Ba
, Ra or the like may be used.
「製造例」
幅2 mm、厚さ0 、1 mmのNi製のテープ上に
、硫酸鋼浴を用いたメツキ法により、厚さ30μmの銅
層を形成した。また、Y t Oy粉末とB a CO
3粉末CuO粉末をモル比でY :Ba:Cu= 1
:3 :2の割合で混合し、大気中において900℃で
24時量刑熱処理した後に粉砕する処理を2回繰り返し
行い、焼結粉末を得た。"Manufacturing Example" A copper layer with a thickness of 30 μm was formed on a Ni tape with a width of 2 mm and a thickness of 0 and 1 mm by a plating method using a sulfuric acid steel bath. In addition, Y t Oy powder and B a CO
3 powder CuO powder in molar ratio Y:Ba:Cu=1
:3 :2 ratio, heat treated in the atmosphere at 900° C. for 24 hours, and then pulverized twice to obtain a sintered powder.
次にこの焼結粉末を有機バインダーを含ませたエタノー
ルなどの有機溶媒中に溶解してスラリー状とし、このス
ラリーを前記テープに塗布して厚さ約20μmの酸化物
層を形成した。Next, this sintered powder was dissolved in an organic solvent such as ethanol containing an organic binder to form a slurry, and this slurry was applied to the tape to form an oxide layer with a thickness of about 20 μm.
次いでこのテープをArガス雰囲気中において600℃
で50時間加熱する中間熱処理を行い、続いて、1気圧
の酸素ガス気流雰囲気中において900℃で24時間加
熱する最終熱処理を行い、その後に室温まで徐冷して酸
化物超電導テープを得た。This tape was then heated at 600°C in an Ar gas atmosphere.
An intermediate heat treatment was performed in which the material was heated at 900° C. for 24 hours in an oxygen gas atmosphere of 1 atm, and then an oxide superconducting tape was obtained by slowly cooling it to room temperature.
この酸化物超電導テープは臨界温度が92Kを示し、優
秀な酸化物超電導体を具備していることが判明した。This oxide superconducting tape showed a critical temperature of 92K, and was found to be an excellent oxide superconductor.
また、前記酸化物超電導テープを光学顕微鏡で断面観察
したところ、厚さ約30μmの反応層を確認することが
できた。そしてこの反応層をX線回折法により分析した
ところY IB atCuto□−δなる組成であるこ
とを確認することができた。Further, when the cross section of the oxide superconducting tape was observed using an optical microscope, a reaction layer with a thickness of about 30 μm was confirmed. When this reaction layer was analyzed by X-ray diffraction, it was confirmed that it had a composition of Y IB at Cuto□-δ.
「発明の効果」
以上説明したように本発明は、A1B3CUzOxなる
酸化物相に銅と酸素を拡散させてA1B2Cu307−
6なる組成の酸化物超電導体を生成させるものであり、
酸化物相を元に、少数元素の拡散で酸化物超電導体を生
成させることができるために、元素拡散を円滑かつ確実
に行わせることができ、緻密で均一な結晶構造の酸化物
超電導体を生成できろ効果がある。"Effects of the Invention" As explained above, the present invention diffuses copper and oxygen into the oxide phase of A1B3CUzOx to form A1B2Cu307-
It produces an oxide superconductor with a composition of 6,
Since oxide superconductors can be generated by diffusion of minority elements based on the oxide phase, elemental diffusion can be carried out smoothly and reliably, making it possible to create oxide superconductors with a dense and uniform crystal structure. It's effective if you can generate it.
また、A IB 3Cu20 xなる組成の酸化物相を
元に、酸化物相に銅と酸素を拡散させて酸化物超電導体
を生成させるので、従来のように、混合粉末の圧密体に
拡散反応を生じさせ、酸化物超電導体を構成する元素の
全てを拡散反応させる場合に比較して、拡散元素数ら少
なくなり、元素の拡散が容易かつ確実になされる。従っ
て均一な結晶構造であって、空孔のない緻密な酸化物超
電導体を生成させることができ、臨界温度と臨界電流密
度の高い高特性の超電導材を得ろことができる効果があ
る。Furthermore, since an oxide superconductor is generated by diffusing copper and oxygen into the oxide phase based on the oxide phase with the composition A IB 3Cu20 Compared to the case where all the elements constituting the oxide superconductor are caused to undergo a diffusion reaction, the number of diffusion elements is reduced, and the diffusion of the elements is facilitated and ensured. Therefore, it is possible to produce a dense oxide superconductor with a uniform crystal structure and no pores, and it is possible to obtain a superconducting material with high characteristics such as a high critical temperature and a high critical current density.
更に、本発明で得られた酸化物超電導体には、従来の粉
末法で製造された酸化物超電導体に形成されていた空孔
が生じていないために、機械強度も高く曲げ応力などに
も強い構造となる。従って本発明方法で製造された酸化
物超電導体は超電導マグネットを形成するためにコイル
加工を行ってもクラックなどを生じることがなくなるた
めに、超電導特性の優れた超電導マグネットを得ること
ができる効果がある。Furthermore, the oxide superconductor obtained by the present invention does not have the pores that are formed in oxide superconductors produced by conventional powder methods, so it has high mechanical strength and is resistant to bending stress. It becomes a strong structure. Therefore, the oxide superconductor produced by the method of the present invention does not produce cracks even when coiled to form a superconducting magnet, so it is possible to obtain a superconducting magnet with excellent superconducting properties. be.
第1図ないし第4′図は、本発明の詳細な説明するため
のもので、第1図は基材の横断面図、第2図は基材に銅
層を形成した状態を示す断面図、第3図は基材に同窓と
酸化物層を形成した状態を示す断面図、第4図は酸化物
超電導材を示す断面図である。
I・・・基材、2・・・銅層、3・・・酸化物層、4・
・・被覆材、6・・・酸化物超電導層、 A・・・超
電導材。
出廓人 藤倉電線株式会社
第1図
!
第2図
第3図
第4図
八Figures 1 to 4' are for explaining the present invention in detail. Figure 1 is a cross-sectional view of the base material, and Figure 2 is a cross-sectional view showing a state in which a copper layer is formed on the base material. , FIG. 3 is a sectional view showing a state in which a window and an oxide layer are formed on a base material, and FIG. 4 is a sectional view showing an oxide superconducting material. I... Base material, 2... Copper layer, 3... Oxide layer, 4...
...Covering material, 6...Oxide superconducting layer, A...Superconducting material. Outsourcer Fujikura Electric Cable Co., Ltd. Figure 1! Figure 2 Figure 3 Figure 4 Figure 8
Claims (1)
Aは、Y、Sc、La、Yb、Er、Eu、Ho、Dy
等の周期律表IIIa族元素の1種以上を示し、Bは、C
a、Sr、Ba等の周期律表IIa族元素の1種以上を示
す。)で示される組成の酸化物超電導体の製造方法にお
いて、酸素存在雰囲気における、A_1B_3Cu_2
O_xなる組成の化合物相と銅または酸化銅との間の拡
散反応によりA_1B_2Cu_3O_7_−_δなる
組成の酸化物超電導体を生成させることを特徴とする酸
化物系超電導体の製造方法。General formula A_1B_2Cu_3O_7_-_δ (where A is Y, Sc, La, Yb, Er, Eu, Ho, Dy
B represents one or more elements of group IIIa of the periodic table, such as
It represents one or more elements of group IIa of the periodic table, such as a, Sr, and Ba. ) in the method for producing an oxide superconductor having the composition shown in A_1B_3Cu_2 in an oxygen-present atmosphere.
A method for producing an oxide-based superconductor, characterized in that an oxide superconductor having a composition of A_1B_2Cu_3O_7_-_δ is produced by a diffusion reaction between a compound phase having a composition of O_x and copper or copper oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63047219A JPH01219017A (en) | 1988-02-29 | 1988-02-29 | Production of oxide superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63047219A JPH01219017A (en) | 1988-02-29 | 1988-02-29 | Production of oxide superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01219017A true JPH01219017A (en) | 1989-09-01 |
Family
ID=12769065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63047219A Pending JPH01219017A (en) | 1988-02-29 | 1988-02-29 | Production of oxide superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01219017A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101814343A (en) * | 2010-05-17 | 2010-08-25 | 重庆大学 | Enhanced Bi-based high-temperature superconductive strip and preparation method thereof |
-
1988
- 1988-02-29 JP JP63047219A patent/JPH01219017A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101814343A (en) * | 2010-05-17 | 2010-08-25 | 重庆大学 | Enhanced Bi-based high-temperature superconductive strip and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6291402B1 (en) | Method of making a superconductive oxide body | |
EP0286289B1 (en) | A method of preparing a superconducting oxide and superconducting oxide metal composites | |
US5384307A (en) | Oxide superconductor tape having silver alloy sheath with increased hardness | |
JPH0328122A (en) | Manufacture of object containing super conducting oxide material | |
DE3855230T2 (en) | Method of manufacturing a superconducting article | |
JPH01219017A (en) | Production of oxide superconductor | |
JP2583573B2 (en) | Method for producing oxide-based superconducting material | |
JP2634186B2 (en) | Method for producing oxide-based superconducting material | |
JP2901243B2 (en) | Method for producing oxide-based superconducting wire | |
JP2583565B2 (en) | Method for producing oxide-based superconducting material | |
JPH01166418A (en) | Manufacture of oxide superconductive material | |
JPH01239019A (en) | Production of oxide-based superconducting material | |
JPH01239021A (en) | Production of oxide-based superconducting material | |
JPS63307150A (en) | Oxide cremics based superconductor and production thereof | |
JPH01219018A (en) | Production of oxide superconducting material | |
JP2686253B2 (en) | Method for producing oxide-based superconducting material | |
JP2727565B2 (en) | Superconductor manufacturing method | |
JPH01243315A (en) | Manufacture of oxide superconductive multiconductor wire | |
JP2573967B2 (en) | Manufacturing method of oxide superconducting material | |
Walker et al. | Practical, coated BSCCO-2212 high T/sub c/conductors | |
JPH01239017A (en) | Production of oxide-based superconducting material | |
JP2555089B2 (en) | Method for manufacturing superconducting conductor | |
EP0698930A1 (en) | Oxide superconductor and fabrication method of the same | |
JP2583934B2 (en) | Manufacturing method of oxide superconducting conductor | |
JPH0815019B2 (en) | Manufacturing method of oxide superconducting material |