JP2573967B2 - Manufacturing method of oxide superconducting material - Google Patents

Manufacturing method of oxide superconducting material

Info

Publication number
JP2573967B2
JP2573967B2 JP62245554A JP24555487A JP2573967B2 JP 2573967 B2 JP2573967 B2 JP 2573967B2 JP 62245554 A JP62245554 A JP 62245554A JP 24555487 A JP24555487 A JP 24555487A JP 2573967 B2 JP2573967 B2 JP 2573967B2
Authority
JP
Japan
Prior art keywords
layer
superconducting
oxide
heat treatment
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62245554A
Other languages
Japanese (ja)
Other versions
JPS6489114A (en
Inventor
優 杉本
宰 河野
義光 池野
伸行 定方
恭治 太刀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62245554A priority Critical patent/JP2573967B2/en
Publication of JPS6489114A publication Critical patent/JPS6489114A/en
Application granted granted Critical
Publication of JP2573967B2 publication Critical patent/JP2573967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、核磁気共鳴装置や粒子加速器に用いられ
ている超電導マグネット用コイルなどの超電導応用機器
に適用可能な酸化物超電導材に関する。
Description: TECHNICAL FIELD The present invention relates to an oxide superconducting material applicable to superconducting applied devices such as coils for superconducting magnets used in nuclear magnetic resonance devices and particle accelerators.

「従来の技術」 最近に至り、常電導状態から超電導状態に遷移する臨
界温度(Tc)が液体窒素温度を超える値を示す酸化物超
電導体が種々発見されている。この種の酸化物超電導体
は、一般式A−B−Cu−O(ただしAはY,Sc,La,Yb,Er,
Eu,Ho,Dy等の周期律表III a族元素の1種以上を示し、
BはBe,Mg,Ca,Sr,Ba等の周期律表II a族元素の1種以上
を示す)で示される酸化物であり、液体ヘリウムで冷却
することが必要であった従来の合金系あるいは金属間化
合物系の超電導体に比較して格段に有利な冷却条件で使
用できることから、実用上極めて有望な超電導材料とし
て研究がなされている。
[Prior Art] Recently, various oxide superconductors have been discovered in which a critical temperature (Tc) at which a transition from a normal conducting state to a superconducting state is higher than the temperature of liquid nitrogen. This type of oxide superconductor has a general formula AB—Cu—O (where A is Y, Sc, La, Yb, Er,
One or more elements of group IIIa of the Periodic Table III such as Eu, Ho, and Dy;
B is an oxide represented by one or more elements of Group IIa of the Periodic Table II such as Be, Mg, Ca, Sr, and Ba), and is a conventional alloy which required cooling with liquid helium. Alternatively, since superconducting materials can be used under significantly more advantageous cooling conditions as compared with intermetallic compound superconductors, they have been studied as superconducting materials that are extremely promising in practical use.

ところで従来、このような酸化物超電導体を具備する
超電導線の製造方法の一例として、第6図を基に以下に
説明する方法が知られている。
Conventionally, as an example of a method of manufacturing a superconducting wire including such an oxide superconductor, a method described below with reference to FIG. 6 is known.

酸化物超電導線を製造するには、A−B−Cu−Oで示
される酸化物超電導体を構成する各元素を含む複数の原
料粉末を混合して混合粉末を作成し、次いでこの混合粉
末を仮焼して不要成分を除去し、この仮焼粉末を熱処理
して超電導粉末とした後に金属管に充填し、更に縮径し
て所望の直径の線材を得、この線材に熱処理を施して第
6図に示すように金属管1の内部に超電導体2が形成さ
れた超電導線Aを製造する方法である。
In order to manufacture an oxide superconducting wire, a mixed powder is prepared by mixing a plurality of raw material powders containing each element constituting an oxide superconductor represented by AB-Cu-O, and then the mixed powder is mixed. After removing unnecessary components by calcining, the calcined powder is heat-treated to be a superconducting powder, and then filled in a metal tube, and further reduced in diameter to obtain a wire having a desired diameter. This is a method for manufacturing a superconducting wire A in which a superconductor 2 is formed inside a metal tube 1 as shown in FIG.

「発明が解決しようとする問題点」 しかしながら前述の従来方法においては、原料粉末を
完全に均一に混合することが困難なことから、熱処理を
施しても超電導体2の全体が完全に均一な結晶構造とは
ならない問題があり、特に長尺の超電導線を製造した場
合、線材の全長にわたり均一な結晶構造の超電導体を生
成できないために、臨界電流密度の高い超電導線を得る
ことができない問題があった。また、前述の方法で製造
された超電導線Aにあっては、金属管1の内部に脆い超
電導体2が充填された構造のために、曲げなどの外力に
弱く、超電導体2にクラックが入り易いなどの欠点があ
り、機械強度に劣る問題があった。
"Problems to be Solved by the Invention" However, in the above-mentioned conventional method, it is difficult to completely and uniformly mix the raw material powders. There is a problem that does not become a structure, especially when a long superconducting wire is manufactured, a superconductor having a high critical current density cannot be obtained because a superconductor having a uniform crystal structure cannot be generated over the entire length of the wire. there were. Further, the superconducting wire A manufactured by the above-described method has a structure in which the brittle superconductor 2 is filled in the metal tube 1, so that the superconducting wire A is vulnerable to external force such as bending, and the superconductor 2 is cracked. There are drawbacks such as ease of use, and a problem of poor mechanical strength.

本発明は、前記問題に鑑みてなされたもので、全長に
わたり均一に超電導層を生成させることができ、基材に
対する超電導層の密着性が良好で機械強度が高いととも
に、超電導層の厚さを所望の値に制御することができ、
更に緻密な結晶粒の超電導層を有する酸化物超電導材の
製造方法の提供を目的とする。
The present invention has been made in view of the above-described problems, and can generate a superconducting layer uniformly over the entire length. The superconducting layer has good adhesion to a substrate, high mechanical strength, and a thickness of the superconducting layer. Can be controlled to the desired value,
It is still another object of the present invention to provide a method for producing an oxide superconducting material having a superconducting layer of dense crystal grains.

「問題点を解決するための手段」 本発明は、前記問題点を解決するために、一般式A−
B−Cu−O(ただしAはY,Sc,La,Yb,Er,Eu,Ho,Dy等の周
期律表III a族元素の1種以上を示し、BはCa,Sr,Ba等
の周期律表II a族元素の1種以上を示す)で示される組
成の酸化物超電導層を具備してなる酸化物超電導材の製
造方法において、金属製の芯材の外方に、Cuからなる被
覆層を形成して被覆材を形成し、この被覆層の少なくと
も表面部に酸化銅を形成するとともに、前記酸化銅層の
外方に、前記A元素とB元素とCuを所定の比率で含有す
る酸化物層を形成して複合材を形成し、この複合材に、
酸化物超電導体を生成させる熱処理温度よりも低い400
〜600℃の温度で中間熱処理を施し、次いで、酸化物超
電導体を生成させる最終熱処理を850〜1000℃で施し、
各層の元素を相互拡散させて酸化物超電導層を生成させ
るものである。
"Means for Solving the Problem" The present invention provides a compound represented by the general formula A-
B-Cu-O (where A represents at least one kind of group IIIa element of the Periodic Table III such as Y, Sc, La, Yb, Er, Eu, Ho, Dy, and B represents the period of Ca, Sr, Ba, etc.) In the method for producing an oxide superconducting material having an oxide superconducting layer having the composition shown in Table II, the oxide superconducting layer has the composition shown in Table II. Forming a layer to form a coating material, forming copper oxide on at least a surface portion of the coating layer, and containing the A element, the B element, and Cu at a predetermined ratio outside the copper oxide layer. Forming an oxide layer to form a composite material,
400 lower than the heat treatment temperature to form oxide superconductors
An intermediate heat treatment at a temperature of ~ 600 ° C, followed by a final heat treatment at 850-1000 ° C to produce an oxide superconductor,
The oxide superconducting layer is formed by mutually diffusing the elements of each layer.

「作用」 基材の外方に形成した被覆層のCuと、酸化銅層のCuお
よびOと、混合層のA元素とB元素とCuを相互拡散させ
て超電導層を生成させるために、相互拡散する元素によ
って超電導層は基材に強く接合する。また、全長にわた
りA元素とB元素とCuとOが均一に存在する複合材に熱
処理を施すために、全長にわたり均一な元素拡散がなさ
れて均一な拡散反応が生じる。更に、酸化銅層と混合層
と添加層の厚さを調節することで超電導層の厚さを制御
することができる。
"Action" In order to interdiffuse Cu of the coating layer formed outside the base material, Cu and O of the copper oxide layer, and A and B elements of the mixed layer and Cu to form a superconducting layer, The superconducting layer is strongly bonded to the substrate by the diffusing element. In addition, since the heat treatment is performed on the composite material in which the element A, the element B, the Cu, and the O are uniformly present over the entire length, the element is uniformly diffused over the entire length and a uniform diffusion reaction occurs. Further, the thickness of the superconducting layer can be controlled by adjusting the thicknesses of the copper oxide layer, the mixed layer, and the additional layer.

また、酸化物超電導体の生成温度よりも低い温度で行
う中間熱処理により被覆層と酸化銅層と混合物層にわた
り含有元素が相互拡散して中間層が生成し、この後の最
終熱処理により更に元素が拡散反応して酸化物超電導層
が生成する。このように低温度で中間熱処理を施した後
に酸化物超電導体生成用の熱処理を高温度で施すことで
緻密な結晶粒からなる酸化物超電導層が生成する。
Also, the intermediate heat treatment performed at a temperature lower than the formation temperature of the oxide superconductor causes the contained elements to interdiffuse across the coating layer, the copper oxide layer, and the mixture layer, thereby generating an intermediate layer. The diffusion reaction produces an oxide superconducting layer. By performing the intermediate heat treatment at a low temperature and then performing the heat treatment for generating an oxide superconductor at a high temperature, an oxide superconducting layer composed of dense crystal grains is generated.

「実施例」 第1図ないし第5図は、本発明の製造方法をY−Ba−
Cu−O系の酸化物超電導材の製造方法に適用した一実施
例を説明するためのものである。
"Example" FIGS. 1 to 5 show that the production method of the present invention is Y-Ba-
It is for describing an example applied to a method for producing a Cu-O-based oxide superconducting material.

本実施例では、まず、Ni,Zr,Tiなどの融点800℃以上
の純金属、あるいは、Ni−Cu,Ti−Al,ステンレス鋼など
の融点800℃以上の合金からなる第1図に示すテープ状
の長尺の基材10を用意する。
In this embodiment, first, a tape shown in FIG. 1 made of a pure metal having a melting point of 800 ° C. or more, such as Ni, Zr, or Ti, or an alloy having a melting point of 800 ° C. or more, such as Ni—Cu, Ti—Al, or stainless steel. A long base material 10 having a shape is prepared.

次にこの基材10の外面に、メッキ法、スパッタ法、真
空蒸着法、または、箔体を被覆するなどの方法により、
第2図に示すようにCuからなる厚さ数十μm程度の被覆
層11を形成して被覆材12を製造する。
Next, on the outer surface of the substrate 10, a plating method, a sputtering method, a vacuum evaporation method, or a method such as coating a foil body,
As shown in FIG. 2, a coating material 12 is manufactured by forming a coating layer 11 made of Cu and having a thickness of about several tens of μm.

続いてこの被覆層11の外周面に、以下に説明する酸化
処理によって第3図に示す酸化銅層12aを形成する。こ
こで行う酸化処理は、処理浴としてNaOH、KOHなどのア
ルカリ金属あるいはアルカリ土類金属の水酸化物の水溶
液の電界浴、更には、エタノール、メタノール、ギ酸な
どを用いて陽極酸化する陽極酸化処理、あるいは、被覆
材12を過酸化水素水溶液中あるいは硝酸水溶液中で浸漬
処理する化成酸化処理などが好適である。なお、酸化銅
層12aはCu2O,CuO,Cu2O3などから構成されている。
Subsequently, a copper oxide layer 12a shown in FIG. 3 is formed on the outer peripheral surface of the coating layer 11 by an oxidation process described below. The oxidation treatment performed here is an anodization treatment in which an aqueous bath of an aqueous solution of an alkali metal or alkaline earth metal hydroxide such as NaOH or KOH is used as a treatment bath, and further, anodization is performed using ethanol, methanol, formic acid, or the like. Alternatively, a chemical oxidation treatment in which the coating material 12 is immersed in an aqueous solution of hydrogen peroxide or an aqueous solution of nitric acid is preferable. The copper oxide layer 12a is made of Cu 2 O, CuO, Cu 2 O 3 or the like.

次いでこの酸化銅層12aの外面に、第4図に示す混合
層13を形成して複合材14を得る。この混合層13は、Y−
Ba−Cu−O系の酸化物超電導体を構成する各元素を所定
の割合で含むものであり、例えば以下に説明する方法で
形成される。
Next, a mixed layer 13 shown in FIG. 4 is formed on the outer surface of the copper oxide layer 12a to obtain a composite material 14. This mixed layer 13 is made of Y-
It contains the respective elements constituting the Ba-Cu-O-based oxide superconductor at a predetermined ratio, and is formed, for example, by a method described below.

前記混合層13を形成するには、Y2O3粉末とBaO粉末とC
u2O粉末を所定の割合で混合した混合粉末をエポキシ樹
脂などのベヒクルと混合してペースト状にする。そして
このペーストを前記被覆材12の外面にスクリーン印刷法
あるいはスプレーガンによる塗布法などによって塗布
し、前記混合層13を形成することができる。なお、前記
ペーストに混合する粉末の中でCu2O粉末の代わりにCu粉
末、CuO粉末などのいずれを用いても良いし、これら粉
末を混合して用いても良い。
To form the mixed layer 13, Y 2 O 3 powder, BaO powder and C
The mixed powder obtained by mixing u 2 O powder at a predetermined ratio is mixed with a vehicle such as an epoxy resin to form a paste. Then, the paste is applied to the outer surface of the coating material 12 by a screen printing method or an application method using a spray gun to form the mixed layer 13. Note that, among the powders to be mixed with the paste, any of a Cu powder and a CuO powder may be used instead of the Cu 2 O powder, or a mixture of these powders may be used.

次にこの複合材14をArガスあるいはN2ガスなどの不活
性ガス雰囲気中において、400〜600℃の温度に数十時間
加熱する中間熱処理を行う。この中間熱処理により複合
材14の内部では元素の拡散が進行し、被覆層11と酸化銅
層12aと混合層13にわたりYとBaとCuとOが相互拡散し
た中間層が生成する。なお、この中間層の生成の際に、
被覆層11と混合層13の境界部分にCuOからなる酸化銅層1
2aがあるために、各元素の拡散反応が円滑になされる。
Next, an intermediate heat treatment for heating the composite material 14 to a temperature of 400 to 600 ° C. for several tens of hours in an inert gas atmosphere such as Ar gas or N 2 gas is performed. Due to this intermediate heat treatment, the diffusion of elements proceeds inside the composite material 14, and an intermediate layer in which Y, Ba, Cu, and O are interdiffused over the coating layer 11, the copper oxide layer 12a, and the mixed layer 13 is generated. In addition, when generating this intermediate layer,
Copper oxide layer 1 made of CuO at the boundary between coating layer 11 and mixed layer 13
The presence of 2a facilitates the diffusion reaction of each element.

続いて、1気圧の酸素気流中などの酸化雰囲気におい
て850〜1000℃に数時間〜数十時間程度加熱する最終熱
処理を行い、その後に室温まで、例えば100℃/時間の
割合で徐冷する最終熱処理を行う。この最終熱処理によ
り中間層の元素が更に拡散反応して第5図に示す酸化物
超電導層17が生成され、超電導材(超電導テープ)Bを
得ることができる。なお、この熱処理時に基材10と被覆
層11の境界部分にはCu−Ni合金層18が生成される。
Subsequently, a final heat treatment of heating at 850 to 1000 ° C. for several hours to several tens of hours in an oxidizing atmosphere such as an oxygen gas stream of 1 atm is performed, and thereafter, the final heat treatment is gradually cooled to room temperature, for example, at a rate of 100 ° C./hour. Heat treatment is performed. By this final heat treatment, the elements of the intermediate layer further diffuse and react to form the oxide superconducting layer 17 shown in FIG. 5, and a superconducting material (superconducting tape) B can be obtained. At the time of this heat treatment, a Cu—Ni alloy layer 18 is generated at the boundary between the base material 10 and the coating layer 11.

以上のように製造された超電導材Bにあっては、基材
10の外方に形成した被覆層11と酸化銅層12aと混合層13
にわたり、CuとOとYとBaが相互に拡散反応して超電導
層17が生成されているので、超電導層17がその他の層に
対して強く接合している。このため超電導層17は基材10
に対して密着性が良好であり、超電導材Bは曲げなどに
も強く、機械強度が高い構成になっている。
In the superconducting material B manufactured as described above, the base material
Coating layer 11, copper oxide layer 12a, and mixed layer 13 formed outside of layer 10
Over time, the superconducting layer 17 is generated by the mutual diffusion reaction of Cu and O, Y and Ba, so that the superconducting layer 17 is strongly bonded to the other layers. For this reason, the superconducting layer 17
The superconducting material B has a high mechanical strength and is resistant to bending and the like.

また、熱処理によって形成される超電導層17の厚さ
は、酸化銅層12aと混合層13の厚さを調節することによ
って制御することができるとともに、超電導層17の組成
も混合層13の組成に応じて制御することができる。な
お、前述のように中間熱処理によって中間層を形成した
後に最終熱処理を施すと、微細な結晶粒の臨界電流密度
の高い超電導層17を生成することができる。ちなみに、
1回の熱処理で超電導層17を生成させる場合には、1000
℃以上の温度に数十時間加熱する必要を生じるが、この
ような高温度に長時間加熱すると、生成された超導電層
の結晶粒が粗大化するために、ち密な結晶粒の超電導層
を得ることができなくなる。この点において前述のよう
に中間層を生成させた後に超電導層を生成させるなら
ば、400〜600℃で生成されたち密な結晶粒に基いて、ち
密な結晶粒の超電導体が成長し、しかも、熱処理温度を
850〜1000℃の範囲に抑え、結晶粒の粗大化を抑制する
ことができ、熱処理時間も短縮できるために、ち密な結
晶粒の超電導層17を生成させることができる。
Further, the thickness of the superconducting layer 17 formed by the heat treatment can be controlled by adjusting the thickness of the copper oxide layer 12a and the mixed layer 13, and the composition of the superconducting layer 17 is also changed to the composition of the mixed layer 13. Can be controlled accordingly. When the final heat treatment is performed after the formation of the intermediate layer by the intermediate heat treatment as described above, the superconducting layer 17 having fine crystal grains and a high critical current density can be generated. By the way,
When the superconducting layer 17 is formed by one heat treatment, 1000
It is necessary to heat to a temperature of ℃ or more for several tens of hours, but if heating to such a high temperature for a long time, the crystal grains of the generated superconducting layer become coarse, so You can't get it. At this point, if the superconducting layer is formed after the formation of the intermediate layer as described above, the superconductor of dense crystal grains grows based on the dense crystal grains generated at 400 to 600 ° C., and , Heat treatment temperature
The temperature is kept within the range of 850 to 1000 ° C., and coarsening of crystal grains can be suppressed, and the heat treatment time can be shortened, so that the superconducting layer 17 having dense crystal grains can be generated.

ところで、前記超電導材Bは単独で超電導マグネット
コイル用あるいは電力輸送用としての適用も可能である
が、その他に、例えば、多数枚積層して、シースの内部
に収納し、大容量用の超電導導体として使用することも
できる。
By the way, the superconducting material B can be used alone for superconducting magnet coils or for power transport. In addition, for example, a large number of superconducting conductors may be stacked and housed inside a sheath to form a large-capacity superconducting conductor. It can also be used as

なお、前記実施例においては、Y−Ba−Cu−O系の酸
化物超電導材の製造方法について説明したが、本発明は
その他のA−B−Cu−O系の超電導材の製造に適用でき
るのは勿論である。なお、Y−Ba−Cu−O系以外の超電
導材を製造する場合には、混合層13の生成用に用いる超
電導粉末に別種のものを用いれば良い。即ち、原料粉末
を調製する場合、周期律表III a族元素の化合物粉末と
して、Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,
Yb,Luなどの化合物粉末の1種以上を用い、周期律表II
a族元素の化合物粉末として、Be,Sr,Mg,Ba,Raなどの化
合物粉末の1種以上を用いれば良い。なおまた、前記実
施例においては、テープ状の基材10を用いたが、基材10
の形状は管状や線状であっても差し支えない。
In addition, in the said Example, although the manufacturing method of the Y-Ba-Cu-O type | system | group oxide superconducting material was demonstrated, this invention can be applied to manufacture of another AB-Cu-O type | system | group superconducting material. Of course. When a superconducting material other than the Y-Ba-Cu-O-based material is manufactured, a different kind of superconducting powder may be used for forming the mixed layer 13. That is, when preparing a raw material powder, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm ,
Using at least one compound powder such as Yb, Lu, etc.
As the compound powder of the group a element, one or more compound powders such as Be, Sr, Mg, Ba, and Ra may be used. In addition, in the above-described embodiment, the tape-shaped base material 10 was used.
May be tubular or linear.

「製造例」 厚さ0.2mm、幅2mmのNiテープに硫酸銅浴中においてメ
ッキ処理を施し、厚さ30μmの銅メッキ層を形成して被
覆材を形成した。次に、この被覆材をNaOH水溶液中で陽
極酸化処理を施して厚さ1〜2μmのCuO膜を形成し
た。さらにこのCuO膜の外面に、Y2O3粉末とBaO粉末とCu
2O粉末をY:Ba:Cu=10:10:1の比率で混合して作成した混
合粉末をエポキシ系樹脂とともに混合してペーストを得
た。このペーストを前記被覆材に塗布して厚さ約30μm
の塗布層を形成し、複合材を得た。
"Production Example" A nickel tape having a thickness of 0.2 mm and a width of 2 mm was plated in a copper sulfate bath, and a copper plating layer having a thickness of 30 µm was formed to form a coating material. Next, the coating material was subjected to anodizing treatment in an aqueous NaOH solution to form a CuO film having a thickness of 1 to 2 μm. Further, on the outer surface of this CuO film, Y 2 O 3 powder, BaO powder and Cu
A mixed powder prepared by mixing 2 O powder at a ratio of Y: Ba: Cu = 10: 10: 1 was mixed with an epoxy resin to obtain a paste. This paste is applied to the coating material to a thickness of about 30 μm
Was formed to obtain a composite material.

この複合材をArガス雰囲気中において500℃に50時間
加熱して中間層を形成させた。更に、1気圧の酸素雰囲
気中において900℃に12時間加熱した後に、100℃/時間
の割合で室温まで冷却して酸化物超電導材を得た。
This composite material was heated at 500 ° C. for 50 hours in an Ar gas atmosphere to form an intermediate layer. Furthermore, after heating at 900 ° C. for 12 hours in an oxygen atmosphere at 1 atm, the mixture was cooled to room temperature at a rate of 100 ° C./hour to obtain an oxide superconducting material.

この酸化物超電導材の臨界温度(Tc)を4端子法で測
定したところ、95Kで抵抗が0になることを確認でき
た。更に、この超電導材の断面観察を行ったところ、厚
さ約20μmのY−Ba−Cuの相互拡散層を観測することが
でき、X線デフラクトメータにより回折したところY:B
a:Cu=1:2:3なる化合物の回折線を観測することができ
た。
When the critical temperature (Tc) of this oxide superconducting material was measured by a four-terminal method, it was confirmed that the resistance became 0 at 95K. Further, when a cross section of this superconducting material was observed, an interdiffusion layer of Y-Ba-Cu having a thickness of about 20 μm was observed, and when diffracted by an X-ray defractometer, Y: B
The diffraction line of the compound of a: Cu = 1: 2: 3 could be observed.

「発明の効果」 以上説明したように本発明は、基材外方に形成した被
覆層のCuと、酸化銅層のCuとOと、混合層のA元素とB
元素とCuを熱処理により相互拡散させて酸化物超電導層
を生成させるために、生成された超電導層は基材に強く
接合する。このため基材と超電導層の接合が良好で曲げ
などに強く機械強度の高い超電導材を製造できる効果が
ある。
[Effects of the Invention] As described above, the present invention provides a coating layer formed outside a substrate, Cu and O of a copper oxide layer, and element A and B of a mixed layer.
In order to generate an oxide superconducting layer by interdiffusing elements and Cu by heat treatment, the generated superconducting layer is strongly bonded to the base material. For this reason, there is an effect that a superconducting material having good mechanical strength, having good bonding between the base material and the superconducting layer and being resistant to bending and the like can be produced.

また、被覆層と酸化銅層と混合層の元素を相互拡散さ
せて超電導層を生成させるので、被覆層と酸化銅層と混
合層の厚さを調節することで超電導層の厚さを制御する
ことができるとともに、混合層に含有させる元素の組成
に応じた超電導層を生成できる効果がある。更に、被覆
層と酸化銅層と混合層の元素を拡散させるので基材の全
長にわたり均一な超電導層を生成できる効果がある。
In addition, since the superconducting layer is generated by mutually diffusing the elements of the coating layer, the copper oxide layer, and the mixed layer, the thickness of the superconducting layer is controlled by adjusting the thickness of the coating layer, the copper oxide layer, and the mixed layer. And a superconducting layer corresponding to the composition of the element contained in the mixed layer can be produced. Furthermore, since the elements of the coating layer, the copper oxide layer, and the mixed layer are diffused, there is an effect that a uniform superconducting layer can be generated over the entire length of the base material.

なお、中間熱処理により被覆層と酸化銅層と混合層の
元素を相互拡散させて中間層を生成させた後に最終熱処
理によって中間層を超電導層にするので、中間熱処理に
より生成された微細な結晶粒の中間層を基に、微細な結
晶粒の超電導層を生成できるので臨界電流密度の高い超
電導材を得ることができる効果がある。
In addition, since the intermediate layer is generated by interdiffusing the elements of the coating layer, the copper oxide layer, and the mixed layer by the intermediate heat treatment, and then the intermediate layer is turned into a superconducting layer by the final heat treatment, the fine crystal grains generated by the intermediate heat treatment are formed. Since a superconducting layer having fine crystal grains can be generated based on the intermediate layer, there is an effect that a superconducting material having a high critical current density can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第5図は、本発明の一実施例を説明するた
めのもので、第1図は基材の断面図、第2図は被覆材の
断面図、第3図は被覆材に酸化銅層を形成した状態を示
す断面図、第4図は複合材の断面図、第5図は超電導材
の断面図、第6図は従来方法で製造された酸化物超電導
線の断面図である。 10……基材、11……被覆層、 12……被覆材、12a……酸化銅層、 13……混合層、 14……複合材、17……超電導層、 B……超電導材。
1 to 5 are for explaining one embodiment of the present invention. FIG. 1 is a sectional view of a base material, FIG. 2 is a sectional view of a covering material, and FIG. FIG. 4 is a cross-sectional view of a composite material, FIG. 5 is a cross-sectional view of a superconducting material, and FIG. 6 is a cross-sectional view of an oxide superconducting wire manufactured by a conventional method. is there. 10 ... base material, 11 ... coating layer, 12 ... coating material, 12a ... copper oxide layer, 13 ... mixed layer, 14 ... composite material, 17 ... superconducting layer, B ... superconducting material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池野 義光 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 定方 伸行 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 太刀川 恭治 東京都世田谷区成城3丁目13番29号 (56)参考文献 特開 昭64−60918(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshimitsu Ikeno 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Electric Wire Co., Ltd. (72) Inventor Nobuyuki 1-5-1, Kiba 1-5-1 Kiba, Koto-ku, Tokyo Fujikura (72) Inventor Kyoji Tachikawa 3-13-29 Seijo, Setagaya-ku, Tokyo (56) References JP-A-64-60918 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式A−B−Cu−O(ただしAはY,Sc,L
a,Yb,Er,Eu,Ho,Dy等の周期律表III a族元素の1種以上
を示し、BはCa,Sr,Ba等の周期律表II a族元素の1種以
上を示す)で示される組成の酸化物超電導層を具備して
なる酸化物超電導材の製造方法において、 金属製の芯材の外方に、Cuからなる被覆層を形成して被
覆材を形成し、この被覆層の少なくとも表面部に酸化銅
を形成するとともに、前記酸化銅層の外方に、前記A元
素とB元素とCuを所定の比率で含有する酸化物層を形成
して複合材を形成し、この複合材に、酸化物超電導体を
生成させる熱処理温度よりも低い400〜600℃の温度で中
間熱処理を施し、次いで、酸化物超電導体を生成させる
最終熱処理を850〜1000℃で施し、各層の元素を相互拡
散させて酸化物超電導層を生成させることを特徴とする
酸化物超電導材の製造方法。
A compound of the formula AB-Cu-O (where A is Y, Sc, L
a, Yb, Er, Eu, Ho, Dy, etc., Periodic Table III, which represents at least one kind of Group a element, and B, which represents Ca, Sr, Ba, etc., at least one kind of Group IIa element. In a method for producing an oxide superconducting material comprising an oxide superconducting layer having a composition represented by, a coating layer formed of Cu is formed outside a metal core material to form a coating material. Forming a copper oxide on at least the surface portion of the layer, forming an oxide layer containing the A element, the B element, and Cu at a predetermined ratio outside the copper oxide layer to form a composite material, This composite material is subjected to an intermediate heat treatment at a temperature of 400 to 600 ° C. lower than the heat treatment temperature for generating an oxide superconductor, and then to a final heat treatment for generating an oxide superconductor at 850 to 1000 ° C. A method for producing an oxide superconducting material, wherein an element is interdiffused to form an oxide superconducting layer.
JP62245554A 1987-09-29 1987-09-29 Manufacturing method of oxide superconducting material Expired - Fee Related JP2573967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62245554A JP2573967B2 (en) 1987-09-29 1987-09-29 Manufacturing method of oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62245554A JP2573967B2 (en) 1987-09-29 1987-09-29 Manufacturing method of oxide superconducting material

Publications (2)

Publication Number Publication Date
JPS6489114A JPS6489114A (en) 1989-04-03
JP2573967B2 true JP2573967B2 (en) 1997-01-22

Family

ID=17135427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62245554A Expired - Fee Related JP2573967B2 (en) 1987-09-29 1987-09-29 Manufacturing method of oxide superconducting material

Country Status (1)

Country Link
JP (1) JP2573967B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460918A (en) * 1987-08-31 1989-03-08 Showa Electric Wire & Cable Co Manufacture of ceramic supercondutive wire

Also Published As

Publication number Publication date
JPS6489114A (en) 1989-04-03

Similar Documents

Publication Publication Date Title
RU2414769C2 (en) Superconducting wire
US4965245A (en) Method of producing oxide superconducting cables and coils using copper alloy filament precursors
JPH09129438A (en) Oxide superconductive coil and manufacture thereof
JP3521182B2 (en) Oxide superconducting wire and superconducting device
US5384307A (en) Oxide superconductor tape having silver alloy sheath with increased hardness
JP2002373534A (en) Superconducting wire, its producing method, and superconducting magnet using it
JP2573967B2 (en) Manufacturing method of oxide superconducting material
EP0305300B1 (en) A method for producing a superconducting article
JPH0815019B2 (en) Manufacturing method of oxide superconducting material
JP2010044969A (en) Tape-shaped oxide superconductor, and board used for the same
JP2889286B2 (en) Superconducting body and superconducting coil formed using the superconducting body
JP2583573B2 (en) Method for producing oxide-based superconducting material
JP2000268649A (en) Oxide superconducting wire and manufacture thereof
JP2583565B2 (en) Method for producing oxide-based superconducting material
JP2634186B2 (en) Method for producing oxide-based superconducting material
JPH0815020B2 (en) Method for manufacturing oxide-based superconducting wire
JPH01166418A (en) Manufacture of oxide superconductive material
JPH01166416A (en) Manufacture of oxide superconductive wire material
JP2653109B2 (en) Superconducting material
JPH08315655A (en) Superconducting wire and manufacture thereof
JPH01256107A (en) Manufacture of oxide superconducting coil
JP2573964B2 (en) Manufacturing method of oxide superconducting wire
JP3758455B2 (en) Method for producing oxide superconducting wire
JPH01239021A (en) Production of oxide-based superconducting material
JPH084044B2 (en) Superconducting sheet coil

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees