JPH01239021A - Production of oxide-based superconducting material - Google Patents

Production of oxide-based superconducting material

Info

Publication number
JPH01239021A
JPH01239021A JP63065377A JP6537788A JPH01239021A JP H01239021 A JPH01239021 A JP H01239021A JP 63065377 A JP63065377 A JP 63065377A JP 6537788 A JP6537788 A JP 6537788A JP H01239021 A JPH01239021 A JP H01239021A
Authority
JP
Japan
Prior art keywords
layer
oxide
superconducting
elements
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63065377A
Other languages
Japanese (ja)
Inventor
Masaru Sugimoto
優 杉本
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Nobuyuki Sadakata
伸行 定方
Shinya Aoki
青木 伸哉
Kyoji Tachikawa
恭治 太刀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Fujikura Ltd
Original Assignee
Tokai University
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University, Fujikura Ltd filed Critical Tokai University
Priority to JP63065377A priority Critical patent/JPH01239021A/en
Publication of JPH01239021A publication Critical patent/JPH01239021A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title material with oxide superconducting layer of dense structure formed, by forming an oxide layer of specific composition ratio externally on a metallic core followed by further forming a Cu-A alloy layer externally on said oxide layer in succession to produce a composite material which is then heat treated to effect mutual diffusion of the respective elements in said oxide layer and alloy layer. CONSTITUTION:Respective elements in a Cu-A alloy layer formed externally on a metallic core and the elements in an oxide layer of a composition A1B2Cu1 O5 are allowed to mutually diffuse by heating treatment at 800-1,300 deg.C for several hours to several hundred hours, thereby forming an oxide superconducting layer of a composition A1B1Cu3O7-delta (see, the formula). The melting point of the Cu-A alloy layer is lowered due to the addition of the A-element to effect melt diffusion-and-reaction with the elements in the oxide layer by heating in said heat treatment, thus forming the oxide superconducting layer. This melt diffusion-and-reaction causes a uniform reaction of high reaction rate, resulting in the formation of an oxide superconductor of dense structure.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、核磁気共鳴装置や粒子加速器に用いられろ
超電導マグネットなどの超電導応用機器に適用可能な酸
化物系超電導材の製造方法に関するものである。
[Detailed Description of the Invention] "Industrial Application Field" This invention relates to a method for producing an oxide-based superconducting material that can be applied to superconducting applied equipment such as superconducting magnets used in nuclear magnetic resonance devices and particle accelerators. It is.

「従来の技術」 最近に至り、常電導状態から超電導状態にa移する臨界
温度(Tc)か液体窒素温度を超える値を示す酸化物系
の超電導体が種々発見されている。
"Prior Art" Recently, various oxide-based superconductors have been discovered that exhibit a critical temperature (Tc) for transition from a normal conductive state to a superconducting state or a value that exceeds the liquid nitrogen temperature.

この種の酸化物超電導体は、一般式A −B −Cu−
0(ただしAは、Mg、Ca、Sr、Ba等の周期律表
II a族元素の1種以上を示し、Bは、Y 、 Sc
 、 L a 、 Y b 。
This type of oxide superconductor has the general formula A-B-Cu-
0 (However, A represents one or more elements of group II a of the periodic table such as Mg, Ca, Sr, Ba, etc., and B represents Y, Sc
, L a , Y b .

Er、Eu、f■o、Dy等の周期律表IIIa族元素
の1種以上を示す。)で示される酸化物であり、液体ヘ
リウムで冷却することが必要であった従来の合金系ある
いは金属間化合物系の超電導体に比較して格段に育利な
冷却条件で使用できることから、実用上極めて有望な超
電導材料として研究されている。
One or more elements of group IIIa of the periodic table, such as Er, Eu, fo, Dy, etc. ), and can be used under much more convenient cooling conditions than conventional alloy-based or intermetallic compound-based superconductors, which require cooling with liquid helium. It is being researched as an extremely promising superconducting material.

ところで従来、このような酸化物超電導体を具備する超
電導線の製造方法の一例として、以下に説明する方法が
知られている。
By the way, the method described below is conventionally known as an example of a method for manufacturing a superconducting wire including such an oxide superconductor.

酸化物超電導線を製造するには、A −B −Cu−0
で示される酸化物超電導体を構成する各元素を含む1複
数の原料粉末を混合して混合粉末を作成し、次いでこの
混合粉末を仮焼して不要成分を除去し、次いでこの仮焼
粉末を金属管に充填し、更に縮径して所望の直径の線材
を得、この線材に熱処理を施して金属管内部の圧密体に
同相反応を生じさせ、酸化物超電導体を生成させて超電
導線を製造する方法である。
To manufacture oxide superconducting wire, A-B-Cu-0
A mixed powder is created by mixing one or more raw material powders containing each element constituting the oxide superconductor represented by , and then this mixed powder is calcined to remove unnecessary components, and then this calcined powder is The wire is filled into a metal tube, further reduced in diameter to obtain a wire with the desired diameter, and this wire is heat-treated to cause an in-phase reaction in the compacted body inside the metal tube, producing an oxide superconductor and forming a superconducting wire. This is a method of manufacturing.

「発明が解決しようとずろ課題」 しかしながら前述の従来方法においては、原料粉末を完
全に均一に混合することが困難なことから、熱処理を施
しても超電導体の全体が完全に均一な結晶構造とはなら
ない問題があり、特に長尺の超電導線を製造した場合、
線材の全長にわたり均一な結晶構造の超電導体を生成で
きないために、臨界電流密度の高い超電導線を得ろこと
ができない問題があった。
``Problems that the invention is still trying to solve'' However, in the conventional method described above, it is difficult to mix the raw material powder completely uniformly, so even if heat treatment is performed, the entire superconductor has a completely uniform crystal structure. There are problems that should not be avoided, especially when manufacturing long superconducting wires.
There is a problem in that it is not possible to obtain a superconducting wire with a high critical current density because a superconductor having a uniform crystal structure cannot be produced over the entire length of the wire.

また、前述の超電導線の内部に形成されている酸化物超
電導体は、粉末を圧密した成形体を焼結し、固相反応さ
けて形成したものであり、その内部には微細な気孔か存
在する関係から、圧密焼結法で製造された従来の酸化物
超電導体は、多数の結晶耐をそれらの間に微細な空孔を
介在させた状態で接合した多結晶状態をなし、通常の金
属材料などの多結晶体に比較して緻密性に欠けろために
、臨界電流密度などの超電導特性において満足なものが
得られない問題があった。
In addition, the oxide superconductor formed inside the superconducting wire mentioned above is formed by sintering a compacted compact of powder and avoiding a solid phase reaction, and there are fine pores inside it. Due to this relationship, conventional oxide superconductors manufactured using the consolidation sintering method have a polycrystalline state in which many crystals are bonded with fine pores interposed between them, and are similar to ordinary metals. Because it lacks density compared to polycrystalline materials, it has been difficult to obtain satisfactory superconducting properties such as critical current density.

本発明は、前記問題に鑑みてなされたもので、空孔のな
い緻密な構造の超電導層を生成させることができ、基材
に対する超電導層の密着性が良好で機械強度が高く、超
電導層の厚さを所望の値に制御することができる酸化物
系超電導材の製造方法の提供を目的とする。
The present invention was made in view of the above-mentioned problems, and it is possible to generate a superconducting layer with a dense structure without pores, the adhesion of the superconducting layer to the base material is good, the mechanical strength is high, and the superconducting layer is The object of the present invention is to provide a method for manufacturing an oxide-based superconducting material whose thickness can be controlled to a desired value.

「課題を解決するための手段」 本発明は、前記問題点を解決するために、一般式A −
B −Cu−0(ただしAは、Mg、Ca、Sr、Ba
等の周期律表IIa族元素の1種以上を示し、BはY。
"Means for Solving the Problems" In order to solve the above-mentioned problems, the present invention provides the general formula A -
B -Cu-0 (A is Mg, Ca, Sr, Ba
B is Y.

Sc、La、Yb、Er、Eu、Ho、Dy等の周期律
表IIIa族元素の1種以上を示す。)で示される組成
の酸化物超電導層を具備してなる酸化物超電導材の製造
方法において、金属製の芯材の外方にA+BtCu10
5なる組成比の酸化物層を形成して被覆材を形成し、次
いでその外方にCu−A合金からなる合金層を形成して
複合材を形成した後に、この複合材を800〜1300
℃で数時間〜数百時間加熱する熱処理を施し、酸化物層
と合金層の元素を相互拡散さ仕て酸化物超電導層を生成
させるものである。
One or more elements of group IIIa of the periodic table, such as Sc, La, Yb, Er, Eu, Ho, Dy, etc. ) In the method for producing an oxide superconducting material comprising an oxide superconducting layer having a composition shown in
After forming an oxide layer with a composition ratio of 5 to form a coating material, and then forming an alloy layer made of a Cu-A alloy on the outside thereof to form a composite material, this composite material is
A heat treatment is performed at a temperature of several hours to several hundred hours to cause the elements of the oxide layer and the alloy layer to interdiffuse, thereby producing an oxide superconducting layer.

「作用 」 基材の外方に形成したC u−A合金層の各元素が゛ 
熱処理時の加熱によってA +B pc u、05なる
組成の酸化物層の元素と相互拡散反応してA + B 
t Cu307−tなる組成の酸化物超電導層が生成す
る。なお、Cu−A合金層はA元素の添加効果により融
点が低下し、前記熱処理時の加熱によって酸化物層の元
素と溶融拡散反応して酸化物超電導層を形成するので、
溶融拡散反応による反応速度の高い均一な反応が生じ、
緻密な構造の酸化物超電導体が生成する。
"Effect" Each element of the Cu-A alloy layer formed on the outside of the base material
Due to the heating during heat treatment, an interdiffusion reaction occurs with the elements of the oxide layer with a composition of A + B pc u, 05, resulting in A + B.
An oxide superconducting layer having a composition of tCu307-t is formed. Note that the melting point of the Cu-A alloy layer is lowered due to the effect of adding the A element, and the heating during the heat treatment causes a melt-diffusion reaction with the elements of the oxide layer to form an oxide superconducting layer.
A uniform reaction with a high reaction rate occurs due to the melt-diffusion reaction,
An oxide superconductor with a dense structure is produced.

また、基材の外方に形成した酸化物層の元素と、その外
方の合金層の元素を相互拡散させて超電導層を生成させ
るために、生成された超電導層は基材に対して強く接合
する。更に、酸化物層と合金層の厚さを調節することで
酸化物超電導層の厚さを制御することができろ。
In addition, since the elements of the oxide layer formed on the outside of the base material and the elements of the alloy layer on the outside are interdiffused to generate a superconducting layer, the generated superconducting layer is strong against the base material. Join. Furthermore, the thickness of the oxide superconducting layer can be controlled by adjusting the thickness of the oxide layer and the alloy layer.

「実施例」 第1図ないし第4図は、本発明の製造方法をY−B a
−Cu−0系の酸化物超電導材の製造方法に適用した一
実施例を説明するためのものである。
"Example" Figures 1 to 4 show the manufacturing method of the present invention in Y-B a
This is for explaining an example applied to a method for manufacturing a -Cu-0 based oxide superconducting material.

本実施例では、まず、Ni、Zr、Tiなどの融点80
0℃以上の純金属、あるいは、Ni−Cu、Ti−A 
1.ステンレス鋼などの融点800°C以上の合金から
なる第1図に示すテープ状の長尺の基材1を用意する。
In this example, first, melting point 80 of Ni, Zr, Ti, etc.
Pure metal at 0°C or higher, or Ni-Cu, Ti-A
1. A long tape-shaped base material 1 shown in FIG. 1 made of an alloy having a melting point of 800° C. or higher, such as stainless steel, is prepared.

次にこの基材1の外面に、溶射法、スパッタリング法、
真空蒸着法、または、塗布などの方法により、YtBa
+Cut05なる組成の厚さ数μ〜数十μm程度の酸化
物層2を第2図に示すように形成して被覆材3を製造す
る。
Next, the outer surface of this base material 1 is coated with a thermal spraying method, a sputtering method,
By vacuum evaporation method or coating method, YtBa
A covering material 3 is manufactured by forming an oxide layer 2 having a composition of +Cut05 and having a thickness of several micrometers to several tens of micrometers as shown in FIG.

二二で以下に前記酸化物層2を形成する手段の=−例に
ついて説明する。
22, examples of means for forming the oxide layer 2 will be described below.

酸化物層2を形成するには、Y2O3扮末とBaC0,
粉末とCuO扮末をY :I3a:Cu= 2 :I 
:Iの割合になるように混合し、この混合粉末を大気中
あるいは酸素気流中などの酸化雰囲気において、800
〜1100°Cで数時間〜数十時間加熱して焼結する。
To form the oxide layer 2, Y2O3 powder and BaC0,
Powder and CuO powder Y:I3a:Cu=2:I
:I, and this mixed powder was heated to 800% in an oxidizing atmosphere such as the air or an oxygen stream.
It is sintered by heating at ~1100°C for several hours to several tens of hours.

次いでこの焼結体を粉砕して再び800〜1100°C
で数時間〜数十時間加熱して焼結する。次にこの焼結体
を粉砕して粒径1〜2μmの焼結粉末を得ろ。次いでこ
の焼結粉末をエタノールなどの溶媒に溶解してスラリー
状とずろ。ぞして、このスラリーを前記基材1の外面に
スプレーガンによる吹き付は法あるいはスクリーン印刷
機によるスクリーン印1ii11法などにより塗布すれ
ば酸化物層2を形成することかできる。
Next, this sintered body is crushed and heated again at 800 to 1100°C.
The material is heated and sintered for several hours to several tens of hours. Next, crush this sintered body to obtain a sintered powder with a particle size of 1 to 2 μm. Next, this sintered powder is dissolved in a solvent such as ethanol to form a slurry. Then, the oxide layer 2 can be formed by applying this slurry to the outer surface of the base material 1 by spraying with a spray gun or by using a screen printing method using a screen printing machine.

なお、nq記酸化物m2を形成する手段として以下に説
明する手段を行っても差し支えない。例えば、首記焼結
体を溶射ガンに供給して基材Iの外面に溶射する方法、
あるいは、前記焼結体を圧密してバルク状の焼結体を形
成し、この焼結体をターゲットとじてスパッタリングす
ることにより酸化物層を形成する方法、更には、蒸着法
、CV I)法、レーザPVD法、分子線エピタキシー
法などの成膜手段を適用することができる。
Note that the means described below may be used as a means for forming the nq oxide m2. For example, a method of supplying the above sintered body to a thermal spraying gun and thermally spraying it on the outer surface of the base material I,
Alternatively, a method of forming an oxide layer by compacting the sintered body to form a bulk sintered body and sputtering this sintered body as a target, furthermore, a vapor deposition method, a CV I) method. , laser PVD method, molecular beam epitaxy method, and other film forming methods can be applied.

酸化物層2を形成したならば、その外面にモル比でBa
:Cu−(0〜9 ):(10〜l )なる組成のCu
−B a合金からなる合金層4を第3図に示すように形
成して複合材5を得ろ。なお、合金層4を形成する手段
としてメツキ法や溶融浸漬法などを用いることができる
Once the oxide layer 2 is formed, a molar ratio of Ba is added to the outer surface of the oxide layer 2.
:Cu-(0~9):(10~l)
- Form an alloy layer 4 made of Ba alloy as shown in FIG. 3 to obtain a composite material 5. Note that a plating method, a melt dipping method, or the like can be used as a means for forming the alloy layer 4.

次いでこの複合材5を1気圧の酸素気流中などの酸化雰
囲気において800〜1300℃に数時間〜数十時間程
度加熱し、その後に室温まで、例えば100℃/時間の
割合で徐冷する最終熱処理を行う。
Next, this composite material 5 is heated to 800 to 1300°C for several hours to several tens of hours in an oxidizing atmosphere such as an oxygen stream at 1 atm, and then subjected to a final heat treatment in which it is slowly cooled to room temperature at a rate of, for example, 100°C/hour. I do.

この最終熱処理により、Cu−B a合金からなる合金
層4がY tB at CLll Osなる組成の酸化
物層2の元素と相互拡散溶融反応して第4図に示すよう
な酸化物超電導層6が生成し、酸化物超電導材(超電導
テープ)Aが得られる。なお、合金層4を形成するC 
u−B a合金はBaの添加効果により融点を900℃
程度まで低下させることができるので、萌3己熱処理時
の加熱によって溶融拡散反応が可能となる。従って熱処
理時に酸化物層2の元素と合金層4の元素か溶融拡散反
応して酸化物超電導層6が生成する。即ら、溶融拡散反
応による反応速度の高い均一な反応を生じさせることが
できるために、圧密体を固相反応させて製造していた従
来の酸化物超電導体に比較して空孔のない緻密な構造の
臨界電流密度の高い超電導層6を生成させることかでき
る。
Through this final heat treatment, the alloy layer 4 made of the Cu-Ba alloy undergoes an interdiffusion melting reaction with the elements of the oxide layer 2 having a composition of YtBa at CLllOs, forming an oxide superconducting layer 6 as shown in FIG. The oxide superconducting material (superconducting tape) A is obtained. Note that C forming the alloy layer 4
u-Ba alloy has a melting point of 900℃ due to the effect of Ba addition.
Therefore, the melt-diffusion reaction becomes possible by heating during the heat treatment. Therefore, during the heat treatment, the elements of the oxide layer 2 and the elements of the alloy layer 4 undergo a melt-diffusion reaction to form the oxide superconducting layer 6. In other words, because it is possible to generate a uniform reaction with a high reaction rate by melt-diffusion reaction, it is dense and has no pores compared to conventional oxide superconductors that are manufactured by subjecting compacted bodies to solid-state reactions. It is possible to generate a superconducting layer 6 having a structure having a high critical current density.

また、前述のような溶融拡散反応により超電導層6を生
成するならば、固相反応させて形成していた従来方法よ
りも元素の反応速度が速いために、短時間でより厚い超
電導層6を生成させることができる。なお、超電導層6
を生成させる場合、1000°C以上の高温で長時間熱
処理すると、超電導層6の結晶粒が粗大化するので、こ
れを阻止するためには、合金層4の13 a含有量を調
節して融点を低下させ、溶融拡散反応可能な温度を低く
することか好ましく、このように低い温度で短い時間の
反応を行うことにより、生成される超電導層の結晶粒を
微細化して超電導特性を向上させることができる。
Furthermore, if the superconducting layer 6 is formed by the melt-diffusion reaction as described above, the reaction rate of the elements is faster than in the conventional method of forming by solid phase reaction, so it is possible to form a thicker superconducting layer 6 in a shorter time. can be generated. Note that the superconducting layer 6
If heat treatment is performed at a high temperature of 1000°C or higher for a long period of time, the crystal grains of the superconducting layer 6 will become coarse, so in order to prevent this, the content of 13a in the alloy layer 4 must be adjusted to increase the melting point. It is preferable to lower the temperature at which the melt-diffusion reaction is possible, and by performing the reaction at such a low temperature for a short time, the crystal grains of the superconducting layer to be produced are made finer and the superconducting properties are improved. Can be done.

更に、前述のように製造された酸化物超電導材Aにあっ
ては、基材1の外方に形成した酸化物層2と合金層4と
の間において元素が溶融拡散反応して超電導層6が生成
されているので、超電導層6がその他の層に対して強く
接合している。このため超電導層6は基材lに対して密
着性が良好であり、超電導材Aは曲げなどの機械強度面
においてら優れた構造になっている。従ってiη記超電
導材Aを超電導マグネット用に使用する場合、クランク
などの欠陥を生じさせることなく巻胴に巻回しで超電導
マグネットを形成することができる。
Furthermore, in the oxide superconducting material A manufactured as described above, elements undergo a melt-diffusion reaction between the oxide layer 2 and the alloy layer 4 formed on the outside of the base material 1 to form the superconducting layer 6. is generated, so the superconducting layer 6 is strongly bonded to other layers. Therefore, the superconducting layer 6 has good adhesion to the base material 1, and the superconducting material A has an excellent structure in terms of mechanical strength such as bending. Therefore, when the superconducting material A described in iη is used for a superconducting magnet, the superconducting magnet can be formed by winding it around a winding drum without producing defects such as cranks.

また、熱処理によって形成される超電導層6の厚さは、
酸化物層2と合金層4の厚さを調節することによって制
御することができる。
Moreover, the thickness of the superconducting layer 6 formed by heat treatment is
It can be controlled by adjusting the thicknesses of the oxide layer 2 and the alloy layer 4.

ところで、前記超電導材Aは(r独で超電導マグネット
コイル用あるいは電力輸送用としての適用も可能である
が、その他に、例えば、多数枚積層して、シースの内部
に収納し、大容徹用の超電導導体として使用ずろことも
できろ。
By the way, the superconducting material A can be used for superconducting magnet coils or for power transportation, but it can also be used, for example, by laminating a large number of sheets and storing them inside a sheath for use in large-capacity conductors. It could also be used as a superconducting conductor.

なお、前記実施例においては、¥ −B a−Cu−0
系の酸化物超電導材の製造方法について説明したが、本
発明はその他のA −B −Cu−0系の超電導材の製
造に適用できるのは勿論である。なお、Y−B a−C
u−0系以外の超電導材を製造する場合には、酸化物層
2の生成用に用いろ原料粉末に別種のものを用いれば良
い。即ち、原料粉末を調製する場合、周期律表[Ia族
元素の化合物粉末として、Sc。
In addition, in the above example, ¥-B a-Cu-0
Although the method for producing the A-B-Cu-0 series oxide superconducting material has been described, it goes without saying that the present invention can be applied to the production of other A-B-Cu-0 series superconducting materials. In addition, Y-B a-C
When producing a superconducting material other than the u-0 type, a different type of raw material powder may be used for forming the oxide layer 2. That is, when preparing a raw material powder, Sc as a compound powder of group Ia elements of the periodic table.

Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd
、Tb、Dy。
Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd
, Tb, Dy.

Ho、Er、Tm、Yb、Luなどの化合物粉末の1種
以上を用い、周期律表IIa族元素の化合物粉末として
、Sr、Mg、Ba、Raなどの化合物粉末の1種以上
を用いれば良い。
One or more compound powders such as Ho, Er, Tm, Yb, and Lu may be used, and one or more compound powders such as Sr, Mg, Ba, and Ra may be used as compound powders of group IIa elements of the periodic table. .

なおまた、前記実施例においては、テープ状の基材1を
用いたが、基材1の形状は管状や線状であっても差し支
えない。
Furthermore, although the tape-shaped base material 1 was used in the above embodiment, the shape of the base material 1 may be tubular or linear.

「製造例」 直径0.5mmのNi製の線材に、Y 2 B a +
 CLl 105なる組成の酸化物層を被覆した。この
酸化物層を形成するには、Y、03粉末とBaCO3粉
末とCuO粉末をY:Ba:Cu= 2 :I :Iの
比率になるように混合し、この混合粉末を大気中におい
て900℃で24時間加熱する熱処理を施して焼結し、
この焼結体を粉砕した後に、再び大気中において950
℃で24時間加熱する熱処理を施して焼結体を得、これ
を粉砕して焼結粉末を得た。この焼結粉末の粒径は、1
〜2μmであった。
"Manufacturing example" Y 2 B a + on a Ni wire with a diameter of 0.5 mm
An oxide layer of composition CLl 105 was applied. To form this oxide layer, Y,03 powder, BaCO3 powder, and CuO powder are mixed in a ratio of Y:Ba:Cu=2:I:I, and this mixed powder is heated at 900°C in the atmosphere. Sintered by heating for 24 hours at
After crushing this sintered body, it was placed in the atmosphere again at 950°C.
A sintered body was obtained by heat treatment at ℃ for 24 hours, and this was pulverized to obtain a sintered powder. The particle size of this sintered powder is 1
It was ~2 μm.

次いでこの焼結粉末をエタノールに溶解してスラリー状
とした後に、このスラリーに前記Ni製の線材を浸漬し
、線材の外周に厚さ約10μmのY 2B at CL
l+ Osで示される組成の酸化物層を形成して被覆材
を得た。
Next, after dissolving this sintered powder in ethanol to form a slurry, the Ni wire rod was immersed in this slurry, and Y 2B at CL with a thickness of about 10 μm was coated around the outer periphery of the wire rod.
A coating material was obtained by forming an oxide layer having a composition represented by l+Os.

続いて純銅とB aCO3粉末をCu:Ba= 1 :
Iになるように混合し、10−3トール以下の真空中に
おいて800℃で24時間加熱したものをエタノールに
溶解し、スラリー状とし、これを首記被覆材の外面に塗
布し、複合材を得た。この複合材において塗布層の厚さ
は約20μmであった。
Next, pure copper and BaCO3 powder were mixed into Cu:Ba=1:
I, and heated at 800°C for 24 hours in a vacuum of 10-3 Torr or less, then dissolved in ethanol to form a slurry, which was applied to the outer surface of the above-mentioned coating material to form a composite material. Obtained. The thickness of the coating layer in this composite material was approximately 20 μm.

次のこの複合材を酸素雰囲気中において950℃で24
時間加熱した後に室温まで徐冷する熱処理を施して酸化
物層と合金層の元素を相互拡散させて酸化物超電導層を
生成させ、酸化物超電導材を得た。
Next, this composite material was heated at 950°C for 24 hours in an oxygen atmosphere.
A heat treatment of heating for a period of time and then slowly cooling to room temperature was performed to cause the elements of the oxide layer and the alloy layer to interdiffuse to form an oxide superconducting layer, thereby obtaining an oxide superconducting material.

この酸化物超電導材の臨界温度を測定したところ、オン
セット92K、オフセット90Kを得ることができ、優
秀な酸化物超電導材であることを確認できた。更に、こ
の酸化物超電導材を顕微鏡で断面観察したところ、厚さ
約15μmの相互拡散層の存在を確認することができ、
この相互拡散層をX線回折分析した結果、Y 、B a
、Cu307−δなる組成の斜方晶が生成していること
を確認できた。
When the critical temperature of this oxide superconducting material was measured, it was possible to obtain an onset of 92K and an offset of 90K, confirming that it is an excellent oxide superconducting material. Furthermore, when we observed the cross section of this oxide superconducting material using a microscope, we were able to confirm the presence of an interdiffused layer with a thickness of approximately 15 μm.
As a result of X-ray diffraction analysis of this interdiffusion layer, Y, B a
It was confirmed that orthorhombic crystals having a composition of , Cu307-δ were formed.

「発明の効果」 以上説明したように本発明は、へ元素の添加効果により
融点を低下させた合金層を熱処理時の加熱:こより酸化
物層の元素と溶融反応させるために、均一で反応速度の
速い溶融反応を生じさせて酸化物超電導体を生成させる
ことができ、A+B2Cu307−δの組成比を有する
均質で緻密な酸化物超電導層を生成させることかできる
効果がある。また、溶融拡散反応により酸化物超電導層
を生成さけるならば、従来法の同相反応に比較して元素
の拡散速度を速くすることができるのでより短時間に厚
い酸化物超電導層を生成できる効果がある。
``Effects of the Invention'' As explained above, the present invention provides a uniform reaction rate in which the alloy layer whose melting point has been lowered by the effect of adding elements is heated during heat treatment to melt and react with the elements of the oxide layer. It is possible to generate an oxide superconductor by causing a fast melting reaction of , and there is an effect that a homogeneous and dense oxide superconductor layer having a composition ratio of A+B2Cu307-δ can be generated. Furthermore, if the formation of the oxide superconducting layer is avoided by the melt-diffusion reaction, the diffusion rate of the elements can be made faster compared to the conventional in-phase reaction, which has the effect of generating a thick oxide superconducting layer in a shorter time. be.

また、酸化物層と合金層の元素を相互拡散させて酸化物
超電導層を生成さ仕ろので、酸化物層と合金層の厚さを
調節することで超電導層の厚さを制御することができる
とともに、混合層に含有さ仕る元素の組成に応じた超電
導層を生成できる効果がある。更に、酸化物層と合金層
の元素を相互拡散反応させるので基材の全長にわたり均
一な超電導層を生成できる効果がある。
In addition, since the oxide superconducting layer is generated by mutually diffusing the elements of the oxide layer and the alloy layer, the thickness of the superconducting layer can be controlled by adjusting the thickness of the oxide layer and the alloy layer. In addition, it is possible to generate a superconducting layer according to the composition of the elements contained in the mixed layer. Furthermore, since the elements of the oxide layer and the alloy layer undergo a mutual diffusion reaction, a uniform superconducting layer can be produced over the entire length of the base material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は、本発明の一実施例を説明するた
めのらので、第1図は基材の断面図、第2図は被覆材の
断面図、第3図は複合体の断面図、第4図は超電導材の
断面図である。 1・・・屑材、    2・・・酸化物層、91  ・
合金層、   6・・超電導層、A・・超電導材。
Figures 1 to 4 are for explaining one embodiment of the present invention; Figure 1 is a sectional view of the base material, Figure 2 is a sectional view of the covering material, and Figure 3 is a sectional view of the composite material. Cross-sectional view, FIG. 4 is a cross-sectional view of the superconducting material. 1... Scrap material, 2... Oxide layer, 91 ・
Alloy layer, 6. Superconducting layer, A. Superconducting material.

Claims (1)

【特許請求の範囲】[Claims] 一般式A−B−Cu−O(ただしAは、Mg、Ca、S
r、Ba等の周期律表IIa族元素の1種以上を示し、B
は、Y、Sc、La、Yb、Er、Eu、Ho、Dy等
の周期律表IIIa族元素の1種以上を示す。)で示され
る組成の酸化物超電導層を具備してなる酸化物系超電導
材の製造方法において、金属製の芯材の外方に、A_1
B_2Cu_1O_5なる組成比の酸化物層を形成して
被覆材を形成し、次いでその外方にCu−A合金からな
る合金層を形成して複合材を形成した後に、この複合材
を800〜1300℃で数時間〜数百時間加熱する熱処
理を施し、酸化物層と合金層の元素を相互拡散させて酸
化物超電導層を生成させることを特徴とする酸化物系超
電導材の製造方法。
General formula AB-Cu-O (where A is Mg, Ca, S
r, represents one or more elements of group IIa of the periodic table such as Ba, and B
represents one or more elements of group IIIa of the periodic table, such as Y, Sc, La, Yb, Er, Eu, Ho, and Dy. ) In the method for manufacturing an oxide-based superconducting material comprising an oxide superconducting layer having a composition represented by A_1 on the outside of a metal core material,
After forming an oxide layer with a composition ratio of B_2Cu_1O_5 to form a coating material, and then forming an alloy layer made of a Cu-A alloy on the outside thereof to form a composite material, this composite material was heated at 800 to 1300°C. 1. A method for producing an oxide-based superconducting material, which comprises performing heat treatment for several hours to hundreds of hours to cause elements in the oxide layer and the alloy layer to interdiffuse to form an oxide superconducting layer.
JP63065377A 1988-03-18 1988-03-18 Production of oxide-based superconducting material Pending JPH01239021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63065377A JPH01239021A (en) 1988-03-18 1988-03-18 Production of oxide-based superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63065377A JPH01239021A (en) 1988-03-18 1988-03-18 Production of oxide-based superconducting material

Publications (1)

Publication Number Publication Date
JPH01239021A true JPH01239021A (en) 1989-09-25

Family

ID=13285219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63065377A Pending JPH01239021A (en) 1988-03-18 1988-03-18 Production of oxide-based superconducting material

Country Status (1)

Country Link
JP (1) JPH01239021A (en)

Similar Documents

Publication Publication Date Title
CA1340569C (en) Superconductive body having improved properties, and apparatus and systems comprising such a body
US20030036482A1 (en) Processing of magnesium-boride superconductors
US5384307A (en) Oxide superconductor tape having silver alloy sheath with increased hardness
JP7481963B2 (en) Superconducting layer connection structure, superconducting wire, superconducting coil, superconducting device, and superconducting layer connection method
EP0171918A1 (en) A process for producing a PbMo6S8 type compound superconductor
CA1327119C (en) Method of producing a superconductive oxide conductor
JPH0328122A (en) Manufacture of object containing super conducting oxide material
JPH01239021A (en) Production of oxide-based superconducting material
Tsapleva et al. The materials science of modern technical superconducting materials
JP2634186B2 (en) Method for producing oxide-based superconducting material
JP2583573B2 (en) Method for producing oxide-based superconducting material
JP2583565B2 (en) Method for producing oxide-based superconducting material
JP2877367B2 (en) Superconducting wire
JPH01239019A (en) Production of oxide-based superconducting material
JP2609460B2 (en) Method for manufacturing molded body of ceramic oxide superconducting material
JP2003331660A (en) Metal-sheathed superconductor wire, superconducting coil, and its manufacturing method
JPH01219017A (en) Production of oxide superconductor
JPH01166418A (en) Manufacture of oxide superconductive material
JP2603688B2 (en) Superconducting material reforming method
JP2573967B2 (en) Manufacturing method of oxide superconducting material
JPH0815019B2 (en) Manufacturing method of oxide superconducting material
Wen et al. Direct deposition of c-axis textured MBCO thick film on unoriented metallic substrate for the development of long superconducting tapes
Tachikawa et al. New A15 Nb3 (Al, Ge) tape prepared from σ-phase powder
JP2901243B2 (en) Method for producing oxide-based superconducting wire
JPS63307150A (en) Oxide cremics based superconductor and production thereof