JPH01219018A - Production of oxide superconducting material - Google Patents

Production of oxide superconducting material

Info

Publication number
JPH01219018A
JPH01219018A JP63047220A JP4722088A JPH01219018A JP H01219018 A JPH01219018 A JP H01219018A JP 63047220 A JP63047220 A JP 63047220A JP 4722088 A JP4722088 A JP 4722088A JP H01219018 A JPH01219018 A JP H01219018A
Authority
JP
Japan
Prior art keywords
oxide
alloy
powder
oxide layer
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63047220A
Other languages
Japanese (ja)
Inventor
Masaru Sugimoto
優 杉本
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Nobuyuki Sadakata
伸行 定方
Shinya Aoki
青木 伸哉
Mikio Nakagawa
中川 三紀夫
Toshio Usui
俊雄 臼井
Taichi Yamaguchi
太一 山口
Kenji Goto
謙二 後藤
Atsushi Kume
篤 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63047220A priority Critical patent/JPH01219018A/en
Publication of JPH01219018A publication Critical patent/JPH01219018A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain an oxide superconducting material having a dense, uniform crystal structure and high characteristics by forming a porous oxide layer having a compsn. A2B1Cu1O5 (A is a group IIIa element and B is a group IIa element) on the outside of a core material made of a metal, impregnating a molten B-Cu alloy and carrying out heat treatment. CONSTITUTION:Y2O3 powder is mixed with BaCO3 powder and CuO powder in 2:1:1 ratio of Y:Ba:Cu and the mixture is sintered and pulverized. The resulting powder is mixed with a binder and spread on a core material 1 made of a metal. The binder is then removed by heat treatment to form a porous oxide layer 2 having a compsn. Y2Ba1Cu1O and to produce a coated material 3. This material 3 is immersed in a molten Ba-Cu alloy and a composite material 7 is produced by filling the molten Ba-Cu alloy into the pores in the layer 2. An oxide superconducting layer 9 is formed by heat-treating the material 7 in an atmosphere contg. oxygen and an oxide superconducting material A is obtd.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、核磁気共鳴装置や粒子加速器などの超電導応
用機器に使用されている超電導磁石用の巻線、あるいは
、電力輸送線などとして開発が進められている酸化物超
電導材の製造方法に関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention was developed as a winding wire for a superconducting magnet used in superconducting application equipment such as a nuclear magnetic resonance apparatus or a particle accelerator, or as a power transport line. The present invention relates to a method for producing oxide superconducting materials, which is currently being developed.

「従来の技術J 最近に至り、常電導状態から超電導状態に遷移する臨界
温度が液体窒素温度を越える値を示す酸化物系の超電導
体が種々発見されている。
``Prior Art J'' Recently, various oxide-based superconductors have been discovered whose critical temperature for transitioning from a normal conducting state to a superconducting state exceeds the temperature of liquid nitrogen.

そして従来、この種の酸化物超電導体を具備する超電導
線を製造する方法の一例として、酸化物超電導体を構成
する元素を含有する複数の原料粉末を混合して混合粉末
を調製し、この混合粉末を仮焼して不要成分を除去する
とともに、仮焼粉末を金属管に充填して縮径加工を施し
、縮径加工後に酸素存在雰囲気中において熱処理を行い
、内部の圧粉成形体に固相反応を生じさせて酸化物超電
導体を生成させ、酸化物超電導線を製造する方法が知ら
れている。
Conventionally, as an example of a method for manufacturing a superconducting wire comprising this type of oxide superconductor, a mixed powder is prepared by mixing a plurality of raw material powders containing elements constituting the oxide superconductor, and the mixed powder is The powder is calcined to remove unnecessary components, and the calcined powder is filled into a metal tube and subjected to diameter reduction processing, and after the diameter reduction processing, heat treatment is performed in an oxygen atmosphere to solidify the compacted powder inside. A method of manufacturing an oxide superconducting wire by causing a phase reaction to generate an oxide superconductor is known.

「発明が解決しようとする課題」 しかしながら前述の従来方法で製造された酸化物超電導
線にあっては、粉末を圧密して得られた成形体に固相反
応を生じさせて酸化物超電導体を生成させるので、生成
された酸化物超電導体の内部には微細な空孔が存在する
欠点がある。即ちこのような酸化物超電導体は、多数の
粉末粒子が接合された構造であって、粒界に微細な空孔
を有し、粉末粒子の接触部分を介して電流が流れる構造
のために、臨界電流密度などの超電導特性が劣る問題が
あった。なお、複数の原料粉末を混合して混合粉末を作
製する場合、酸化物超電導体を構成する元素を混合粉末
内で均一に分散させることは困難なことから、熱処理時
の固相反応が均一になされない傾向があり、均質な酸化
物超電導体を生成できない問題があった。また、前記従
来の酸化物超電導体は、粒界に微細な空孔が形成されて
いるので、機械強度が低い欠点があり、超電導マグネッ
トを製造するためにコイル加工などを行うとクラックが
入り易い問題があった。
"Problems to be Solved by the Invention" However, in the case of oxide superconducting wires manufactured by the conventional method described above, the oxide superconductor is produced by causing a solid phase reaction in the compact obtained by compacting the powder. Since the oxide superconductor is produced, it has the disadvantage that fine pores exist inside the produced oxide superconductor. In other words, such an oxide superconductor has a structure in which a large number of powder particles are joined together, and has fine pores at the grain boundaries, so that current flows through the contact portions of the powder particles. There was a problem that superconducting properties such as critical current density were inferior. In addition, when preparing a mixed powder by mixing multiple raw material powders, it is difficult to uniformly disperse the elements that make up the oxide superconductor within the mixed powder, so it is difficult to uniformly disperse the solid phase reaction during heat treatment. There was a problem that a homogeneous oxide superconductor could not be produced. In addition, the conventional oxide superconductor has the disadvantage of low mechanical strength because of the formation of fine pores in the grain boundaries, and cracks are likely to occur when coil processing is performed to manufacture superconducting magnets. There was a problem.

本発明は、前記課題を解決するためになされたもので、
緻密で均一な酸化物超電導体を生成させることができ、
線材化が容易であるとともに、臨界温度と臨界電流密度
が高い酸化物超電導材を生成することができる方法の提
供を目的とする。
The present invention has been made to solve the above problems,
It is possible to produce dense and uniform oxide superconductors,
The object of the present invention is to provide a method that can produce an oxide superconducting material that is easy to form into a wire and has a high critical temperature and high critical current density.

「課題を解決するための手段」 本発明は、一般式A −B −Cu−0(ただしAは、
Sc、Y、La、Ho、Erなどの周期律表11111
a族元素の1種以上を示し、Bは、Sr、Baなどの周
期律表IIa族元素の1種以上を示す。)で示される酸
化物超電導体を具備する酸化物超電導材の製造方法にお
いて、金属製の芯材の外周に、A2B、Cu1Osなる
組成の多孔質の酸化物層を形成して被覆材を形成し、次
にこの被覆材をB−Cu合金溶湯に浸漬し、前記酸化物
層の空孔にB−Cu合金溶湯を含浸させて複合材を作成
し、次いでこの複合材に酸素存在雰囲気で熱処理を行っ
て酸化物超電導体を生成させることを課題解決の手段と
した。
"Means for Solving the Problems" The present invention is based on the general formula A-B-Cu-0 (where A is
Periodic table 11111 including Sc, Y, La, Ho, Er, etc.
B represents one or more elements of group a, and B represents one or more elements of group IIa of the periodic table, such as Sr and Ba. ), a porous oxide layer having a composition of A2B and CuOs is formed on the outer periphery of a metal core material to form a coating material. Next, this coating material is immersed in a B-Cu alloy molten metal to impregnate the pores of the oxide layer with the B-Cu alloy molten metal to create a composite material, and then this composite material is heat treated in an oxygen-containing atmosphere. The solution to this problem was to generate an oxide superconductor by

「作用」 芯材の外方に形成したA t B + Cu r 05
なる組成の多孔質の酸化物層にB−Cu合金溶湯を含浸
させて熱処理を行うことにより、酸化物層の構成元素と
合金溶湯の構成元素が拡散反応して酸化物超電導体が生
成する。なお、A x B r Cu lOsなる組成
の多孔質の酸化物層を基に、この酸化物層の全体に均一
に含浸させたB−Cu合金溶湯の元素を拡散させて酸化
物超電導層を生成させるので元素拡散が容易かつ均一に
なされて緻密で均質な構造の酸化物超電導体が生成する
。また、長尺の芯材を用い、この芯材に酸化物層を形成
し、これを溶湯に連続的に供給して熱処理を行うことに
より、長尺の酸化物超電導材が連続的に製造される。
"Action" A t B + Cu r 05 formed on the outside of the core material
By impregnating a porous oxide layer with a composition as follows with a molten B-Cu alloy and subjecting it to heat treatment, the constituent elements of the oxide layer and the constituent elements of the molten alloy undergo a diffusion reaction to produce an oxide superconductor. Note that, based on a porous oxide layer with a composition of A x B r Cu lOs, an oxide superconducting layer is generated by diffusing elements of a molten B-Cu alloy that is uniformly impregnated throughout the oxide layer. This facilitates and uniformly diffuses the elements, producing an oxide superconductor with a dense and homogeneous structure. In addition, long oxide superconducting materials can be continuously produced by using a long core material, forming an oxide layer on this core material, and continuously supplying this to the molten metal and performing heat treatment. Ru.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

第1図ないし第5図は、本発明をY −B a−Cu−
0系の酸化物超電導材の製造方法に適用した一実施例を
説明するためのもので、本発明を実施して酸化物超電導
材を製造するには、まず、第1図に示す基材Iを用意す
る。この基材Iは、N i、 Z r。
1 to 5 illustrate the present invention in Y-B a-Cu-
This is to explain an example applied to a method for manufacturing a 0-based oxide superconducting material. Prepare. This base material I has Ni, Zr.

Tiなどの融点800℃の純金属、あるいは、N1−C
uST i−A l、 N i−A 1などの融点80
0℃以上の合金などからなるテープ状のものである。な
お、この例では基材Iをテープ状としたが基材1を線状
、管状などに形成しても良い。
Pure metal with a melting point of 800℃ such as Ti, or N1-C
Melting point of uST i-A 1, N i-A 1, etc. 80
It is a tape-shaped material made of an alloy with a temperature of 0°C or higher. In this example, the base material I is tape-shaped, but the base material 1 may be formed into a linear shape, a tubular shape, or the like.

次いでこの基材1の外面に、第2図に示すようにY t
B a+ OLll Osなる組成の多孔質の酸化物層
2を形成する。この酸化物層2を形成するには、例えば
、以下に説明する方法で行うことができる。
Next, Y t is applied to the outer surface of this base material 1 as shown in FIG.
A porous oxide layer 2 having a composition of B a+ OLll Os is formed. This oxide layer 2 can be formed, for example, by the method described below.

まず、Y、03粉末などのYの化合物粉末あるいはYの
合金粉末と、BaCO3粉末などのBaの化合物粉末あ
るいはBaの合金粉末と、CuO粉末などの酸化銅粉末
をY :Ba:Cu= 2 :l :1の割合になるよ
うに混合し、この混合粉末を必要に応じて仮焼した後に
、大気中あるいは酸素気流中などの酸素存在雰囲気にお
いて、800〜1100℃で数時間〜数十時間加熱して
焼結し、焼結体を粉砕して焼結粉末を得る。続いてこの
焼結粉末をエタノールと有機バインダーなどの混合溶媒
に溶解してスラリを得る。そして、このスラリをスプレ
ーガンによる吹付法あるい−はスクリーン印刷機による
印刷法、ドクターブレード法などの方法により芯材lの
外周に塗布する。次いで、Arガス、N。
First, Y compound powder such as Y, 03 powder or Y alloy powder, Ba compound powder such as BaCO3 powder or Ba alloy powder, and copper oxide powder such as CuO powder are mixed into Y:Ba:Cu=2: l:1 ratio, and after calcining this mixed powder as necessary, heat it at 800 to 1100°C for several hours to several tens of hours in an oxygen-rich atmosphere such as the air or an oxygen stream. The sintered body is pulverized to obtain a sintered powder. Next, this sintered powder is dissolved in a mixed solvent such as ethanol and an organic binder to obtain a slurry. Then, this slurry is applied to the outer periphery of the core material 1 by a spraying method using a spray gun, a printing method using a screen printer, a doctor blade method, or the like. Then Ar gas, N.

ガスなどの不活性ガス雰囲気あるいは真空雰囲気におい
て600〜800℃で数時間〜数十時間加熱する熱処理
を行い、塗布層中のバインダーを除去する。
The binder in the coating layer is removed by heat treatment at 600 to 800° C. for several hours to several tens of hours in an inert gas atmosphere such as gas or a vacuum atmosphere.

この処理によって第2図に示すような多孔質の酸化物層
2を形成して被覆材3を得ることができる。なお、この
酸化物層2には後述する如く合金溶湯が含浸される関係
から、その気孔率を40%〜60%の範囲にすることが
好ましい。ここで気孔率を60%より大きくすると多孔
質層が脆くなって浸漬中に剥離を起こすために好ましく
なく、気孔率を40%より小さくすると溶湯の浸透が不
十分となるために好ましくない。なお、前記酸化物層2
を形成した後に、N、ガス雰囲気などの不活性ガス雰囲
気あるいは真空雰囲気において、被覆材3を800〜9
50℃で数時間〜数十時間加熱して酸化物層2と基材1
の密着性を向上させることが好ましい。
Through this treatment, a porous oxide layer 2 as shown in FIG. 2 can be formed and a coating material 3 can be obtained. Note that, since this oxide layer 2 is impregnated with a molten alloy as described later, it is preferable that the porosity thereof be in the range of 40% to 60%. If the porosity is greater than 60%, the porous layer becomes brittle and peels off during immersion, which is undesirable. If the porosity is less than 40%, penetration of the molten metal becomes insufficient, which is undesirable. Note that the oxide layer 2
After forming the coating material 3, the coating material 3 is heated to 800 to 90% in an inert gas atmosphere such as N or gas atmosphere or in a vacuum atmosphere.
Oxide layer 2 and base material 1 are heated at 50°C for several hours to several tens of hours.
It is preferable to improve the adhesion of.

次にこの被覆材3を第3図に示す装置を用いてB a−
Cu合金溶湯に浸漬する。第3図に示す装置は、B a
−Cu合金溶湯Yを満たした浴槽5と、浴槽5の内部に
前記被覆材3を導くための搬送ローラ6・・・を主体と
して構成されている。なお、浴槽5の外部には浴槽5の
内部のB a−Cu合金溶湯Yを加熱するための装置(
図示路)が設置されている。
Next, this coating material 3 is coated with B a- using the apparatus shown in FIG.
Immerse in molten Cu alloy. The apparatus shown in FIG.
- It is mainly composed of a bathtub 5 filled with molten Cu alloy Y, and conveying rollers 6 for guiding the coating material 3 into the bathtub 5. Note that, outside the bathtub 5, there is a device (
(Illustrated path) is installed.

なお、B a−Cu合金溶湯YのBaの濃度は40at
%以下が好ましい。
In addition, the concentration of Ba in the Ba-Cu alloy molten Y is 40at
% or less is preferable.

浴槽5の内部に搬送ローラ6・・・を用いて被覆材3を
導き、被覆材3を溶湯Yに浸漬すると、酸化物層2内部
の気孔に溶湯Yが含浸される。ここで搬送ローラ6・・
・の回転速度を調節して所定の速度で溶湯Yから被覆材
3を引き出すと第4図に示すように酸化物層2の内部の
空孔にBa−Cu合金溶湯Yの凝固体が含浸された構造
の複合材7が得られる。
When the coating material 3 is introduced into the bathtub 5 using the transport rollers 6 and immersed in the molten metal Y, the pores inside the oxide layer 2 are impregnated with the molten metal Y. Here, the conveyance roller 6...
When the coating material 3 is drawn out from the molten metal Y at a predetermined speed by adjusting the rotational speed of the oxide layer 2, the solidified body of the Ba-Cu alloy molten metal Y is impregnated into the pores inside the oxide layer 2, as shown in FIG. A composite material 7 having a similar structure is obtained.

次にこの複合材7を大気中あるいは酸素ガス気流雰囲気
などの酸素存在雰囲気中において800〜1100℃で
数時間〜数十時間加熱した後に徐冷する熱処理を施す。
Next, this composite material 7 is subjected to a heat treatment in which it is heated at 800 to 1100° C. for several hours to several tens of hours in the air or in an oxygen-present atmosphere such as an oxygen gas stream atmosphere, and then slowly cooled.

このような熱処理によってYtBa+Cu+Osなる組
成の酸化物層2の構成元素とB a−Cu合金溶湯Yの
構成元素が拡散反応してY IB at Cu30 t
−8なる組成の酸化物超電導体からなる第5図に示す超
電導層9が生成されて酸化物超電導材Aを得ることがで
きる。なお、前述の熱処理において、加熱温度は850
〜950℃が好ましく、このような温度範囲で加熱する
と酸化物超電導体の結晶粒の粗大化を阻止して微細な結
晶粒の酸化物超電導体を生成させることができる。
Through such heat treatment, the constituent elements of the oxide layer 2 having a composition of YtBa+Cu+Os and the constituent elements of the B a-Cu alloy molten Y undergo a diffusion reaction, resulting in Y IB at Cu30 t
A superconducting layer 9 shown in FIG. 5 made of an oxide superconductor having a composition of -8 is produced, and an oxide superconducting material A can be obtained. In addition, in the above-mentioned heat treatment, the heating temperature was 850°C.
The temperature is preferably 950° C. to 950° C. Heating in this temperature range can prevent the crystal grains of the oxide superconductor from becoming coarser and produce an oxide superconductor with fine crystal grains.

また、加熱処理後に冷却する場合、酸化物超電導体の結
晶構造を斜方晶lこ変態させるために一400〜600
℃の温度域で徐冷することか好ましいので400℃以下
の温度になった場合は急冷しても差し支えない。
In addition, when cooling after heat treatment, in order to transform the crystal structure of the oxide superconductor into an orthorhombic crystal,
It is preferable to cool slowly in the temperature range of 400°C, so if the temperature reaches 400°C or lower, rapid cooling may be used.

前述の場合、A tB ICLll Osなる組成の酸
化物層2と、この酸化物層2の全体に含浸させたBa−
Cu合金溶湯Yの元素を基に、相互拡散反応により酸化
物超電導体を生成させるので、酸化物層2の全体で均一
な拡散反応を生じさせることができる。このため従来の
ように粉末成形体を固相反応させて酸化物超電導体を生
成させる場合よりも元素の拡散反応が均一かつ円滑にな
されて緻密な構造の均質な酸化物超電導体が生成される
。従って臨界温度と臨界電流密度などの超電導特性に優
れた酸化物超電導材Aを得ることができる。また、芯材
lの外周に形成した多孔質の酸化物層2に合金溶湯を含
浸させるので、酸化物層2の厚さに応じた所望の厚さの
酸化物超電導体9を生成させることができ、十分な厚さ
の酸化物超電導体9を有する超電導材を容易に製造でき
る効果がある。
In the above case, an oxide layer 2 having a composition of A tB ICLll Os and a Ba-
Since the oxide superconductor is generated by interdiffusion reaction based on the elements of the molten Cu alloy Y, a uniform diffusion reaction can occur throughout the oxide layer 2. For this reason, the diffusion reaction of the elements is more uniform and smoother than in the conventional case where an oxide superconductor is produced by subjecting a powder compact to a solid phase reaction, and a homogeneous oxide superconductor with a dense structure is produced. . Therefore, an oxide superconducting material A having excellent superconducting properties such as critical temperature and critical current density can be obtained. Furthermore, since the porous oxide layer 2 formed on the outer periphery of the core material 1 is impregnated with the molten alloy, it is possible to generate the oxide superconductor 9 with a desired thickness depending on the thickness of the oxide layer 2. This has the effect of making it possible to easily manufacture a superconducting material having an oxide superconductor 9 of sufficient thickness.

ところで前記の例においてはY −B a−Cu−0系
の超電導材に本発明方法を適用した例について説明した
が、A −B −Cu−0系に含まれる他の系の酸化物
超電導材の製造方法に本発明を適用することができるこ
とは勿論である。
By the way, in the above example, an example was explained in which the method of the present invention was applied to a Y-B a-Cu-0 series superconducting material, but other types of oxide superconducting materials included in the A-B-Cu-0 series Of course, the present invention can be applied to the manufacturing method of.

即ちA −B −Cu−0系において、A元素として、
Yの代わりにSc、Y、La、Ce、Pr、Nd、Pm
、Sm。
That is, in the A-B-Cu-0 system, as the A element,
Sc, Y, La, Ce, Pr, Nd, Pm instead of Y
, Sm.

Eu、Gd、Tb、Dy、Ho、Er、Tm、’Yb、
Luなどの周期律表111a族元素の中から1種以上を
選択して本発明を行っても良く、Mg、Ca、Sr、C
aなどの周期律表IIa族元素の中から1種以上を選択
して本発明を実施しても良い。
Eu, Gd, Tb, Dy, Ho, Er, Tm, 'Yb,
The present invention may be carried out by selecting one or more elements from group 111a elements of the periodic table such as Lu, Mg, Ca, Sr, C
The present invention may be carried out by selecting one or more elements from group IIa elements of the periodic table such as a.

「実施例」 Niからなり幅2mm5 厚さO、l mmのテープ上
に厚さ約20μmのY t B a + Cu t O
sなる組成の酸化物層を形成した。この酸化物層を形成
するには、粒度−325メツシユ(平均粒径40μm)
であってY 2B a、Cu、O、なる組成の酸化物粉
末を有機バインダとエタノールの混合溶媒に分散させた
スラリ状のものを芯材の外周に塗布し、その後にN。
"Example" Y t B a + Cu t O with a thickness of approximately 20 μm on a tape made of Ni and having a width of 2 mm 5 and a thickness of O, l mm.
An oxide layer having a composition of s was formed. To form this oxide layer, particle size -325 mesh (average particle size 40 μm)
A slurry in which oxide powder having a composition of Y 2B a, Cu, and O is dispersed in a mixed solvent of an organic binder and ethanol is applied to the outer periphery of the core material, and then N is applied.

ガス雰囲気中において300℃に3時間加熱して有機バ
インダを除去することにより形成した。なお、前記テー
プ材を更にN2ガス雰囲気において950℃で48時間
加熱して酸化物層と基材の密着性を向上させた。この状
態において酸化物層の一部を切り出してその空孔率を、
測定したところ約45%であった。
It was formed by heating at 300° C. for 3 hours in a gas atmosphere to remove the organic binder. Note that the tape material was further heated at 950° C. for 48 hours in a N2 gas atmosphere to improve the adhesion between the oxide layer and the base material. In this state, a part of the oxide layer is cut out and its porosity is
It was measured to be about 45%.

続いてArガス雰囲気においてCaO製のるつぼを用い
、Cu−30B a(at%)合金を溶解して合金溶湯
を作成し、この溶湯の温度を約950℃に保持した。そ
してこの溶湯に前記酸化物層を形成したテープ材を約5
m/分の速度で通過させた。
Subsequently, Cu-30Ba (at%) alloy was melted using a CaO crucible in an Ar gas atmosphere to create a molten alloy, and the temperature of this molten metal was maintained at about 950°C. Then, about 50% of the tape material on which the oxide layer was formed was added to the molten metal.
It was passed at a speed of m/min.

この操作によりCu、−Ba合金溶湯を酸化物層の空孔
に含浸させて複合材を得た。この複合材の一部を切り出
して、酸化物層の空孔率を測定したところ空孔率は約5
%になっていた。
Through this operation, the pores of the oxide layer were impregnated with the molten Cu and -Ba alloy to obtain a composite material. When we cut out a part of this composite material and measured the porosity of the oxide layer, the porosity was approximately 5.
%.

次にこの複合材を1気圧の酸素気流雰囲気中において、
920℃で12時間加熱した後に徐冷する熱処理を施し
て酸化物超電導材を得た。
Next, this composite material was placed in an oxygen flow atmosphere of 1 atm.
A heat treatment of heating at 920° C. for 12 hours and then slow cooling was performed to obtain an oxide superconducting material.

このように製造された酸化物超電導材の超電導特性を測
定したところ、90にで電気抵抗が完全に零になり、優
秀な酸化物超電導材であることを確認できた。
When the superconducting properties of the oxide superconducting material produced in this way were measured, the electrical resistance became completely zero at 90%, confirming that it was an excellent oxide superconducting material.

更に得られた酸化物超電導材を断面観察したところ、緻
密な反応層の存在を確認することができ、X線回折分析
によりY IB atc u3o 7−8なる組成の斜
方晶が生成していることを確認できた。
Furthermore, cross-sectional observation of the obtained oxide superconducting material confirmed the presence of a dense reaction layer, and X-ray diffraction analysis revealed that orthorhombic crystals with a composition of Y IB atc u3o 7-8 were formed. I was able to confirm that.

「発明の効果」− 以上説明したように本発明は、基材外方に形成した多孔
質のA t B ICu IOsなる組成の酸化物層に
B−Cu合金溶湯を含浸させ、この後に熱処理を施すた
めに、多孔質の酸化物層の全体で均一な拡散反応を生じ
させることができ、酸化物層の全体に均質な酸化物超電
導層を生成させることができる効果がある。また、混合
粉末を焼結して酸化物超電導体を生成させる場合に比較
して元素拡散が円滑かつ均一になされるために、緻密な
結晶粒の均質な酸化物超電導体を生成できる。従って本
発明方法を実施することにより、臨界温度と臨界電流密
度の高い優れた酸化物超電導材を製造できる効果がある
"Effects of the Invention" - As explained above, the present invention impregnates a porous oxide layer having a composition of AtB ICu IOs formed on the outside of a base material with a molten B-Cu alloy, and then heat-treats the layer. As a result, a uniform diffusion reaction can occur throughout the porous oxide layer, and a homogeneous oxide superconducting layer can be generated throughout the oxide layer. Furthermore, compared to the case where an oxide superconductor is produced by sintering a mixed powder, element diffusion is made smoother and more uniformly, so that an oxide superconductor with homogeneous dense crystal grains can be produced. Therefore, by carrying out the method of the present invention, it is possible to produce an excellent oxide superconducting material having a high critical temperature and high critical current density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は、本発明の一実施例を示すもので
、第1図は基材の横断面図、第2図は被覆材の横断面図
、第3図は被覆材をCu−B a合金溶湯に浸漬してい
る状態を示す断面図、第4図は浸漬後の基材を示す横断
面図、第5図は酸化物超電導材を示す横断面図である。 l・・・基材、 2・・・酸化物層、 3・・・被覆材
、5・・・浴槽、  6・・・搬送ローラ、7・・・複
合材、9・・・酸化物超電導層、 A・・・酸化物超電
導材。 出願人 藤倉電線株式会社  。 第1図 口二二ト1 第3図 第5薗
1 to 5 show an embodiment of the present invention, in which FIG. 1 is a cross-sectional view of the base material, FIG. 2 is a cross-sectional view of the coating material, and FIG. 3 is a cross-sectional view of the coating material. -A cross-sectional view showing the state of the base material being immersed in the molten metal of Ba alloy, FIG. 4 is a cross-sectional view showing the base material after being immersed, and FIG. 5 is a cross-sectional view showing the oxide superconducting material. 1... Base material, 2... Oxide layer, 3... Covering material, 5... Bathtub, 6... Conveyance roller, 7... Composite material, 9... Oxide superconducting layer , A...Oxide superconducting material. Applicant: Fujikura Electric Cable Co., Ltd. Figure 1 口22to 1 Figure 3 Figure 5 Sono

Claims (1)

【特許請求の範囲】[Claims]  一般式A−B−Cu−O(ただしAは、Sc、Y、L
a、Ho、Erなどの周期律表IIIa族元素の1種以上
を示し、Bは、Sr、Baなどの周期律表IIa族元素の
1種以上を示す。)で示される酸化物超電導体を具備す
る酸化物超電導材の製造方法において、金属製の芯材の
外周に、A_2B_1Cu_1O_5なる組成の多孔質
の酸化物層を形成して被覆材を形成し、次にこの被覆材
をB−Cu合金溶湯に浸漬し、前記酸化物層の空孔にB
−Cu合金溶湯を含浸させて複合材を作成し、次いでこ
の複合材に酸素存在雰囲気で熱処理を行って酸化物超電
導体を生成させることを特徴とする酸化物超電導材の製
造方法。
General formula AB-Cu-O (where A is Sc, Y, L
B represents one or more elements of group IIIa of the periodic table such as a, Ho, and Er, and B represents one or more of elements of group IIa of the periodic table such as Sr and Ba. ), a porous oxide layer having a composition of A_2B_1Cu_1O_5 is formed on the outer periphery of a metal core material to form a coating material; This coating material is then immersed in a B-Cu alloy molten metal, and the pores of the oxide layer are filled with B.
- A method for manufacturing an oxide superconducting material, which comprises impregnating a molten Cu alloy to create a composite material, and then heat-treating the composite material in an oxygen-present atmosphere to generate an oxide superconductor.
JP63047220A 1988-02-29 1988-02-29 Production of oxide superconducting material Pending JPH01219018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047220A JPH01219018A (en) 1988-02-29 1988-02-29 Production of oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047220A JPH01219018A (en) 1988-02-29 1988-02-29 Production of oxide superconducting material

Publications (1)

Publication Number Publication Date
JPH01219018A true JPH01219018A (en) 1989-09-01

Family

ID=12769096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047220A Pending JPH01219018A (en) 1988-02-29 1988-02-29 Production of oxide superconducting material

Country Status (1)

Country Link
JP (1) JPH01219018A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01261205A (en) * 1988-04-13 1989-10-18 Hitachi Ltd Production of oxide superconductor and apparatus therefor
JPH01305847A (en) * 1988-06-02 1989-12-11 Sumitomo Electric Ind Ltd Production of superconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01261205A (en) * 1988-04-13 1989-10-18 Hitachi Ltd Production of oxide superconductor and apparatus therefor
JPH01305847A (en) * 1988-06-02 1989-12-11 Sumitomo Electric Ind Ltd Production of superconductor

Similar Documents

Publication Publication Date Title
US5075286A (en) Alloy method of making a composite having superconducting capability
JPH01219018A (en) Production of oxide superconducting material
JPWO2003050826A1 (en) Metal substrate for oxide superconducting thick film and method for producing the same
JP2725721B2 (en) Manufacturing method of superconducting conductor
JP2583573B2 (en) Method for producing oxide-based superconducting material
JP2634186B2 (en) Method for producing oxide-based superconducting material
JPH01219017A (en) Production of oxide superconductor
JPH01166418A (en) Manufacture of oxide superconductive material
JP2583565B2 (en) Method for producing oxide-based superconducting material
JP2575442B2 (en) Method for producing oxide-based superconducting wire
JPH01256107A (en) Manufacture of oxide superconducting coil
JPH0197321A (en) Manufacture of superconductive member
JP2727565B2 (en) Superconductor manufacturing method
JP2575443B2 (en) Method for producing oxide-based superconducting wire
JP2901243B2 (en) Method for producing oxide-based superconducting wire
JPS63276820A (en) Manufacture of oxide superconductor
JP2583934B2 (en) Manufacturing method of oxide superconducting conductor
JPH01239021A (en) Production of oxide-based superconducting material
JPH0450103A (en) Oxide superconducting material and production thereof
JPH01239019A (en) Production of oxide-based superconducting material
JPS63269420A (en) Manufacture of superconductive tape
JPH01164799A (en) Production of superconducting molded body
JPH01286208A (en) Oxide superconducting material and manufacture of oxide superconducting wire rod
JPH03194803A (en) Manufacture of oxide superconductive wire material
JPH01239017A (en) Production of oxide-based superconducting material