JPH0197321A - Manufacture of superconductive member - Google Patents

Manufacture of superconductive member

Info

Publication number
JPH0197321A
JPH0197321A JP62254968A JP25496887A JPH0197321A JP H0197321 A JPH0197321 A JP H0197321A JP 62254968 A JP62254968 A JP 62254968A JP 25496887 A JP25496887 A JP 25496887A JP H0197321 A JPH0197321 A JP H0197321A
Authority
JP
Japan
Prior art keywords
manufacturing
powder
superconducting member
base material
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62254968A
Other languages
Japanese (ja)
Other versions
JP2525833B2 (en
Inventor
Tetsuya Ishida
哲也 石田
Tomoji Goto
後藤 智司
Shuji Yatsu
矢津 修示
Tetsuji Jodai
哲司 上代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62254968A priority Critical patent/JP2525833B2/en
Publication of JPH0197321A publication Critical patent/JPH0197321A/en
Application granted granted Critical
Publication of JP2525833B2 publication Critical patent/JP2525833B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a superconductive member in arbitrary shape having a high critical temperature by using, as raw material, a plural kinds of powder composed of one kind of elements selected in a plurality of groups in the periodic table or compounds including the above element and mixing the powder in liquid so as to form a slurry, thereby depositing the slurry on a substrate as a layer of compound oxide. CONSTITUTION:Powder composed of one kind alpha of elements selected in IIa group in the periodic table or a compound including the element alpha, powder composed of one kind beta of elements selected in IIIa group in the periodic table or a compound including the element beta, and powder composed of one kind gammaselected in Ib, IIb, IIIb, IVa, VIIIa groups in the periodic table or a compound including the element alpha are used for raw material and mixed in liquid so as to form a slurry. A substrate is dipped into the slurry so as to be deposited. The deposited substrate is heated, thereby the raw material is sintered so that a layer of compound oxide is formed on the surface of the substrate. Therefore, it is possible to obtain a superconductive member in arbitrary shape having a high critical temperature.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導性部材の製造方法に関する。より詳細に
は、高い超電導臨界温度を備えた超電導材料を有効に利
用し得る超電導部材の新規な製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing superconducting members. More specifically, the present invention relates to a novel method for manufacturing a superconducting member that can effectively utilize a superconducting material with a high superconducting critical temperature.

従来の技術 超電導現象下で物質は完全な反磁性を示し、内部で有限
な定常電流が流れているにも関わらず電位差が現れなく
なる。そこで、電力損失の全くない伝送媒体としての超
電導体の各種応用が提案されている。
Conventional technology Under superconducting phenomena, materials exhibit complete diamagnetic properties, and no potential difference appears even though a finite steady-state current flows inside them. Therefore, various applications of superconductors as transmission media with no power loss have been proposed.

即ち、その応用分野は、MHD発電、電力送電、電力貯
蔵等の電力分野、或いは、磁気浮上列車、電磁気推進船
舶等の動力分野、更に、磁場、マイクロ波、放射線等の
超高感度センサとしてNMR1π中間子治療、高エネル
ギー物理実験装置などの計測の分野等、極めて多くの分
野を挙げることができる。
That is, its application fields include power fields such as MHD power generation, power transmission, and power storage, power fields such as magnetic levitation trains and electromagnetic propulsion ships, and NMR1π as an ultra-sensitive sensor for magnetic fields, microwaves, radiation, etc. There are many fields that can be mentioned, such as meson therapy, measurement fields such as high-energy physics experimental equipment, etc.

また、ジョセフソン素子に代表されるエレクトロニクス
の分野でも、単に消費電力の低減のみならず、動作の極
めて高速な素子を実現し得る技術として期待されている
Furthermore, in the field of electronics, typified by Josephson devices, this technology is expected to not only reduce power consumption but also realize devices that operate at extremely high speeds.

ところで、嘗て超電導は超低温下においてのみ観測され
る現象であった。即ち、従来の超電導材料として最も高
い超電導臨界温度Tcを有するといわれていたNb、 
Geにおいても23.2 Kという極めて低い温度が長
期間に亘って超電導臨界温度の限界とされていた。
By the way, superconductivity was once a phenomenon observed only at extremely low temperatures. That is, Nb, which is said to have the highest superconducting critical temperature Tc among conventional superconducting materials,
Even in Ge, an extremely low temperature of 23.2 K was considered to be the limit of superconducting critical temperature for a long time.

それ故、従来は、超電導現象を実現するために、沸点が
4.2にの液体ヘリウムを用いて超電導材料をTc以下
まで冷却していた。しかしながら、液体ヘリウムの使用
は、液化設備を含めた冷却設備による技術的負担並びに
コスト的負担が極めて大きく、超電導技術の実用化への
妨げとなっていた。
Therefore, conventionally, in order to realize the superconducting phenomenon, superconducting materials have been cooled to below Tc using liquid helium with a boiling point of 4.2. However, the use of liquid helium imposes an extremely large technical burden and cost burden due to cooling equipment including liquefaction equipment, which has hindered the practical application of superconducting technology.

ところが、近年に到って[a族元素あるいは■a族元素
の酸化物を含む焼結体が極めて高いTcで超電導体とな
り得ることが報告され、非低温超電導体による超電導技
術の実用化が俄かに促進されようとしている。既に報告
されている例では、ペロブスカイト型酸化物と類似した
結晶構造を有すると考えられる〔La、 Ba) 2c
u○4あるいはI:La。
However, in recent years, it has been reported that sintered bodies containing group A elements or oxides of group A elements can become superconductors at extremely high Tc, and the practical application of superconducting technology using non-low-temperature superconductors has been delayed. is about to be promoted. In the examples already reported, it is thought to have a crystal structure similar to that of perovskite oxides [La, Ba) 2c
u○4 or I:La.

Sr〕2CUO4等のに2NiF、型酸化物が挙げられ
る。
Examples include 2NiF type oxides such as Sr]2CUO4.

これらの物質では、30乃至50にという従来に比べて
飛躍的に高いTcが観測され、更に、Ba、 Y、Cu
の酸化物からなる超電導材料では70に以上のTcも報
告されている。
In these materials, a dramatically higher Tc of 30 to 50 was observed, and in addition, Ba, Y, Cu
It has also been reported that superconducting materials made of oxides have a Tc of 70 or more.

発明が解決しようとする問題点 しかしながら、これらの超電導材料は焼結体として得ら
れるので、一般的に脆く取り扱いに注意が必要である。
Problems to be Solved by the Invention However, since these superconducting materials are obtained as sintered bodies, they are generally brittle and must be handled with care.

即ち、機械的なストレスによって容易に破損あるいは亀
裂を生じ、特に線材化した場合には極めて容易に折損す
るので、実際の利用には大きな制約が伴う。
That is, it easily breaks or cracks due to mechanical stress, and particularly when it is made into a wire, it breaks very easily, so there are major restrictions on its actual use.

また、焼結体超電導材は、超電導特性を有する粒子のみ
で完全に均質な多結晶体を形成することが困難であると
共に、超電導体一般の性質として、外部磁場や冷却温度
の変動によって局部的に超電導状態が破れる場合がある
。ところが、この種の焼結体超電導材料は従来の超電導
材料よりも熱伝導率が低く、また電気抵抗も高い。従っ
て、上述のように超電導状態が破れた箇所では超電導体
を流れる電流によって局部的な発熱が生じ、冷却媒体と
接触したような場合には冷却媒体の爆発的な気化を誘起
する。そこで、従来の金属系の超電導体は超電導体を細
いフィラメントとして形成し、多数のフィラメントをC
u等の良導体によって一体に形成し、超電導が破れた場
合の伝熱体並びに電流のバイパスとすることによって危
険を回避していた。
In addition, with sintered superconducting materials, it is difficult to form a completely homogeneous polycrystalline body consisting only of particles with superconducting properties, and as a general property of superconductors, localization may occur due to external magnetic fields or fluctuations in cooling temperature. The superconducting state may be broken. However, this type of sintered superconducting material has lower thermal conductivity and higher electrical resistance than conventional superconducting materials. Therefore, as mentioned above, at a location where the superconducting state is broken, local heat generation occurs due to the current flowing through the superconductor, and when the superconductor comes into contact with the cooling medium, explosive vaporization of the cooling medium is induced. Therefore, in conventional metal-based superconductors, the superconductor is formed as thin filaments, and many filaments are
Danger was avoided by integrally forming the superconductor with a good conductor such as U, and using it as a heat transfer body and current bypass in case the superconductor was broken.

これに対して、前述のような近年開発された高いTcを
有する超電導焼結体は、上述のような構成を採ることが
困難であり、現状では線材としての利用が困難であると
されている。
On the other hand, it is difficult to adopt the above-mentioned configuration with the superconducting sintered bodies with high Tc that have been developed in recent years, and it is currently difficult to use them as wire materials. .

そこで、本発明の目的は、上記従来技術の問題点を解決
し、高いTcを有する超電導材料を、超電導特性の安定
度が高く、且つ形状の自由度が大きい線材として使用す
ることが可能な新規な超電導材の構成を提供することに
ある。
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and to create a new material that can use a superconducting material having a high Tc as a wire material with high stability of superconducting properties and a large degree of freedom in shape. The object of the present invention is to provide a structure of a superconducting material.

問題点を解決するための手段 即ち、本発明に従い、周期律表第[a族から選択された
1種の元素αまたは該元素αを含む化合物の粉末と、周
期律表第1a族から選択された1種の元素βまたは該元
素βを含む化合物の粉末と、周期律表第1b、nb、m
b、■a族、VIIIa族から選択された1種の元素T
または該元素γを含む化合物の粉末とを、原料粉末とし
て液体中で混合してスラリーを形成し、該スラリー中に
基材を浸漬して、前記原料粉末を該基材の表面に付着し
、該化合物粉末の付着した基材を加熱することによって
前記原料粉末に焼結反応をなさしめ一般式 :αWβx
Ty δ2 (但し、元素αは周期律表IIa族から選択された1種
の元素であり、元素βは周期律表IIIa族から選択さ
れた1種の元素であり、元素Tは周期律表Ib、nb、
mb、VIIIa族から選択された1種の元素であり、
元素δは○(酸素〉であり、W、X、V、Zはそれぞれ
1≦w≦5.1≦x≦5.1≦y≦15.1≦Z≦20
を満たす数である) で示される複合酸化物の層を表面に具備した超電導性部
材を製造することを特徴とする超電導性部材の製造方法
が提供される。
Means for solving the problem, namely, according to the present invention, a powder of one element α selected from Group A of the Periodic Table or a compound containing the element α, and a powder of an element α selected from Group IA of the Periodic Table. powder of one kind of element β or a compound containing the element β, and a powder of one kind of element β or a compound containing the element β, and
One element T selected from group b, group a, group VIIIa
or a powder of a compound containing the element γ is mixed as a raw material powder in a liquid to form a slurry, and a base material is immersed in the slurry to adhere the raw material powder to the surface of the base material, By heating the base material to which the compound powder is attached, the raw material powder undergoes a sintering reaction, and the general formula: αWβx
Ty δ2 (However, element α is an element selected from Group IIa of the periodic table, element β is an element selected from Group IIIa of the periodic table, and element T is an element selected from Group IIIa of the periodic table. ,nb,
mb, one type of element selected from group VIIIa,
Element δ is ○ (oxygen), and W, X, V, and Z are each 1≦w≦5.1≦x≦5.1≦y≦15.1≦Z≦20
Provided is a method for manufacturing a superconducting member, which comprises manufacturing a superconducting member having a layer of a composite oxide represented by the following formula on its surface.

作用 本発明に従う方法は、液体中で原料粉末を混合して形成
したスラリーに基材を浸漬することによって、基材表面
に均一に付着させ、しかる後に原料粉末を焼結して超電
導材料化することをその主要な特徴としている。
Operation The method according to the present invention involves immersing a base material in a slurry formed by mixing raw material powders in a liquid to uniformly adhere the slurry to the surface of the base material, and then sintering the raw material powders to form a superconducting material. This is its main feature.

即ち、一般式 :α1β8γ、δ2 (但し、元素αは周期律表IIa族から選択された1種
の元素であり、元素βは周期律表111a族から選択さ
れた1種の元素であり、元素Tは周期律表xb、nb、
mb、VIIIa族から選択された1種の元素であり、
元素δはO(酸素)であり、wXx、y、zはそれぞれ
1≦w≦5.1≦x≦5.1≦y≦15.1≦Z≦20
を満たす数である) で示される複合酸化物焼結体が超電導材料として極めて
優れた特性を有することに基づき、この材料を構成する
元素あるいはこれを含む化合物の原料粉末を基材上に固
定し、しかる後にこれを焼結して上述の如き超電導材料
とする。
That is, the general formula: α1β8γ, δ2 (However, element α is one type of element selected from Group IIa of the periodic table, element β is one type of element selected from Group 111a of the periodic table, and element T is the periodic table xb, nb,
mb, one type of element selected from group VIIIa,
The element δ is O (oxygen), and wXx, y, and z are each 1≦w≦5.1≦x≦5.1≦y≦15.1≦Z≦20
Based on the fact that the composite oxide sintered body shown by , and then sintered to form the superconducting material as described above.

尚、上述のような複合酸化物としては、特にBa −Y
−Cu、 Ba−Dy−Cuあるいは5r−La−Cu
等の複合酸化物が特に優れた特性を示すものとして挙げ
られる。
In addition, as the above-mentioned complex oxide, especially Ba-Y
-Cu, Ba-Dy-Cu or 5r-La-Cu
Composite oxides such as these are listed as exhibiting particularly excellent properties.

但し、原料粉末をそのまま基材上に固定することは困難
なので、本発明に従えば、基材に対する付着性の優れた
液体、例えばイソプロピルアルコール並びにメチルエチ
ルケトンを溶剤として溶解したポリビニルブチラール並
びにジブチルフタレートに原料粉末を混合して形成され
たスラリーに基材を浸漬することによって、基材表面に
均一かつ有効に原料粉末をせしめる。
However, since it is difficult to fix the raw material powder as it is on the substrate, according to the present invention, the raw material is dissolved in a liquid that has excellent adhesion to the substrate, such as polyvinyl butyral or dibutyl phthalate dissolved in isopropyl alcohol or methyl ethyl ketone as a solvent. By immersing the base material in a slurry formed by mixing powders, the raw material powder is uniformly and effectively applied to the surface of the base material.

尚、基材としては、焼結時の加熱に耐え得るものであれ
ば如何なる材料であっても使用可能であるが、特に製品
を超電導材として用いた場合に、クエンチ時の電流バイ
パス並びに放熱路としての基材の機能を考慮すると、導
電性の材料であることが好ましい。具体的には各種の金
属あるいはカーボンファイバ等を挙げることができるが
これに限定されない。
Any material can be used as the base material as long as it can withstand the heat during sintering, but especially when the product is used as a superconducting material, it is difficult to use the current bypass during quenching and the heat dissipation path. Considering the function of the base material as a material, it is preferable to use a conductive material. Specifically, various metals, carbon fibers, etc. can be mentioned, but the material is not limited thereto.

尚、スラリーへの基材の浸漬工程においては、原料粉末
が基材に均一に付着するように、超音波あるいは機械的
な手段によって原料粉末の分散した液体を撹拌する、あ
るいは基材を振動あるいは回転させる等することも好ま
しい。尚、バインダの付着力等によって異なるが、後続
の工程が終了するまで原料粉末が有効に基材に付着する
こと、並びに製品の超電導特性の向上を配慮すると、原
料粉末の粒径は30μm以下であることが好ましい。
In the step of dipping the base material into the slurry, the liquid in which the raw material powder is dispersed is stirred by ultrasonic waves or mechanical means, or the base material is vibrated or It is also preferable to rotate it. Although it varies depending on the adhesion force of the binder, etc., in order to ensure that the raw material powder adheres effectively to the base material until the subsequent process is completed and to improve the superconducting properties of the product, the particle size of the raw material powder should be 30 μm or less. It is preferable that there be.

こうして原料粉末を付着した基材からは、比較的低い温
度で加熱する等して脱バインダ処理を行うことによって
、完成後の超電導複合酸化物の品質を向上することがで
きる。また、基材の表面を予め処理して、超電導材料に
対して化学的に安定なものとしておくことも好ましい。
The quality of the completed superconducting composite oxide can be improved by removing the binder from the base material to which the raw material powder has been attached, such as by heating it at a relatively low temperature. It is also preferable to treat the surface of the base material in advance to make it chemically stable to the superconducting material.

ここで、焼結処理は、前記原料粉末のうち最も融点の低
い化合物の融点を上限とし、該融点との差が100℃以
内の温度範囲で行うことが好ましい。
Here, the sintering treatment is preferably carried out at a temperature range with the upper limit being the melting point of the compound having the lowest melting point among the raw material powders, and a difference from this melting point being within 100°C.

何故ならば、焼結温度が材料粉末の融点を越えると、材
料が溶解あるいは分解してしまい、このようなプロセス
を経た複合酸化物は有効な超電導特性を示さない。一方
、上記範囲よりも低い温度では十分な固溶反応が行われ
ない。
This is because if the sintering temperature exceeds the melting point of the material powder, the material will melt or decompose, and the composite oxide that has undergone such a process will not exhibit effective superconducting properties. On the other hand, sufficient solid solution reaction does not occur at temperatures lower than the above range.

また、複合酸化物による超電導焼結体の特性は、酸素の
含有量によって大きく左右されることが知られており、
この点から、焼結時には適切な酸素含有雰囲気下で焼結
を行い、含有酸素量を制御することが好ましい。
It is also known that the properties of superconducting sintered bodies made of composite oxides are greatly influenced by the oxygen content.
From this point of view, it is preferable to perform sintering in an appropriate oxygen-containing atmosphere to control the amount of oxygen contained.

一方、基材の形状が線材あるいは板材等の場合は、超電
導複合酸化物層を具備した超電導材を更に熱間圧延処理
に付すことによって、超電導特性が向上する。これは、
超電導複合酸化物層が一旦物理的に破壊され、再焼成さ
れたために、組織の微細化がなされたためと思われる。
On the other hand, when the shape of the base material is a wire or a plate, the superconducting properties are improved by further subjecting the superconducting material provided with the superconducting composite oxide layer to hot rolling treatment. this is,
This seems to be because the superconducting composite oxide layer was once physically destroyed and then re-sintered, resulting in a finer structure.

尚、この処理の際の加熱温度は、上記複合酸化物の融点
を上限とし該融点との差が100℃以内の温度であるこ
とが好ましい。これは、この温度範囲で、圧延による機
械加工によって粉砕された複合酸化物の組織が、同相反
応によって再焼結されるためと思われる。
Note that the heating temperature during this treatment is preferably a temperature with the upper limit being the melting point of the composite oxide and the difference from the melting point being within 100°C. This seems to be because, in this temperature range, the structure of the composite oxide pulverized by mechanical processing by rolling is re-sintered by an in-phase reaction.

以上のような本発明の方法に従う操作は、例えば基材を
線材として超電導線材を容易に製造し得るものであり、
さらに連続処理にも良く適合する方法である。従って、
長い線状の基材を連続的に処理することによって、超電
導線を有利に製造することのできる方法である。また、
電磁遮蔽材として超電導材料を利用する場合にも適切な
形状の基材を選択することによって有利に応用すること
ができる。
The operations according to the method of the present invention as described above can easily produce a superconducting wire using, for example, a wire as a base material,
Furthermore, this method is well suited for continuous processing. Therefore,
This is a method that can advantageously produce superconducting wires by continuously processing long linear base materials. Also,
When using a superconducting material as an electromagnetic shielding material, it can be advantageously applied by selecting a base material with an appropriate shape.

実施例 第1図は、本発明による製造方法を実施するための装置
の構成を示す図であり、線状の基材を用いて長尺の超電
導線材を連続処理によって製造することを意図している
Embodiment FIG. 1 is a diagram showing the configuration of an apparatus for carrying out the manufacturing method according to the present invention, and is intended to manufacture a long superconducting wire by continuous processing using a linear base material. There is.

コイラ1から供給される基材2は、ウォータバス3によ
って温度管理された恒温槽4中のスラリー5に浸漬され
た後、上方に移送されて加熱炉6中を走行して、上方の
ドラム7に巻き取られるように構成されている。
The base material 2 supplied from the coiler 1 is immersed in a slurry 5 in a constant temperature bath 4 whose temperature is controlled by a water bath 3, and is then transferred upward, runs through a heating furnace 6, and is heated to an upper drum 7. It is configured so that it can be wound up.

恒温槽4は、給気孔8から供給される不活性ガスによっ
てその内部を満たされている。また、恒温槽4内のスラ
リー5中には超音波振動板9が浸漬されており、この装
置の稼働中はスラリー5に振動を与えて原料粉末の偏り
あるいは沈下を防止すると共にスラリー5の組成を均一
に維持している。更に、高温槽4の出側付近には、基材
に付着した過剰なスラリー5を掻き落とすためのダイス
13が設けられている。
The thermostatic chamber 4 is filled with inert gas supplied from the air supply hole 8 . In addition, an ultrasonic vibration plate 9 is immersed in the slurry 5 in the constant temperature bath 4, and when this device is in operation, vibration is applied to the slurry 5 to prevent the raw material powder from becoming uneven or sinking, and to prevent the slurry 5 from changing its composition. is maintained uniformly. Furthermore, a die 13 is provided near the exit side of the high temperature bath 4 for scraping off excess slurry 5 adhering to the base material.

一方、加熱炉6も給気孔10を備えており、ここからは
空気あるいは酸素が供給される。即ち、後述する超電導
材料の焼結反応は大気下で行うことができるが、焼結反
応時に酸素を吸収するのでこれを供給する必要がある。
On the other hand, the heating furnace 6 also includes an air supply hole 10, through which air or oxygen is supplied. That is, although the sintering reaction of superconducting materials, which will be described later, can be carried out in the atmosphere, oxygen is absorbed during the sintering reaction, so it is necessary to supply oxygen.

従って、加熱炉6内の温度低下が避けられるのならば十
分な量の空気を供給してもよい。尚、この加熱炉6は、
予備加熱並びに脱バインダのための比較的低温のヒータ
11と、焼結反応を行うための高温のヒータ12とを具
備しており、十分な焼結時間を確保するために、高温ヒ
ータ12はかなり長く構成されている。
Therefore, a sufficient amount of air may be supplied as long as a drop in temperature within the heating furnace 6 can be avoided. In addition, this heating furnace 6 is
It is equipped with a relatively low-temperature heater 11 for preheating and debinding, and a high-temperature heater 12 for performing a sintering reaction. It has a long structure.

」二連のような装置を用いて、超電導線の製造を以下の
ように実施した。
The superconducting wire was manufactured as follows using a device similar to the one described in "Double Series."

まず、原料粉末として、BaCO2、¥2(C03)3
CuOの各粉末を用意し、これをポリビニルブチラール
並びにジブチルツクレートと混合した後に、イソプロピ
ルアルコール並びにメチルエチルケトンを溶剤として溶
解した。この混合物をボールミルによって24時間混練
した後、真空脱泡機で脱気してから粘度調整を行った。
First, as a raw material powder, BaCO2, ¥2 (C03)3
Each powder of CuO was prepared, mixed with polyvinyl butyral and dibutyl slate, and then dissolved using isopropyl alcohol and methyl ethyl ketone as a solvent. This mixture was kneaded for 24 hours using a ball mill, then degassed using a vacuum defoaming machine, and then the viscosity was adjusted.

粘度調整は、基本的にはスラリーの温度によって行い、
本実施例では40℃における800cpsを採用した。
Viscosity adjustment is basically done by adjusting the temperature of the slurry.
In this example, 800 cps at 40°C was adopted.

そこで、前述の装置の恒温槽にこのスラリーを収容する
と共に、恒温槽を40℃に保ち、更に、スラリーの凝固
防止のために恒温槽内にN2ガスを約1 atmまで充
満させた。
Therefore, this slurry was placed in a constant temperature bath of the above-mentioned apparatus, and the constant temperature bath was kept at 40° C., and furthermore, the constant temperature bath was filled with N2 gas to about 1 atm to prevent solidification of the slurry.

この恒温槽に対して、基材として直径0.5mmのCu
線を連続的に供給した。尚、比較のために、基材の供給
速度を、50mm/分、100mm1分、300mm/
分、600mm/分、1200mm/分と変化して実施
シ上述のようにしてスラリーを塗布されたCu線は、各
々の供給速度と同じ速度で加熱炉に移送され、まず加熱
炉6の低温ヒータ11によって50乃至200℃に加熱
され脱バインク処理される。続いて、高温ヒータ12に
よって焼結さる。ここでも、基材は供給速度と同じ速度
で移送さる。従って、約30mの焼結用ヒータを備える
本実施例の装置では、前述の供給速度に応じて、各々約
10時間、5時間、16時間、50分間、25分間、焼
結されたことになる。尚、焼結時の加熱温度は約900
℃であった。
For this constant temperature bath, Cu with a diameter of 0.5 mm was used as a base material.
The line was fed continuously. For comparison, the feeding speed of the base material was set to 50 mm/min, 100 mm/min, and 300 mm/min.
The Cu wire coated with the slurry as described above is transferred to the heating furnace at the same speed as each feed rate, and is first transferred to the low temperature heater of the heating furnace 6. 11 to 50 to 200° C. to remove binder. Subsequently, it is sintered by a high-temperature heater 12. Again, the substrate is transported at the same speed as the feed rate. Therefore, in the apparatus of this example equipped with a sintering heater of approximately 30 m length, sintering was performed for approximately 10 hours, 5 hours, 16 hours, 50 minutes, and 25 minutes, respectively, depending on the above-mentioned supply speed. . The heating temperature during sintering is approximately 900℃.
It was ℃.

こうして得られた各線材を各々1m切り取って試料とし
、測定に供した。
Each of the wire rods thus obtained was cut by 1 m and used as a sample for measurement.

測定は、各試料の両端にAgペーストによって電極を設
け、クライオスタット中で液体窒素により冷却した後、
試料に通電して、電気抵抗が完全に零となったことを確
認した後徐々に温度を上げ、臨界温度Tc並びに電気抵
抗が完全に例となる温度Tciを測定した。また、液体
窒素で超電導伝導を示さなかった試料については、更に
液体水素によって冷却した後に超電導特性を測定した。
For measurement, electrodes were placed on both ends of each sample using Ag paste, and after cooling with liquid nitrogen in a cryostat,
After applying electricity to the sample and confirming that the electrical resistance had become completely zero, the temperature was gradually raised, and the critical temperature Tc and the temperature Tci at which the electrical resistance was perfect were measured. In addition, for samples that did not exhibit superconductivity in liquid nitrogen, their superconducting properties were measured after further cooling in liquid hydrogen.

測定結果を下記の第1表に示す。The measurement results are shown in Table 1 below.

注二図中の〔*〕印は、液体水素による測定であること
を意味する。
Note 2: The mark [*] in the figure means that the measurement was performed using liquid hydrogen.

発明の効果 以上詳述のように、本発明に従う超電導性部材の製造方
法によれば、高い臨界温度を有し7ながら機械的に脆弱
なために、加工あるいは成形を大きく制限されていた超
電導焼結体を、任意の形状で使用することが可能となる
Effects of the Invention As detailed above, according to the method of manufacturing a superconducting member according to the present invention, superconducting sintered materials, which have a high critical temperature7 but are mechanically fragile, have been severely restricted in processing or molding. The body can be used in any shape.

また、本発明に従って作製された超電導性部材は、基材
が導体なので超電導が破れた場合の電流のバイパスも備
えた構成となる。
Further, since the base material of the superconducting member produced according to the present invention is a conductor, the superconducting member is configured to have a current bypass when the superconductivity is broken.

更に、本発明による方法は、連続処理にも容易に適合す
るので、線材等の長尺の部材に極めて有効に利用できる
Furthermore, since the method according to the present invention is easily adapted to continuous processing, it can be used extremely effectively for long members such as wire rods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による超電導材の製造方法を、線材の
連続製造工程として実施する際の装置の構成を概略的に
示すものである。 〔主な参照番号〕 1・・・コイラ、 2・・・ドラム、 3・・・ウォータバス、 4・・・高温槽、 5・・・スラリー、 6・・・加熱炉、 7・・・ドラム、 8・・・N2ガス給気孔、 9・・・超音波振動板、 10・・・02ガス給気孔、 11・・・低温ヒータ、 12・・・高温ヒータ、 13・・・ダイス 特許出願人  住友電気工業株式会社
FIG. 1 schematically shows the configuration of an apparatus for carrying out the method for manufacturing a superconducting material according to the present invention as a continuous manufacturing process for wire rods. [Main reference numbers] 1... Coiler, 2... Drum, 3... Water bath, 4... High temperature bath, 5... Slurry, 6... Heating furnace, 7... Drum , 8...N2 gas supply hole, 9...Ultrasonic diaphragm, 10...02 gas supply hole, 11...Low temperature heater, 12...High temperature heater, 13...Dice patent applicant Sumitomo Electric Industries, Ltd.

Claims (21)

【特許請求の範囲】[Claims] (1)周期律表第IIa族から選択された1種の元素αま
たは該元素αを含む化合物の粉末と、周期律表第III族
から選択された1種の元素βまたは該元素βを含む化合
物の粉末と、周期律表第 I b、IIb、IIIb、IVa族、
VIIIa族から選択された1種の元素γまたは該元素γを
含む化合物の粉末とを、原料粉末として液体中で混合し
てスラリーを形成し、 該スラリー中に基材を浸漬して、前記原料粉末を該基材
の表面に付着し、 該化合物粉末の付着した基材を加熱することによって前
記原料粉末に焼結反応をなさしめ 一般式:α_wβ_xγ_yδ_z (但し、元素αは周期律表IIa族から選択された1種の
元素であり、元素βは周期律表IIIa族から選択された
1種の元素であり、元素γは周期律表 I b、IIb、II
Ib、VIIIa族から選択された1種の元素であり、元素
δはO(酸素)であり、w、x、y、zはそれぞれ1≦
w≦5、1≦x≦5、1≦y≦15、1≦z≦20を満
たす数である) で示される複合酸化物の層を表面に具備した超電導性部
材を製造することを特徴とする超電導性部材の製造方法
(1) Powder of one type of element α selected from Group IIa of the Periodic Table or a compound containing the element α, and one type of element β selected from Group III of the Periodic Table or containing the element β Powder of compounds and groups Ib, IIb, IIIb, IVa of the periodic table,
One element γ selected from Group VIIIa or a powder of a compound containing the element γ is mixed in a liquid as raw material powder to form a slurry, and a base material is immersed in the slurry to form a slurry. The powder is attached to the surface of the base material, and the base material to which the compound powder is attached is heated to cause the raw material powder to undergo a sintering reaction. The element β is a selected element from group IIIa of the periodic table, and the element γ is a group Ib, IIb, II of the periodic table.
One type of element selected from groups Ib and VIIIa, element δ is O (oxygen), and w, x, y, and z are each 1≦
The method is characterized by producing a superconducting member having a layer of a composite oxide on its surface, which satisfies w≦5, 1≦x≦5, 1≦y≦15, 1≦z≦20. A method for manufacturing a superconducting member.
(2)前記化合物粉末が、前記元素α、元素βおよび元
素γ(ただし、α、β、γはそれぞれ前記定義通り)の
1種以上の酸化物の粉末であることを特徴とする特許請
求の範囲第1項に記載の超電導性部材の製造方法。
(2) The compound powder is a powder of one or more oxides of the element α, the element β, and the element γ (where α, β, and γ are each as defined above). A method for manufacturing a superconducting member according to scope 1.
(3)前記化合物粉末が、前記元素α、元素βおよび元
素γ(ただし、α、β、γはそれぞれ前記定義通り)の
1種以上の水酸化物、炭酸塩、硫酸塩あるいは硝酸塩で
あることを特徴とする特許請求の範囲第1項に記載の超
電導性部材の製造方法。
(3) The compound powder is a hydroxide, carbonate, sulfate, or nitrate of one or more of the elements α, β, and γ (α, β, and γ are each as defined above). A method for manufacturing a superconducting member according to claim 1, characterized in that:
(4)前記スラリー中の原料粉末が、前記複合酸化物と
同じ組成比で混合されていることを特徴とする特許請求
の範囲第2項または第3項に記載の超電導性部材の製造
方法。
(4) The method for manufacturing a superconducting member according to claim 2 or 3, wherein the raw material powder in the slurry is mixed in the same composition ratio as the composite oxide.
(5)前記化合物粉末が、前記元素α、元素βおよび元
素γ(ただし、α、β、γはそれぞれ前記定義通り)の
1種以上の酸化物、水酸化物、炭酸塩、硫酸塩あるいは
硝酸塩の粉末を混合して焼成して得られた焼成体を粉砕
して得た複合酸化物焼成体粉末であることを特徴とする
特許請求の範囲第1項に記載の超電導性部材の製造方法
(5) The compound powder is an oxide, hydroxide, carbonate, sulfate, or nitrate of one or more of the elements α, β, and γ (α, β, and γ are each as defined above). The method for manufacturing a superconducting member according to claim 1, wherein the composite oxide fired body powder is obtained by pulverizing a fired body obtained by mixing and firing powders of the composite oxide.
(6)前記原料粉末が、粒径40μm以下であることを
特徴とする特許請求の範囲第1項又は第5項に記載の超
電導性部材の製造方法。
(6) The method for manufacturing a superconducting member according to claim 1 or 5, wherein the raw material powder has a particle size of 40 μm or less.
(7)前記原料粉末を、イソプロピルアルコール並びに
メチルエチルケトンを溶剤として溶解したポリビニルブ
チラール並びにジブチルフタレートに混合することを特
徴とする特許請求の範囲第1項乃至第6項の何れか1項
に記載の超電導性部材の製造方法。
(7) The superconductor according to any one of claims 1 to 6, characterized in that the raw material powder is mixed with polyvinyl butyral and dibutyl phthalate dissolved in isopropyl alcohol and methyl ethyl ketone as a solvent. Method for manufacturing sex parts.
(8)前記原料粉末の基材への付着において、前記スラ
リーを撹拌、揺動するあるいは前記基材を揺動、振動ま
たは回転することを特徴とする特許請求の範囲第1項乃
至第7項の何れか1項に記載の超電導性部材の製造方法
(8) Claims 1 to 7, characterized in that the slurry is stirred or rocked, or the base material is rocked, vibrated, or rotated when the raw material powder is attached to the base material. A method for manufacturing a superconducting member according to any one of the above.
(9)前記原料粉末の基材への付着において、前記スラ
リーを恒温バスに収容し温度制御を行うことを特徴とす
る特許請求の範囲第1項乃至第8項の何れか1項に記載
の超電導性部材の製造方法。
(9) The slurry according to any one of claims 1 to 8 is characterized in that the slurry is placed in a constant temperature bath and the temperature is controlled when the raw material powder is attached to the base material. A method for manufacturing a superconducting member.
(10)前記原料粉末の基材への付着において、前記ス
ラリー並びに前記基材の表面が不活性ガスによって保護
されていることを特徴とする特許請求の範囲第1項乃至
第9項の何れか1項に記載の超電導性部材の製造方法。
(10) Any one of claims 1 to 9, wherein the slurry and the surface of the base material are protected by an inert gas when the raw material powder is attached to the base material. A method for manufacturing a superconducting member according to item 1.
(11)前記原料粉末の前記基材への付着において、前
記基材が予め表面処理されていることを特徴とする特許
請求の範囲第1項乃至第10項の何れか1項に記載の超
電導性部材の製造方法。
(11) The superconductor according to any one of claims 1 to 10, wherein the base material is surface-treated in advance when the raw material powder is attached to the base material. Method for manufacturing sex parts.
(12)前記基材を、前記スラリー中に連続的に供給す
ることを特徴とする特許請求の範囲第1項乃至第11項
の何れか1項に記載の超電導部材の製造方法。
(12) The method for manufacturing a superconducting member according to any one of claims 1 to 11, characterized in that the base material is continuously supplied into the slurry.
(13)前記基材が、線材であることを特徴とする特許
請求の範囲第1項乃至第12項の何れか1項に記載の超
電導性部材の製造方法。
(13) The method for manufacturing a superconducting member according to any one of claims 1 to 12, wherein the base material is a wire rod.
(14)前記基材が、導電性材料によって形成されてい
ることを特徴とする特許請求の範囲第1項乃至第13項
の何れか1項に記載の超電導部材の製造方法。
(14) The method for manufacturing a superconducting member according to any one of claims 1 to 13, wherein the base material is made of a conductive material.
(15)前記焼結処理に先立って、前記原料粉末を付着
した基材を加熱して脱バインダ処理を行うことを特徴と
する特許請求の範囲第1項乃至第14項の何れか1項に
記載の超電導性部材の製造方法。
(15) Prior to the sintering process, the base material to which the raw material powder is attached is heated to perform a binder removal process. A method of manufacturing the superconducting member described above.
(16)前記焼結処理が、前記原料粉末のうち最も融点
の低い化合物の融点を上限とし、該融点との差が100
℃以内の温度範囲で行われることを特徴とする特許請求
の範囲第1項乃至第15項の何れか1項に記載の超電導
性部材の製造方法。
(16) The sintering process has an upper limit of the melting point of the compound with the lowest melting point among the raw material powders, and the difference from the melting point is 100%.
16. The method for manufacturing a superconducting member according to any one of claims 1 to 15, characterized in that the method is carried out at a temperature within a temperature range of .degree.
(17)前記焼結を酸素含有雰囲気で行うことを特徴と
する特許請求の範囲第1項乃至第16項の何れか1項に
記載の超電導性部材の製造方法。
(17) The method for manufacturing a superconducting member according to any one of claims 1 to 16, wherein the sintering is performed in an oxygen-containing atmosphere.
(18)前記原料粉末の付着処理並びに加熱処理を連続
して行うことを特徴とする特許請求の範囲第1項乃至第
17項の何れか1項に記載の超電導性部材の製造方法。
(18) The method for manufacturing a superconducting member according to any one of claims 1 to 17, characterized in that the deposition treatment of the raw material powder and the heat treatment are performed continuously.
(19)前記元素αがBaであり、前記元素βがYであ
り、前記元素γがCuであることを特徴とする特許請求
の範囲第1項乃至第18項の何れか1項に記載の超電導
性部材の製造方法。
(19) The element α is Ba, the element β is Y, and the element γ is Cu according to any one of claims 1 to 18. A method for manufacturing a superconducting member.
(20)前記元素αがBaであり、前記元素βがDyで
あり、前記元素γがCuであることを特徴とする特許請
求の範囲第1項乃至第18項の何れか1項に記載の超電
導性部材の製造方法。
(20) The element α is Ba, the element β is Dy, and the element γ is Cu according to any one of claims 1 to 18. A method for manufacturing a superconducting member.
(21)前記元素αがSrであり、前記元素βがLaで
あり、前記元素γがCuであることを特徴とする特許請
求の範囲第1項乃至第18項の何れか1項に記載の超電
導性部材の製造方法。
(21) The element α is Sr, the element β is La, and the element γ is Cu according to any one of claims 1 to 18. A method for manufacturing a superconducting member.
JP62254968A 1987-10-09 1987-10-09 Method for manufacturing superconducting member Expired - Lifetime JP2525833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62254968A JP2525833B2 (en) 1987-10-09 1987-10-09 Method for manufacturing superconducting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62254968A JP2525833B2 (en) 1987-10-09 1987-10-09 Method for manufacturing superconducting member

Publications (2)

Publication Number Publication Date
JPH0197321A true JPH0197321A (en) 1989-04-14
JP2525833B2 JP2525833B2 (en) 1996-08-21

Family

ID=17272370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62254968A Expired - Lifetime JP2525833B2 (en) 1987-10-09 1987-10-09 Method for manufacturing superconducting member

Country Status (1)

Country Link
JP (1) JP2525833B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071501A1 (en) * 2001-03-06 2002-09-12 Isco International, Inc. Dip coating of ybco precursor films on substrates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643913A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Oxide superconductive wire material
JPS6418903A (en) * 1987-03-30 1989-01-23 Hewlett Packard Yokogawa Superconductor precursor ink, superconductor ink, thick film superconductor and production thereof
JPS6489215A (en) * 1987-09-30 1989-04-03 Toshiba Corp Manufacture of superconductive member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418903A (en) * 1987-03-30 1989-01-23 Hewlett Packard Yokogawa Superconductor precursor ink, superconductor ink, thick film superconductor and production thereof
JPS643913A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Oxide superconductive wire material
JPS6489215A (en) * 1987-09-30 1989-04-03 Toshiba Corp Manufacture of superconductive member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071501A1 (en) * 2001-03-06 2002-09-12 Isco International, Inc. Dip coating of ybco precursor films on substrates

Also Published As

Publication number Publication date
JP2525833B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
JP2938505B2 (en) Method for producing a crystallographically oriented surface layer from ceramic high-temperature superconductors
DK173408B1 (en) Process for Preparing a Superconducting Body Containing an Oxide of Composition YBa2Cu3O9 Delta
US5972846A (en) Article comprising textured superconductive cuprate material
US4939119A (en) Process for producing a superconducting article
EP0284062A2 (en) Ceramic oxide superconductive composite material
US5306700A (en) Dense melt-based ceramic superconductors
US6617284B1 (en) Superconductor composite material
US5318948A (en) Oxide superconductor, superconducting wire and coil using the same and method of production thereof
KR920005516B1 (en) Method of making a body with superconductive oxide body
US5248656A (en) Method of making superconductor wires, or capillaries
US5047386A (en) Apparatus for continuous manufacture of high temperature superconducting wires from molten superconducting oxides
JPH0197321A (en) Manufacture of superconductive member
Tiefel et al. Fabrication and properties of high‐T c superconducting wires
JP2514690B2 (en) Superconducting wire manufacturing method
EP0376981A4 (en) Machine workable, thermally conductive, high strength, ceramic superconducting composite
CN1032879A (en) Make the method for superconductive products
JP2519742B2 (en) Manufacturing method of superconducting material
JP2725721B2 (en) Manufacturing method of superconducting conductor
JP2779210B2 (en) Conductor for current lead
JP2901243B2 (en) Method for producing oxide-based superconducting wire
JPH01219018A (en) Production of oxide superconducting material
JP2595274B2 (en) Method of forming oxide-based superconductor layer
JPS63276820A (en) Manufacture of oxide superconductor
JPH10510799A (en) Improved superconductor
Grader et al. Forming methods for high Tc superconductors