JPH01239017A - Production of oxide-based superconducting material - Google Patents

Production of oxide-based superconducting material

Info

Publication number
JPH01239017A
JPH01239017A JP63065373A JP6537388A JPH01239017A JP H01239017 A JPH01239017 A JP H01239017A JP 63065373 A JP63065373 A JP 63065373A JP 6537388 A JP6537388 A JP 6537388A JP H01239017 A JPH01239017 A JP H01239017A
Authority
JP
Japan
Prior art keywords
mixed
mixed material
oxide
elements
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63065373A
Other languages
Japanese (ja)
Other versions
JP2655866B2 (en
Inventor
Masaru Sugimoto
優 杉本
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Nobuyuki Sadakata
伸行 定方
Shinya Aoki
青木 伸哉
Kyoji Tachikawa
恭治 太刀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Fujikura Ltd
Original Assignee
Tokai University
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University, Fujikura Ltd filed Critical Tokai University
Priority to JP63065373A priority Critical patent/JP2655866B2/en
Publication of JPH01239017A publication Critical patent/JPH01239017A/en
Application granted granted Critical
Publication of JP2655866B2 publication Critical patent/JP2655866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the title high-performance material excellent in superconducting characteristics such as critical current density, by contact of two kinds of mixed materials with each other followed by heating treatment at high temperatures for a specified time to effect mutual diffusion and reaction of the elements in the respective mixed materials. CONSTITUTION:Firstly, (1) the first mixed material containing the B-element (group IIa element) in the formula and Cu and (2) the second mixed material of a composition A2B1Cu1O5 are brought into contact with each other. In this state, heat treatment is made at 800-1,300 deg.C for several hours to several hundred hours to effect mutual diffusion and reaction of the elements in the respective mixed materials. Thus, an oxide superconductor is formed at the boundaries of the respective mixed materials. Therefore, compared to the conventional process in which a mixed powder made of the respective raw powder is put to heat treatment, more uniform reaction will occur at higher rate leading to formation the objective uniform and dense oxide superconductor of a composition of A1B2Cu2O7-x (see, the formula).

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、磁気浮上列車、核融合炉、単結晶引上装置、
磁気分離装置、医療装置、磁気推進船等に用いられる超
電導マグネットコイルや電力輸送用等に使用される超電
導線、ジョセフソン素子、S Q U I D (S 
uperconducting Q uantum I
 nterference D evice)等の薄模
超電導材料生成用のスパッタリングターゲット、プリン
ト基板配線用材料、磁気シールド材料等に用いられる酸
化物系超電導材の製造方法に関する。 「従来の技術」 最近に至り、常電導状態から超電導状態へaf多する臨
界温度(Tc)が液体窒素温度を超える値を示す酸化物
超電導体が種々発見されている。この種の酸化物超電導
体は、一般式A −B −Cu−0(ただしAは、Y、
Sc、La、Yb、Er、Eu、Ho、Dy等の周期律
表1a族元素の1種以上を示し、Bは、Mg。 Ca、Sr、Ba等の周期律表Ila族元素の1種以上
を示す。)で示される酸化物であり、液体ヘリウムで冷
却することが必要であった従来の合金系あるいは金属間
化合物系の超電導体と比較して格段に有利な冷却条件で
使用できることから、実用上極めて有望な超電導材料と
して研究がなされている。 ところで従来、このような酸化物超電導体の製造方法の
一例として、以下に説明する方法が知られている。 酸化物超電導体を製造するには、A −B −Cu−0
で示される酸化物超電導体を構成する各元素を含む複数
の原料粉末を混合して混合粉末を作成し、次いでこの混
合粉末を仮焼して不要成分を除去し、この仮焼粉末を熱
処理して超電導粉末とした後に、所定形状に圧粉成形し
たり、この超電導粉末を金属管に充填し、更に縮径して
所望の直径の線材などに成形した後、熱処理を施して酸
化物超電導体を製造する方法である。 「発明が解決しようとする課題」 しかしながら前述の従来方法においては、原料粉末を完
全に均一に混合することが困難なことから、熱処理を施
しても酸化物超電導体の全体が完全に均一な結晶構造と
ならず、臨界電流密度の高い高性能の超電導体を得るこ
とができない問題があった。 また、前述の従来方法では、原料粉末を圧密した成形体
を焼結し、各元素を固相反応させて超電導体を生成する
が、この同相反応は反応速度が小さく、このため超電導
体の生成効率が悪い問題があった。 本発明は、上記課題に鑑みてなされたもので、臨界電流
密度などの超電導特性が優れた高性能の酸化物系超電導
材を製造する方法の提供を目的とする。 「課題を解決するための手段」 本発明は、上記課題を解決するために、一般式A −B
 −Cu−0(ただしAは、Y、Sc、La、Yb、E
r。 Eu、l−1o、Dy等の周期律表IIIa族元素の1
種以上を示し、Bは、Mg、Ca、Sr、Ba等の周期
律表■a族元素の1種以上を示す。)で示される組成の
酸化物系超電導材の製造方法において、上記B元素とC
uを含む第1の混合材料と、A x B r Cu +
 Osなる組成比の第2の混合材料とを接触させた後、
800〜1300℃で数時間〜数百時間加熱する熱処理
を施し、第1の混合材料と第2の混合材料の元素を相互
拡散させて酸化物超電導体を生成させるものである。 「作用 」 上記第1の混合材料と上記第2の混合材料とを接触さ仕
た後、800〜1300℃で数時間〜数百時間加熱する
熱処理を施すことにより、各々の混合材料中の元素が相
互に拡散反応して、各混合材料の接触部分にA IB 
2Cu30 ?−Xなる組成の酸化物系超電導体が生成
する。 「実施例」 第1図ないし第4図は、本発明の製造方法をY−13a
−Cu−0系の超電導体の製造方法に適用した一例を説
明するためのものである。 この例では、まず、Cu−B a合金からなる粉末(第
1の混合材料)と、Y tB arc uto sなる
組成の酸化物粉末(第2の混合材料)を作成する。 この第1の混合材料は、純銅と金属Baを、Cu:Ba
−(1〜I O):(9〜0)[モル比]となるように
溶融混合して合金とし、この合金をアルゴンガス中など
の不活性ガス中で粉砕処理を施して作成され、好ましく
は粒径が1μm以下の粉末が使用される。また、上記第
2の混合材料は、Y、03とBaOとCuOの各粉末を
、Y :Ba:Cu= 2 + l :l【モル比】と
なるように均一に混合した混合粉末を、酸素含何雰囲気
中、700〜1400℃で数時間〜数十時間加熱した後
、粉砕処理を施して作成され、好ましくは粒径が1μm
以下の粉末が用いられる。 次に、上記第1の混合材料と第2の混合材料を重量比1
:(1〜5)となるように均一に混合して混合粉末とし
、この混合粉末を所定の形状(第1図においては円板状
)に圧粉成形して成形体lを作成する。混合粉末を圧粉
成形するには、ラバープレスなどが好適に使用される。 この成形体Iは、第2図に示すように第1の混合材料2
と第2の混合材料3の各粉末が圧密された状態になって
いる。 次に、先のように作成された成形体lを1気圧の酸素気
流中などの酸化雰囲気において800〜1300℃に数
時間〜数百時間加熱し、その後に室温まで、例えば−1
00℃/時間の割合で徐冷する熱処理を施す。 この熱処理により、Cu−B a合金からなる第1の混
合材料2がY 2B a+ Cu+ 05なる組成の第
2の混合材料3の元素と相互拡散溶融反応して、第3図
に示すように第2の混合材料3の残部の周囲に、Y +
B a2Cu+07−Xの組成比を有する酸化物超電導
体4が生成し、第4図に示す酸化物系超電導材5が得ら
れる。なお、Cu−B a合金からなる第1の混合手才
科2はBaの添加効果により融点を900℃程度まで低
下させることができるので、前記熱処理時の加熱によっ
て溶融拡散反応が可能となる。 従って熱処理時に第1の混合材料20元素と第2の混合
材料3の元素が溶融拡散反応し、この部分にY 、B 
atc LI307−Xの組成比を有する酸化物超電導
体4が生成する。即ち、溶融拡散反応による反応速度の
高い均一な反応を生じさせることができるために、圧密
体を固相反応させていた従来の酸化物超電導体に比較し
て、空孔のない緻密な構造の臨界電流密度の高い酸化物
超電導体4を生成させることができる。 また、萌述のような溶融拡散反応により酸化物超電導体
4を生成するならば、固相反応させて形成していた従来
方法よりし元素の反応速度が速いために、短時間で酸化
物超電導体4を生成させることができる。なお、酸化物
超電導体4を生成させる場合、1000℃以上の高温で
長時間熱処理すると、酸化物超電導体4の結晶粒が粗大
化するので、これを阻止するためには、第1の混合材料
2のBa含有量を調節して融点を低下させ、溶融拡散反
応可能な温度を低くすることか好ましく、このように低
い温度で短い時間の反応を行うことにより、生成される
酸化物超電導体4の結晶粒を微細化して超電導特性を向
上させることができる。 第5図および第6図はこの発明の詳細な説明するための
図である。 この例では、まず、Cuの化合物とBaの化合物との混
合物からなる板状の第1の混合材料6と、Y 2 B 
a lCu lOsなる組成の酸化物からなる板状の第
2の混合材料7を作成する。この第1の混合材料6は、
CuOとBaCO3の各原料粉末をCu:B a−(1
〜10):(9〜0)【モル比】の比率で均一に混合し
た混合粉末を板状に圧粉成形し、この圧粉成形体を酸素
含有雰囲気中、700〜900 ’Cで数時間〜数十時
間加熱して作成される。このCUと13aの化合物とし
ては、上記酸化物や炭酸化物の他、これら各元素の塩化
物、フッ化物、臭化物、硝酸塩、ノユウ酸塩などの化合
物を用いることができる。 上記第2の混合材料7は、Y、0.とB aCO3とC
uOの各原料粉末を、Y :Ba:Cu= 2 :I 
:l 【モル比】となるように均一に混合した混合粉末
を板状に圧粉成形し、この圧粉成形体を酸素雰囲気中、
700〜1400℃で数時間〜数十時間加熱して作成さ
れる。 次に、第1の混合材料6と第2の混合材料7を重ね合わ
仕た後、静水圧加圧などの加圧接合操作を施して、第5
図に示すように第1の混合材料6と第2の混合材料7が
接合された成形体8を作成する。次に、この成形体8を
酸素気流中などの酸素含有雰囲気中において、800〜
1300℃で数時間〜数百時間加熱した後、室温まで徐
冷する熱処理を行う。 この熱処理により、第1の混合材料6の元素と第2の混
合材料7の元素か相互拡散反応し、第6図に示すように
、第1の混合材料6と第2の混合材料7の境界部に、Y
 +BatCusO7−xの組成比を有する緻密な酸化
物超電導体9か生成し、酸化物系超電導材lOが得られ
る。 この例による酸化物系超電導材10の製造方法では、C
uとBaの酸化物を含む第1の混合材料6と、Y s 
B a lC11+ Osなる組成の酸化物からなる第
2の混合材料7とを接合して成形体8を作成し、この成
形体8に熱処理を施すことにより、各混合材料6.7の
各元素を相互拡散反応させ、この境界部に酸化物超電導
体9を生成させるので、各原料粉末を混合した混合粉末
に熱処理を施す従来方法と比較して、反応速度の高い均
一な反応を生じさせて酸化物超電導体9を生成させるこ
とができ、Y + B atc LlsO?−Xの組成
比を有する均質で緻密な酸化物超電導体9を生成させる
ことができる。 なお、前記各側においては、Y −B a−Cu−0系
の酸化物系超電導材の製造方法について説明したが1、
本発明はその他のA −B −Cu−0系の超電導材の
製造方法に適用できるのは勿論である。 なおまた、本発明による酸化物系超電導材の形状は円板
状に限定されることなく、例えば円柱状、角柱状、薄板
状、線状など種々の形状とすることができる。線状や薄
板状の酸化物系超電導材を形成する場合には、例えば、
少なくとも表面にY2B al Cu+ Osなる組成
の酸化物を有する線状や薄板状の基材(第2の混合材料
)を作成する一方、CuとBaを含む第1の混合材料の
粉末にエタノールなどの分散媒を加えてスラリー状材料
を作成し、このスラリー状材料中に先の基材を通過させ
て基Hの表面に混合粉末を付着させろ方法や、スラリー
状材料を基材の表面に吹き付ける方法などにより、Y 
、B a、Cu+Osなる組成の基材の表面にCuとB
aを含む第1の混合材料を積層形成し、この後熱処理を
施して酸化物超電導体を生成する方法が好適に使用され
る。 (製造例) 本発明方法に基づいてY −B a−Cu−0系超電導
杯の製造を実施した。 YtO−3とI’3 a C03とCuOの各粉末を、
Y:Ba:Cu= 2 :l :1 (モル比)となる
ように均一に粉砕混合した後、この粉末を大気雰囲気中
、900℃で30時間の熱処理を行い、この後粉砕混合
し、更に大気雰囲気中、950℃で30時間の熱処理を
行い、この粉末を厚さ3 mm、直径15mmのディス
ク状に圧粉成形して第2の混合材料を作成した。 一方、+3aCOaとCuOの各粉末をBa:Cu=3
:5(モル比)となるように均一に粉砕混合した後、こ
の粉末を大気雰囲気中、900℃で30時間の熱処理を
行い、この後粉砕混合し、更に大気雰囲気中、900℃
で30時間の熱処理を行い、次いでこの粉末にエタノー
ルを加えてスラリー状の塗付材料を作成した。 次に、上記第2の混合材料の表面に上記塗付材料を厚さ
約2fflI11となるように塗付した。次に、これを
大気雰囲気中、950℃で24時間加熱した後、室温ま
で徐冷する熱処理を施し、これによってディスク状の酸
化物系超電導材を得た。 得られた酸化物系超電導体の臨界温度(T c)を測定
したところ、オンセット92に、オフセット90Kを得
ることができ、優秀な酸化物系超電導材であることを確
認できた。更に、この酸化物系超電導材を顕微鏡で断面
観察したところ、厚さ約500μmの相互拡散層の存在
を確認することができ、この相互拡散層をX線回折分析
した結果、Y +B atc u、O?−Xなる組成の
斜方晶が生成していることを確認できた。 「発明の効果」 以上説明したように、本発明による酸化物系超電導材の
製造方法は、B元素(周期律表Ua族元素)とCuを含
む第1の混合材料と、Atl3+Cu+Osなる組成比
の第2の混合材料とを接触させた後、800〜1300
℃で数時間〜数百時間加熱する熱処理を施し、第1の混
合材料と第2の混合材料の元素を相互拡散反応させ、各
混合原料の境界部に酸化物超電導体を生成させるので、
各原料粉末を混合した混合粉末に熱処理を施す従来方法
と比較して、反応速度の高い均一な反応を生じさせて酸
化物超電導体を生成さ仕ることができ、 A + B 
tqu3c)v−xの組成を有する均質で緻密な酸化物
超電導体を生成させることができる効果がある。
Detailed Description of the Invention "Field of Industrial Application" The present invention is applicable to magnetic levitation trains, nuclear fusion reactors, single crystal pulling devices,
Superconducting magnet coils used in magnetic separation devices, medical devices, magnetic propulsion ships, etc.; superconducting wires used in power transport; Josephson elements;
superconducting Quantum I
The present invention relates to a method for manufacturing an oxide-based superconducting material used for sputtering targets for producing thin-mimetic superconducting materials such as interference devices, materials for printed circuit board wiring, magnetic shielding materials, and the like. "Prior Art" Recently, various oxide superconductors have been discovered whose critical temperature (Tc) for transitioning from a normal conducting state to a superconducting state exceeds the liquid nitrogen temperature. This type of oxide superconductor has the general formula A-B-Cu-0 (where A is Y,
It represents one or more elements of group 1a of the periodic table, such as Sc, La, Yb, Er, Eu, Ho, Dy, etc., and B is Mg. One or more elements of group Ila of the periodic table, such as Ca, Sr, and Ba. ), and can be used under much more advantageous cooling conditions than conventional alloy-based or intermetallic compound-based superconductors, which require cooling with liquid helium, making it extremely useful in practice. It is being studied as a promising superconducting material. By the way, the method described below is conventionally known as an example of a method for producing such an oxide superconductor. To produce an oxide superconductor, A-B-Cu-0
A mixed powder is created by mixing multiple raw material powders containing each of the elements constituting the oxide superconductor represented by , then this mixed powder is calcined to remove unnecessary components, and this calcined powder is heat treated. After making superconducting powder, it is compacted into a predetermined shape, or this superconducting powder is filled into a metal tube, which is further reduced in diameter and formed into a wire rod of a desired diameter, and then heat treated to form an oxide superconductor. This is a method of manufacturing. "Problem to be Solved by the Invention" However, in the conventional method described above, it is difficult to mix the raw material powders completely uniformly, so even if heat treatment is applied, the entire oxide superconductor remains a completely uniform crystal. However, there was a problem in that it was not possible to obtain a high-performance superconductor with a high critical current density. In addition, in the conventional method described above, a compact formed by compacting raw material powder is sintered, and each element is subjected to a solid phase reaction to produce a superconductor, but this in-phase reaction has a slow reaction rate, so the formation of a superconductor is difficult. There was a problem with inefficiency. The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing a high-performance oxide-based superconducting material having excellent superconducting properties such as critical current density. "Means for Solving the Problems" In order to solve the above problems, the present invention solves the above problems by using the general formula A-B.
-Cu-0 (A is Y, Sc, La, Yb, E
r. 1 of group IIIa elements of the periodic table such as Eu, l-1o, Dy, etc.
B represents one or more elements of group II a of the periodic table, such as Mg, Ca, Sr, and Ba. ), in which the above B element and C
a first mixed material containing u, and A x B r Cu +
After contacting with a second mixed material having a composition ratio of Os,
A heat treatment is performed at 800 to 1300° C. for several hours to hundreds of hours, and the elements of the first mixed material and the second mixed material are interdiffused to generate an oxide superconductor. "Action" After the first mixed material and the second mixed material are brought into contact with each other, the elements in each mixed material are heated at 800 to 1300°C for several hours to hundreds of hours. are diffused and reacted with each other, and A and IB are formed in the contact area of each mixed material.
2Cu30? An oxide-based superconductor having a composition of -X is produced. "Example" Figures 1 to 4 show the manufacturing method of the present invention for Y-13a.
This is for explaining an example applied to a method for manufacturing a -Cu-0 based superconductor. In this example, first, a powder made of a Cu--Ba alloy (first mixed material) and an oxide powder having a composition of YtB arc autos (second mixed material) are created. This first mixed material combines pure copper and metal Ba into Cu:Ba
- (1 to I O): (9 to 0) [molar ratio] is melted and mixed to form an alloy, and this alloy is pulverized in an inert gas such as argon gas, and is preferably created. Powder with a particle size of 1 μm or less is used. In addition, the second mixed material is a mixed powder in which Y, 03, BaO, and CuO powders are uniformly mixed so that Y:Ba:Cu=2+l:l [molar ratio]. It is created by heating at 700 to 1400°C for several hours to several tens of hours in an atmosphere containing water, and then pulverizing it, preferably with a particle size of 1 μm.
The following powders are used: Next, the first mixed material and the second mixed material were mixed at a weight ratio of 1.
: (1 to 5) to form a mixed powder, and the mixed powder is compacted into a predetermined shape (a disk shape in FIG. 1) to create a compact 1. A rubber press or the like is preferably used to compact the mixed powder. This molded body I is made of a first mixed material 2 as shown in FIG.
and the second mixed material 3 are in a consolidated state. Next, the molded body L prepared above is heated to 800 to 1300°C for several hours to several hundred hours in an oxidizing atmosphere such as an oxygen stream of 1 atm, and then heated to room temperature, for example -1
Heat treatment is performed by slow cooling at a rate of 00°C/hour. Through this heat treatment, the first mixed material 2 made of the Cu-Ba alloy undergoes an interdiffusion melting reaction with the elements of the second mixed material 3 having the composition Y2B a+ Cu+ 05, and as shown in FIG. Around the remainder of the mixed material 3 of 2, Y +
An oxide superconductor 4 having a composition ratio of B a2Cu+07-X is produced, and an oxide superconductor 5 shown in FIG. 4 is obtained. Note that the melting point of the first mixer 2 made of a Cu-Ba alloy can be lowered to about 900° C. due to the effect of adding Ba, so that the heating during the heat treatment enables a melt-diffusion reaction. Therefore, during heat treatment, 20 elements of the first mixed material and 3 elements of the second mixed material undergo a melt-diffusion reaction, and Y, B
An oxide superconductor 4 having a composition ratio of atc LI307-X is produced. In other words, because it is possible to generate a uniform reaction with a high reaction rate through a melt-diffusion reaction, it has a dense structure with no pores, compared to conventional oxide superconductors in which a compacted body undergoes a solid phase reaction. An oxide superconductor 4 having a high critical current density can be produced. In addition, if the oxide superconductor 4 is produced by a melt-diffusion reaction like the one described in Moeji, the reaction rate of the elements is faster than in the conventional method of solid phase reaction, so the oxide superconductor 4 can be formed in a short time. Body 4 can be generated. Note that when generating the oxide superconductor 4, the crystal grains of the oxide superconductor 4 will become coarse if heat treated at a high temperature of 1000° C. or higher for a long time, so in order to prevent this, the first mixed material It is preferable to adjust the Ba content of 2 to lower the melting point and lower the temperature at which the melt-diffusion reaction is possible. By performing the reaction at such a low temperature for a short time, the oxide superconductor 4 produced The superconducting properties can be improved by making the crystal grains finer. FIG. 5 and FIG. 6 are diagrams for explaining the present invention in detail. In this example, first, a plate-shaped first mixed material 6 made of a mixture of a Cu compound and a Ba compound, and a Y 2 B
A plate-shaped second mixed material 7 made of an oxide having a composition of a lCu lOs is created. This first mixed material 6 is
Each raw material powder of CuO and BaCO3 was converted into Cu:Ba-(1
~10): (9 to 0) The mixed powder uniformly mixed in the ratio of [molar ratio] is compacted into a plate shape, and this compacted body is heated at 700 to 900'C in an oxygen-containing atmosphere for several hours. ~Created by heating for several tens of hours. As the compound of CU and 13a, in addition to the above-mentioned oxides and carbonates, compounds such as chlorides, fluorides, bromides, nitrates, and oxalates of each of these elements can be used. The second mixed material 7 has Y, 0. and B aCO3 and C
Each raw material powder of uO is divided into Y:Ba:Cu=2:I
:l [Mole ratio] The mixed powder was uniformly mixed and compacted into a plate shape.
It is created by heating at 700 to 1400°C for several hours to several tens of hours. Next, after overlapping the first mixed material 6 and the second mixed material 7, a pressure joining operation such as hydrostatic pressure is applied, and a fifth
As shown in the figure, a molded body 8 in which a first mixed material 6 and a second mixed material 7 are joined is created. Next, this molded body 8 is placed in an oxygen-containing atmosphere such as an oxygen stream at a temperature of 800 to
After heating at 1300° C. for several hours to several hundred hours, a heat treatment is performed in which the material is slowly cooled to room temperature. Through this heat treatment, the elements of the first mixed material 6 and the elements of the second mixed material 7 undergo a mutual diffusion reaction, resulting in a boundary between the first mixed material 6 and the second mixed material 7, as shown in FIG. Department, Y
A dense oxide superconductor 9 having a composition ratio of +BatCusO7-x is produced, and an oxide-based superconductor material IO is obtained. In the method for manufacturing the oxide-based superconducting material 10 according to this example, C
A first mixed material 6 containing oxides of u and Ba, and Y s
A molded body 8 is created by joining a second mixed material 7 made of an oxide with a composition of B a lC11+ Os, and by heat-treating this molded body 8, each element of each mixed material 6.7 is Since the interdiffusion reaction occurs and the oxide superconductor 9 is generated at this boundary, a uniform reaction with a high reaction rate is generated compared to the conventional method in which a mixed powder of various raw material powders is heat treated. A physical superconductor 9 can be generated, and Y + B atc LlsO? A homogeneous and dense oxide superconductor 9 having a composition ratio of -X can be produced. In addition, in each of the above, the manufacturing method of the Y-B a-Cu-0 based oxide superconducting material was explained.
Of course, the present invention can be applied to other methods of manufacturing A-B-Cu-0 based superconducting materials. Furthermore, the shape of the oxide-based superconducting material according to the present invention is not limited to a disk shape, but can be made into various shapes such as a columnar shape, a prismatic shape, a thin plate shape, and a linear shape. When forming a linear or thin plate-like oxide-based superconducting material, for example,
A linear or thin plate-like base material (second mixed material) having an oxide having a composition of Y2B al Cu + Os on at least the surface is created, while a powder of the first mixed material containing Cu and Ba is mixed with ethanol or the like. A method in which a slurry-like material is created by adding a dispersion medium, and the mixed powder is attached to the surface of the group H by passing the base material through this slurry-like material, or a method in which the slurry-like material is sprayed onto the surface of the base material. etc., Y
, B a, Cu and B on the surface of the base material with the composition Cu+Os.
Preferably used is a method in which a first mixed material containing a is layered and then heat treated to produce an oxide superconductor. (Manufacturing Example) A Y-B a-Cu-0 based superconducting cup was manufactured based on the method of the present invention. Each powder of YtO-3, I'3 a C03 and CuO,
After uniformly pulverizing and mixing so that Y:Ba:Cu=2:l:1 (molar ratio), this powder was heat treated at 900°C for 30 hours in the air, then pulverizing and mixing, and further Heat treatment was performed at 950° C. for 30 hours in an air atmosphere, and the powder was compacted into a disk shape with a thickness of 3 mm and a diameter of 15 mm to create a second mixed material. On the other hand, +3aCOa and CuO powders are Ba:Cu=3
: After uniformly pulverizing and mixing the powder to give a molar ratio of
A heat treatment was performed for 30 hours, and then ethanol was added to this powder to prepare a slurry-like coating material. Next, the coating material was applied to the surface of the second mixed material to a thickness of about 2fflI11. Next, this was heated in the air at 950° C. for 24 hours and then subjected to a heat treatment of slowly cooling to room temperature, thereby obtaining a disk-shaped oxide-based superconducting material. When the critical temperature (Tc) of the obtained oxide-based superconductor was measured, an onset of 92 and an offset of 90K were obtained, confirming that it was an excellent oxide-based superconductor. Furthermore, when we observed the cross section of this oxide-based superconducting material using a microscope, we were able to confirm the presence of an interdiffusion layer with a thickness of about 500 μm, and as a result of X-ray diffraction analysis of this interdiffusion layer, we found that Y + B atc u, O? It was confirmed that an orthorhombic crystal with a composition of -X was generated. "Effects of the Invention" As explained above, the method for manufacturing an oxide-based superconducting material according to the present invention includes a first mixed material containing element B (group Ua element of the periodic table) and Cu, and a composition ratio of Atl3+Cu+Os. After contacting with the second mixed material, 800 to 1300
Heat treatment is performed at ℃ for several hours to hundreds of hours to cause the elements of the first mixed material and the second mixed material to undergo a mutual diffusion reaction, and an oxide superconductor is generated at the boundary between each mixed raw material.
Compared to the conventional method of heat-treating a mixed powder obtained by mixing various raw material powders, it is possible to generate an oxide superconductor by generating a uniform reaction with a high reaction rate, and A + B
This has the effect of producing a homogeneous and dense oxide superconductor having a composition of tqu3c)v-x.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明方法の一例を説明するため
の図であって、第1図は成形体の斜視図、第2図は第1
図の要部の拡大図、第3図は熱処理後の酸化物超電導体
の生成状態を示す拡大図、第4図は酸化物系超電導材の
斜視図、第5図および第6図は本発明方法の他の例を説
明するための図であって、第5図は成形体の断面図、第
6図は酸化物系超電導材の断面図である。 2.6・・・第1の混合材料 3.7・・・第2の混合材料 4.9・・・酸化物超電導体 5、lO・・・酸化物系超電導材。
1 to 4 are diagrams for explaining an example of the method of the present invention, in which FIG. 1 is a perspective view of a molded product, and FIG. 2 is a perspective view of a molded product.
FIG. 3 is an enlarged view showing the state of formation of oxide superconductor after heat treatment, FIG. 4 is a perspective view of oxide superconducting material, and FIGS. 5 and 6 are in accordance with the present invention. FIG. 5 is a cross-sectional view of a molded body, and FIG. 6 is a cross-sectional view of an oxide-based superconducting material. 2.6... First mixed material 3.7... Second mixed material 4.9... Oxide superconductor 5, lO... Oxide-based superconducting material.

Claims (1)

【特許請求の範囲】[Claims]  一般式A−B−Cu−O(ただしAは、Y、Sc、L
a、Yb、Er、Eu、Ho、Dy等の周期律表IIIa
族元素の1種以上を示し、Bは、Mg、Ca、Sr、B
a等の周期律表IIa族元素の1種以上を示す。)で示さ
れる組成の酸化物系超電導材の製造方法において、上記
B元素とCuを含む第1の混合材料と、A、B、Cu_
1O_5なる組成比の第2の混合材料とを接触させた後
、800〜1300℃で数時間〜数百時間加熱する熱処
理を施し、第1の混合材料と第2の混合材料の元素を相
互拡散させて酸化物超電導体を生成させることを特徴と
する酸化物系超電導材の製造方法。
General formula AB-Cu-O (where A is Y, Sc, L
Periodic table IIIa of a, Yb, Er, Eu, Ho, Dy, etc.
Represents one or more group elements, B is Mg, Ca, Sr, B
Indicates one or more elements of group IIa of the periodic table, such as a. ), in which a first mixed material containing element B and Cu;
After contacting the second mixed material with a composition ratio of 1O_5, heat treatment is performed at 800 to 1300°C for several hours to hundreds of hours to interdiffuse the elements of the first mixed material and the second mixed material. A method for producing an oxide-based superconducting material, the method comprising: producing an oxide superconductor.
JP63065373A 1988-03-18 1988-03-18 Method for producing oxide-based superconducting material Expired - Fee Related JP2655866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63065373A JP2655866B2 (en) 1988-03-18 1988-03-18 Method for producing oxide-based superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63065373A JP2655866B2 (en) 1988-03-18 1988-03-18 Method for producing oxide-based superconducting material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8320336A Division JP2686253B2 (en) 1996-11-29 1996-11-29 Method for producing oxide-based superconducting material

Publications (2)

Publication Number Publication Date
JPH01239017A true JPH01239017A (en) 1989-09-25
JP2655866B2 JP2655866B2 (en) 1997-09-24

Family

ID=13285098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63065373A Expired - Fee Related JP2655866B2 (en) 1988-03-18 1988-03-18 Method for producing oxide-based superconducting material

Country Status (1)

Country Link
JP (1) JP2655866B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAPANESE JOURNAL OF APPLIED PHYSICS=1987 *

Also Published As

Publication number Publication date
JP2655866B2 (en) 1997-09-24

Similar Documents

Publication Publication Date Title
US4956336A (en) Oriented grained Y-Ba-Cu-O superconductors having high critical currents and method for producing same
WO1988009312A1 (en) Superconductors and methods of making same
JPH01286902A (en) Production of oxide superconductor
US5849667A (en) Superconductor and method of producing same
WO1991019029A1 (en) Oxide superconductor and production thereof
US5384307A (en) Oxide superconductor tape having silver alloy sheath with increased hardness
WO1993017969A1 (en) Superconductors having continuous ceramic and elemental metal matrices
JPH01239017A (en) Production of oxide-based superconducting material
US5100869A (en) Process for producing metal oxide-type superconductive material
JP2609460B2 (en) Method for manufacturing molded body of ceramic oxide superconducting material
JP2686253B2 (en) Method for producing oxide-based superconducting material
JP2603688B2 (en) Superconducting material reforming method
JPH01256107A (en) Manufacture of oxide superconducting coil
JP2634186B2 (en) Method for producing oxide-based superconducting material
JPH01219017A (en) Production of oxide superconductor
JP2583573B2 (en) Method for producing oxide-based superconducting material
JP2668532B2 (en) Preparation method of superconducting thin film
JPH01242416A (en) Production of oxide-based superconducting material
JP2583565B2 (en) Method for producing oxide-based superconducting material
EP0339886A2 (en) A-site substituted bismuth oxide superconductors, and devices and systems comprising such a superconductor
JPH01219018A (en) Production of oxide superconducting material
JPH01239021A (en) Production of oxide-based superconducting material
JPH0453819B2 (en)
WO1995008518A1 (en) Superconductors containing thallium, copper, oxygen, fluorine and at least one of barium and strontium
JPH0717380B2 (en) Method for producing superconducting fibrous crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees