JPH0774454B2 - Manufacturing method of oxide fine particle deposition film - Google Patents

Manufacturing method of oxide fine particle deposition film

Info

Publication number
JPH0774454B2
JPH0774454B2 JP1281090A JP28109089A JPH0774454B2 JP H0774454 B2 JPH0774454 B2 JP H0774454B2 JP 1281090 A JP1281090 A JP 1281090A JP 28109089 A JP28109089 A JP 28109089A JP H0774454 B2 JPH0774454 B2 JP H0774454B2
Authority
JP
Japan
Prior art keywords
film
superconductor
substrate
yttrium
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1281090A
Other languages
Japanese (ja)
Other versions
JPH03140472A (en
Inventor
正信 淡野
弘義 高木
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP1281090A priority Critical patent/JPH0774454B2/en
Publication of JPH03140472A publication Critical patent/JPH03140472A/en
Publication of JPH0774454B2 publication Critical patent/JPH0774454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は酸化物高温超電導体の厚膜、線状堆積膜または
圧粉体の製法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a thick film, a linear deposition film or a green compact of an oxide high temperature superconductor.

「従来技術及びその問題点」 従来、酸化物高温超電導体の成膜方法としては、(1)
スパッタリング法、(2)蒸発法、(3)イオンビーム
法、(4)CVD法、(5)スプレーパイロリシス法、
(6)塗布膜熱分解法、(7)スクリーン印刷法等が知
られている。
“Prior art and its problems” Conventionally, as a film forming method of an oxide high temperature superconductor, (1)
Sputtering method, (2) evaporation method, (3) ion beam method, (4) CVD method, (5) spray pyrolysis method,
Known methods include (6) thermal decomposition of coating film and (7) screen printing method.

これらのうち、(1)〜(4)は薄膜作製法として研究
が進められており、制御された高特性の薄膜(ミクロン
オーダー以下)が比較的低温(最低で500℃程度)の基
板上に作製することが可能となってきている。しかし、
これらは電子デバイスを実用化の念頭に置いたものであ
り、許容電流量は小さい。超電導体を線材やテープ材等
の形で比較的多量の電流を流す分野に応用したり、磁気
シールドなどの形状を付与するためには、バルク体とす
るか、または厚膜や線状堆積膜を作製する必要がある。
(4)〜(7)は厚膜作製法として現在研究が進んでい
るものである。(4)のCVD法は、原料として金属塩化
物、有機金属ガスを用い、気相反応により、加熱した基
板上に超電導体を析出させるものである。有機金属ガス
を用いたMOCVD法では、薄膜のみならず高速堆積技術の
進展による厚膜化への期待が大きいが、原料ガスの制御
技術やコストの問題がある。(5)のスプレーパイロリ
シス法は、金属塩溶液を400〜500℃程度に加熱した基板
上に吹き付け、これを数回繰り返して前駆体を堆積さ
せ、これをさらに高温で熱分解〜結晶化して厚膜とする
ものであり、比較的簡便に成膜が可能であるが、膜の均
質性や組成の制御に問題がある。(6)の塗布膜熱分解
法は、スプレーパイロリシス法に類似しているが、ナフ
テン酸や金属アルコキシド等の溶液をディッピング等に
より基板表面に塗布し、焼成するものである。
Of these, (1) to (4) are being researched as a thin film manufacturing method, and a controlled high-performance thin film (micron order or less) is formed on a substrate at a relatively low temperature (about 500 ° C at the lowest). It has become possible to manufacture. But,
These are intended for practical use of electronic devices and have a small allowable current amount. In order to apply the superconductor in the field of flowing a relatively large amount of current in the form of wire or tape, or to give it a shape such as a magnetic shield, it should be a bulk body or a thick film or a linear deposited film. Need to be created.
(4) to (7) are currently being studied as a thick film manufacturing method. The CVD method of (4) uses a metal chloride or an organic metal gas as a raw material and deposits a superconductor on a heated substrate by a gas phase reaction. In the MOCVD method using a metalorganic gas, there are great expectations not only for thin films but also for thicker films due to the progress of high-speed deposition technology, but there are problems of raw material gas control technology and cost. In the spray pyrolysis method of (5), a metal salt solution is sprayed on a substrate heated to about 400 to 500 ° C., this is repeated several times to deposit a precursor, and this is pyrolyzed and crystallized at a higher temperature. Although it is a thick film, the film can be formed relatively easily, but there is a problem in controlling the film homogeneity and composition. The coating film pyrolysis method (6) is similar to the spray pyrolysis method, but is a method in which a solution of naphthenic acid, a metal alkoxide, or the like is applied to the substrate surface by dipping or the like and then baked.

(5)と同様に組成均質性の問題や、膜にクラックが入
りやすいことや残留炭素の影響等、問題点が多く、臨界
電流密度も低いものしか得られていない。また、これら
の方法では、いずれも基板温度を800℃〜900℃といった
高温に保つ過程を製膜時に、またはポストアニールとし
て必要としており、その際の基板との反応や高温による
基板の品質低下が問題となっている。
Similar to (5), there are many problems such as the problem of composition homogeneity, the fact that the film is easily cracked and the effect of residual carbon, and only those having a low critical current density are obtained. Further, in all of these methods, the process of maintaining the substrate temperature at a high temperature of 800 ° C. to 900 ° C. is required at the time of film formation or as post-annealing, and the reaction with the substrate at that time and the deterioration of the substrate quality due to the high temperature are required. It's a problem.

「発明の概要」 本発明はこれらの欠点を解消し、超電導体の緻密な厚膜
を作製し、基板加熱を行わないかまたは低温加熱条件に
おける膜質の向上を可能とする成膜法として、酸化物高
温超電導体の厚膜としての実用化を目的とする。
[Summary of the Invention] The present invention solves these drawbacks, produces a dense thick film of a superconductor, and conducts oxidation as a film forming method capable of improving the film quality without heating the substrate or under low temperature heating conditions. It aims at the practical application as a thick film of a high-temperature superconductor.

本発明者は、酸化物高温超伝導体の超微粒子合成法の研
究を進める過程において、噴霧熱分解法により、熱分解
後のエアロゾル状態ですでに超電導特性を示す超微粒子
を直接合成することに成功し、この特徴が室温や低温加
熱条件での成膜に有効ではないかと考え検討を重ねた結
果、本発明に到達した。
The present inventor, in the process of researching a method for synthesizing ultrafine particles of an oxide high-temperature superconductor, decided to directly synthesize ultrafine particles that already exhibit superconducting properties in an aerosol state after pyrolysis by a spray pyrolysis method. The present invention has been achieved as a result of success, and as a result of repeated studies on the idea that this feature is effective for film formation under room temperature or low temperature heating conditions.

以下に本発明を詳細に説明する。The present invention will be described in detail below.

本発明は、(a)噴霧熱分解法による超電導体超微粒子
の合成(b)エアロゾル衝突堆積法による(a)で合成
した超微粒子のin situ(その場)堆積による膜形成の
2つの構成要素よりなる。(第1図)。まず(a)につ
いて説明する。噴霧熱分解法による超電導体の超微粒子
合成を行う。これは文献1に詳しく述べられているが、
超電導体の組成となるように調製した硝酸塩等の溶液を
霧化装置により微小な液滴とし、これを所定の温度、雰
囲気、流量条件により反応ゾーン内で極めて短時間(イ
ットリウム系では数秒程度)の内に乾燥−熱分解−結晶
化を起こさせ、超電導体超微粒子を得るものである。
The present invention has two components of (a) synthesis of superconductor ultrafine particles by spray pyrolysis method, (b) film formation by in situ deposition of ultrafine particles synthesized in (a) by aerosol collision deposition method. Consists of. (Fig. 1). First, (a) will be described. Ultrafine particles of superconductor are synthesized by spray pyrolysis method. This is described in detail in Reference 1,
A solution of nitrate, etc., prepared to have the composition of a superconductor, is made into minute droplets by an atomizer, and this is an extremely short time within the reaction zone depending on the prescribed temperature, atmosphere, and flow rate conditions (for yttrium-based systems, a few seconds). Then, dry-pyrolysis-crystallization is caused to occur to obtain superconductor ultrafine particles.

生成した超電導体の超電導特性は生成条件に大きく影響
される。例えばイットリウム系超電導体の場合、980〜1
000℃程度の温度条件でキャリアガスに酸素を用いて0.7
〜0.8リットル毎分の流量で反応を行った場合、得られ
た微粒子はX線回折により結晶性が良好であることが確
認され、また温度〜磁化特性により超電導特性が、エア
ロゾルとして得られた状態のままで(後の高温での熱処
理がない状態で)確認される(第2図)。
The superconducting property of the generated superconductor is greatly influenced by the generation conditions. For example, in the case of yttrium-based superconductor, 980-1
Oxygen is used as a carrier gas at a temperature of about 000 ° C.
When the reaction was carried out at a flow rate of ~ 0.8 liters per minute, the obtained fine particles were confirmed to have good crystallinity by X-ray diffraction, and superconducting properties were obtained as an aerosol by temperature-magnetization characteristics. As-is (without subsequent heat treatment at high temperature) (Fig. 2).

次に(b)のエアロゾル衝突堆積法による微粒子堆積膜
の形成であるが、この概念は、賀集ら(文献2)により
提案されているもので、蒸発法による金属超微粒子の生
成と基板上への吹き付けによる緻密膜の形成法として、
ガスデポジション法と呼ばれている。一般に、高純度の
金属超微粒子の場合、生成から次のプロセスへ移行する
際に酸化や凝集を起こしやすい点が問題となっていた
が、高真空の超微粒子生成室から差動排気により膜生成
室へ超微粒子を浮遊状態で送り、音速程度の高速でノズ
ルから噴出させ、粒子の慣性力を利用して強い力で基板
上に密着堆積させる。このため、金属超微粒子の場合は
表面を清浄に保ったままハンドリングが可能で、緻密膜
作製に効果を発揮している。賀集らはイットリウム系超
電導体に対しても、Y,Ba,Cuの金属超微粒子を生成して
上記の方法で緻密膜を作り、さらに基板を酸素中で850
℃に加熱することにより超電導体膜作製を行っている
が、微粒子堆積膜の段階では超電導体にはなっておら
ず、高温での加熱による結晶化及び酸化過程を必要とし
ている。
Next, the formation of a fine particle deposition film by the aerosol collision deposition method of (b) is proposed by Kashu et al. (Reference 2). As a method for forming a dense film by spraying
It is called the gas deposition method. In general, in the case of high-purity ultrafine metal particles, the problem was that oxidation and aggregation tended to occur during the transition from production to the next process.However, film formation by differential evacuation from a high-vacuum ultrafine particle production chamber Ultrafine particles are sent to the chamber in a floating state, ejected from a nozzle at a high speed of about the speed of sound, and the inertial force of the particles is used to strongly deposit them on the substrate. Therefore, in the case of ultrafine metal particles, handling is possible while keeping the surface clean, which is effective in producing a dense film. Kashu et al. Also produced Y, Ba, and Cu metal ultrafine particles for yttrium-based superconductors to form a dense film by the above-mentioned method, and further 850 the substrate in oxygen.
Although a superconductor film is produced by heating to ℃, it is not a superconductor at the stage of a fine particle deposition film, and requires crystallization and oxidation processes by heating at high temperature.

そこで、本発明者は、既に目的の結晶相に結晶化した微
粒子を同様の方法で成膜させることを考えて検討を重ね
た結果、(a)で生成した既に超電導体としての結晶化
が完了した超微粒子を用いることにより、基板上に堆積
した状態で既に緻密な超電導体膜となったものが得られ
るようになった(第3図及び第4図)。粒子の堆積方法
としては、(a)のシステム最終過程の生成微粒子捕集
部分から、差動排気により圧力をコントロールしながら
減圧室(数〜500Torr以下)に微粒子をエアロゾル状態
で搬送し、ノズル(先端口径0.2〜3mm程度)から差圧に
より噴出させ、ノズル先端から0.5〜5mm程度の距離に設
置した基板上に堆積させる方法を採った。
Therefore, the present inventor has made repeated studies in consideration of forming fine particles that have already crystallized in the desired crystal phase by the same method, and as a result, the crystallization as the superconductor already generated in (a) has been completed. By using the above ultrafine particles, it has become possible to obtain a superconductor film which has already become a dense superconductor film in a state of being deposited on the substrate (FIGS. 3 and 4). As a method for depositing particles, particles are conveyed in an aerosol state from a part for collecting particles generated in the final process of the system of (a) to a decompression chamber (several to 500 Torr or less) while controlling the pressure by differential exhaust, and a nozzle ( The tip diameter was about 0.2 to 3 mm), and it was ejected by a differential pressure to deposit it on a substrate placed at a distance of about 0.5 to 5 mm from the nozzle tip.

注意すべき点としては、微粒子搬送過程において、熱沈
着により微粒子が壁面に付着する場合があるので、その
場合は搬送管を100〜200℃程度に加熱する必要がある。
また、(a)のプロセスと(b)のプロセスにおける圧
力差は、(a)でのキャリアガス流量や(b)での成膜
状態により最適条件に制御する必要がある。また、基板
を低速モーターにより1方向または平面方向に駆動また
は回転させることにより、線状ないしは膜状堆積物とし
て超電導体を得ることができる。膜厚は微粒子の搬送量
と基板の駆動速度により容易に制御可能である。
It should be noted that in the course of transporting fine particles, fine particles may adhere to the wall surface due to thermal deposition, and in that case, it is necessary to heat the transport pipe to about 100 to 200 ° C.
Further, the pressure difference between the process of (a) and the process of (b) needs to be controlled to an optimum condition depending on the carrier gas flow rate in (a) and the film formation state in (b). Further, the superconductor can be obtained as a linear or film-like deposit by driving or rotating the substrate in one direction or a plane direction by a low speed motor. The film thickness can be easily controlled by the amount of fine particles conveyed and the driving speed of the substrate.

この方法によると、基板の後処理加熱が不必要となる
が、堆積膜の超電導特性を向上させるためには、基板を
400〜500℃程度に加熱し、結晶粒相互の結合性を高める
必要がある。
According to this method, post-treatment heating of the substrate is unnecessary, but in order to improve the superconducting property of the deposited film, the substrate should be heated.
It is necessary to heat to about 400 to 500 ° C to enhance the bondability between crystal grains.

(文献1)M.Awano et.al:Chemistry Letters,43(198
9) (文献2)賀集誠一郎:金属、1989年1月号p.57 「実施例」 次に実施例を挙げて本発明を説明する。
(Reference 1) M. Awano et.al: Chemistry Letters, 43 (198
9) (Reference 2) Seiichiro Kashu: Metal, January 1989, p.57 "Examples" The present invention will be described with reference to Examples.

(実施例1) イットリウム系超電導体について次の方法で超電導体微
粒子膜の成膜を行った。
(Example 1) With respect to an yttrium-based superconductor, a superconductor fine particle film was formed by the following method.

まず、イットリウム、バリウム、銅が原子比でI:2:3と
なるように調製した硝酸塩溶液を作製した。溶液濃度は
0.05mol/lとした。反応ゾーン温度990℃、キャリアガス
流量は酸素0.71毎分とし、噴霧熱分解を行った。得られ
た超電導体微粒子は減圧チャンバーに搬送され、口径0.
5mmのノズルでMgO単結晶基板上に成膜した。基板は20mm
毎時の速度で直線駆動させた。得られた膜は断面観察よ
り密度90%以上の緻密な厚膜で、平均膜厚は0.6mmであ
った。500℃48時間の酸素中アニールによりTc=80Kの超
電導特性を示した。
First, a nitrate solution was prepared in which yttrium, barium, and copper had an atomic ratio of I: 2: 3. Solution concentration
It was 0.05 mol / l. Spray pyrolysis was performed with a reaction zone temperature of 990 ° C. and a carrier gas flow rate of 0.71 per minute of oxygen. The obtained superconductor fine particles are transferred to a decompression chamber and have a diameter of 0.
A film was formed on a MgO single crystal substrate with a 5 mm nozzle. The board is 20 mm
It was driven linearly at the speed of every hour. The obtained film was a dense thick film having a density of 90% or more and an average film thickness was 0.6 mm according to cross-sectional observation. Superconducting property of Tc = 80K was shown by annealing in oxygen at 500 ℃ for 48 hours.

(実施例2) ビスマス系超電導体について、次の方法で超電導体微粒
子膜の成膜を行った。
Example 2 With respect to the bismuth-based superconductor, a superconductor fine particle film was formed by the following method.

まず、ビスマス、鉛、ストロンチウム、カルシウム、銅
を2:0.1:2:1.2:2.3となるように調製した硝酸塩溶液を
作製した。溶液濃度は0.03mol/lとした。反応ゾーン温
度750℃、キャリアガス流量はアルゴン0.51毎分とし、
噴霧熱分解を行った。得られた超電導体(低Tc相)微粒
子は減圧チャンバーに搬送され、口径1mmのノズルでジ
ルコニア多結晶体基板上に成膜した。基板は20mm毎時の
速度でX方向に、100mm毎分でY方向に、それぞれ直線
駆動させた。得られた膜は断面観察より密度90%以上の
緻密な厚膜で、平均膜厚は0.2mmであった。Tc=65Kの超
電導特性を示した。
First, a nitrate solution was prepared in which bismuth, lead, strontium, calcium, and copper were adjusted to be 2: 0.1: 2: 1.2: 2.3. The solution concentration was 0.03 mol / l. The reaction zone temperature is 750 ° C., the carrier gas flow rate is argon 0.51 per minute,
Spray pyrolysis was performed. The obtained superconductor (low Tc phase) fine particles were transferred to a decompression chamber and formed into a film on a zirconia polycrystalline substrate with a nozzle having a diameter of 1 mm. The substrate was linearly driven at a speed of 20 mm / hr in the X direction and 100 mm / min in the Y direction. The obtained film was a dense thick film having a density of 90% or more and an average film thickness was 0.2 mm by cross-sectional observation. It showed a superconducting property of Tc = 65K.

「発明の効果」 本発明は以上説明したように、他の成膜法に比べてより
低温の条件下において、基板上に超電導体の緻密な厚膜
または線状堆積膜を成膜可能とするものであり、さらに
膜質の向上による臨界電流密度の増大により、厚膜また
は線材(配線)としての超電導材料の実用化を促進する
ものとして期待される。
"Effects of the Invention" As described above, the present invention makes it possible to form a dense thick film or a linear deposition film of a superconductor on a substrate under a lower temperature condition than other film forming methods. It is expected that the practical use of the superconducting material as a thick film or a wire (wiring) will be promoted by further increasing the critical current density by improving the film quality.

【図面の簡単な説明】[Brief description of drawings]

第1図は本方法の装置構成図を示す。第2図は噴霧熱分
解法により合成されたイットリウム系超電導体超微粒子
の透過電子顕微鏡像による粒子構造写真を示す。第3図
は本発明により作成された超電導体の、線状堆積膜断面
の粒子構造を示す顕微鏡写真である。第4図はイットリ
ウム系超電導膜のX線回折図形を示す。図中の(○○
○)は超電導相の各回折ピークに相当する面指数及びYS
Zは基板に由来するピークを表す。
FIG. 1 shows an apparatus configuration diagram of this method. FIG. 2 shows a grain structure photograph by a transmission electron microscope image of yttrium-based superconductor ultrafine particles synthesized by the spray pyrolysis method. FIG. 3 is a photomicrograph showing the grain structure of a cross section of a linear deposited film of a superconductor produced by the present invention. FIG. 4 shows an X-ray diffraction pattern of the yttrium-based superconducting film. (○○ in the figure
○) is the surface index and YS corresponding to each diffraction peak of the superconducting phase
Z represents a peak derived from the substrate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】イットリウム系超電導体に対しては、バリ
ウム・イットリウム・銅、ビスマス系超電導体に対して
はビスマス・鉛・ストロンチウム、カルシウム・銅の各
構成元素を含む金属塩溶液を噴霧熱分解して、超電導体
として結晶化した、不純物相を表面及び内部に含まない
微粒子を直接合成し、このエアロゾル状態の微粒子を減
圧または加圧による圧力差を利用して基板上に高速で吹
き付け、微粒子の慣性力を利用して、緻密な堆積膜を室
温または加熱した基板上に作製する方法。
1. A metal salt solution containing barium / yttrium / copper for an yttrium-based superconductor, and bismuth / lead / strontium / calcium / copper for a bismuth-based superconductor. Then, the fine particles crystallized as a superconductor, which do not contain the impurity phase on the surface and inside, are directly synthesized, and the fine particles in the aerosol state are sprayed onto the substrate at high speed by utilizing the pressure difference due to pressure reduction or pressure, A method for forming a dense deposited film on a substrate heated at room temperature or by using the inertial force of.
JP1281090A 1989-10-27 1989-10-27 Manufacturing method of oxide fine particle deposition film Expired - Lifetime JPH0774454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1281090A JPH0774454B2 (en) 1989-10-27 1989-10-27 Manufacturing method of oxide fine particle deposition film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1281090A JPH0774454B2 (en) 1989-10-27 1989-10-27 Manufacturing method of oxide fine particle deposition film

Publications (2)

Publication Number Publication Date
JPH03140472A JPH03140472A (en) 1991-06-14
JPH0774454B2 true JPH0774454B2 (en) 1995-08-09

Family

ID=17634198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1281090A Expired - Lifetime JPH0774454B2 (en) 1989-10-27 1989-10-27 Manufacturing method of oxide fine particle deposition film

Country Status (1)

Country Link
JP (1) JPH0774454B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070789A1 (en) * 2009-12-11 2011-06-16 Ngimat Co. Process for forming high surface area embedded coating with high abrasion resistance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2591236Y2 (en) * 1992-03-10 1999-03-03 大川原化工機株式会社 Spray pyrolysis device with pressure vent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126226A (en) * 1987-11-11 1989-05-18 Agency Of Ind Science & Technol Method for synthesizing oxide particulate raw material
JPH01127629A (en) * 1987-11-10 1989-05-19 Sumitomo Electric Ind Ltd Production of hard alloy
JPH01172221A (en) * 1987-12-25 1989-07-07 Agency Of Ind Science & Technol Synthesis of starting material comprising fine oxide particle
JPH01226723A (en) * 1988-03-08 1989-09-11 Agency Of Ind Science & Technol Method for synthesizing particulate oxide raw material
JPH01226724A (en) * 1988-03-08 1989-09-11 Agency Of Ind Science & Technol Method for synthesizing fine oxide particles as starting material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452072A (en) * 1987-08-24 1989-02-28 Nippon Telegraph & Telephone Production of oxide superconductive sintered body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127629A (en) * 1987-11-10 1989-05-19 Sumitomo Electric Ind Ltd Production of hard alloy
JPH01126226A (en) * 1987-11-11 1989-05-18 Agency Of Ind Science & Technol Method for synthesizing oxide particulate raw material
JPH01172221A (en) * 1987-12-25 1989-07-07 Agency Of Ind Science & Technol Synthesis of starting material comprising fine oxide particle
JPH01226723A (en) * 1988-03-08 1989-09-11 Agency Of Ind Science & Technol Method for synthesizing particulate oxide raw material
JPH01226724A (en) * 1988-03-08 1989-09-11 Agency Of Ind Science & Technol Method for synthesizing fine oxide particles as starting material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070789A1 (en) * 2009-12-11 2011-06-16 Ngimat Co. Process for forming high surface area embedded coating with high abrasion resistance
GB2488052A (en) * 2009-12-11 2012-08-15 Ngimat Co Process for forming high surface area embedded coating with high abrasion resistance
US8834964B2 (en) 2009-12-11 2014-09-16 Ngimat, Co. Process for forming high surface area embedded coating with high abrasion resistance
GB2488052B (en) * 2009-12-11 2017-04-12 Ngimat Co Process for forming high surface area embedded coating with high abrasion resistance

Also Published As

Publication number Publication date
JPH03140472A (en) 1991-06-14

Similar Documents

Publication Publication Date Title
US5278138A (en) Aerosol chemical vapor deposition of metal oxide films
US6440211B1 (en) Method of depositing buffer layers on biaxially textured metal substrates
US6270908B1 (en) Rare earth zirconium oxide buffer layers on metal substrates
JP2007019015A (en) Controlled conversion of metal oxyfluoride to superconductive oxide
WO1991003323A1 (en) Plasma deposition of superconducting thick films
JPH0774454B2 (en) Manufacturing method of oxide fine particle deposition film
JP2003505888A (en) Methods and compositions for making multilayer bodies
US5182255A (en) Shaped and fired articles of YBa2 Cu3 O7
JPH07118012A (en) Oxide superconductor and its production
EP0351139B1 (en) Method of making composite ceramic and copper superconducting elements
JPH0489378A (en) Production of oxide superconductor by chemical vapor deposition method of organic metal
JPH01260717A (en) Method and apparatus for manufacture of metal oxide superconducting material layer
Maatman et al. Production of thin luminescent films by Chemical Aerosol Deposition Technology (CADT)
KATAYAMA et al. Formation of the high-Tc phase in superconducting Bi-Sr-Ca-Cu-O films fabricated from metal alkoxides
JPH0782078A (en) Rare-earth metal oxide superconducting single crystal film and its production
JPH02208209A (en) Production of oxide superconductor precursor
JPH02196023A (en) Production of oxide-based superconductor
JPH02196022A (en) Production of oxide-based superconducting powder
RU2199170C2 (en) Method for producing superconducting film coating and conductor built around it
Hur et al. Growth of superconducting Bi-Pb-Sr-Ca-Cu-O films by an ultrasonic spray pyrolysis method
JPH03261606A (en) Production of superconducting film of oxide
JPH03126871A (en) Method and device for production of composite thin film
JPH077192A (en) Formation of laminate of fine oxide particle
JPH01230403A (en) Production of oxide superconductor
JPH01224208A (en) Method for synthesizing oxide superconductor precursor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term