JPH077192A - Formation of laminate of fine oxide particle - Google Patents
Formation of laminate of fine oxide particleInfo
- Publication number
- JPH077192A JPH077192A JP5169601A JP16960193A JPH077192A JP H077192 A JPH077192 A JP H077192A JP 5169601 A JP5169601 A JP 5169601A JP 16960193 A JP16960193 A JP 16960193A JP H077192 A JPH077192 A JP H077192A
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- superconductor
- valve
- laminate
- fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000015572 biosynthetic process Effects 0.000 title abstract description 9
- 239000002245 particle Substances 0.000 title description 5
- 239000010419 fine particle Substances 0.000 claims abstract description 30
- 239000002887 superconductor Substances 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 15
- 239000002243 precursor Substances 0.000 claims description 9
- 238000005118 spray pyrolysis Methods 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 4
- 239000000443 aerosol Substances 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 9
- 229910002651 NO3 Inorganic materials 0.000 abstract description 6
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 abstract description 6
- 239000007921 spray Substances 0.000 abstract description 3
- 238000000354 decomposition reaction Methods 0.000 abstract 2
- 230000001143 conditioned effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 21
- 239000000243 solution Substances 0.000 description 10
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010574 gas phase reaction Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は酸化物高温超電導体の厚
膜・堆積膜・傾斜積層膜の製法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thick film / deposited film / graded laminated film of an oxide high temperature superconductor.
【0002】[0002]
【従来の技術】従来セラミックス積層膜の成膜法として
は、 ( 1)粉末傾斜組成充填法、 ( 2)粒子噴射配列法、 (
3)PVD法及びCVD法などが知られている。The film formation method of a conventional ceramic multilayer film, (1) powder graded composition filling method, (2) particle injection sequence method, (
3) PVD method, CVD method and the like are known.
【0003】 ( 1)は金型内に粉末を一層ずつ積み上げて
ゆく方法で、簡単に行うことができるが組成ステップの
幅に限界があり、微細な制御は難しい。また組成の不連
続部分での剥離・亀裂が起こりやすい問題がある。The method ( 1) is a method of stacking powders one by one in a mold, which can be easily carried out, but the width of the composition step is limited and fine control is difficult. Further, there is a problem that peeling or cracking is likely to occur in the discontinuous portion of the composition.
【0004】 ( 2)は混合粉末の割合の異なる懸濁液を数
種用い所定の組成になるように噴射ノズルで基盤上に堆
積する方法である。この場合粉末安定供給の問題や、形
状付与性・積層面積の制約という問題がある。The method ( 2) is a method of depositing several kinds of suspensions having different ratios of mixed powders on a substrate with a spray nozzle so as to have a predetermined composition. In this case, there are problems of stable powder supply and restrictions on shape-imparting property and stacking area.
【0005】 ( 3)のPVD法(物理蒸着法)は加熱蒸発
させた金属を基盤上に析出させる方法、CVD法(化学
蒸着法)は金属塩・有機金属ガスを原料に気相反応で加
熱した基盤上に目的とする微粒子を析出させる方法で、
いずれも気相反応に供給する原料の組成を徐々に変化さ
せて積層膜の作製が試みられている。しかしこれらの方
法には反応の安定化や再現性の問題、堆積速度が小さい
ことやコストの問題がある。The PVD method (physical vapor deposition method) of ( 3) is a method of depositing a metal evaporated by heating on a substrate, and the CVD method (chemical vapor deposition method) is a gas phase reaction using a metal salt / organic metal gas as a raw material. By the method of precipitating the target fine particles on the base,
In each case, an attempt has been made to produce a laminated film by gradually changing the composition of raw materials supplied to the gas phase reaction. However, these methods have problems of reaction stabilization and reproducibility, low deposition rate, and cost.
【0006】[発明が解決しようとする課題]本発明は
以上の方法の持つ欠点を解消し、超電導体の組成ステッ
プ幅の均一・微細な制御を可能とする成膜法として、高
温酸化物超電導体の厚膜・堆積膜・傾斜積層膜としての
実用化を目的とする。[Problems to be Solved by the Invention] The present invention solves the drawbacks of the above method and provides a high temperature oxide superconducting method as a film forming method which enables uniform and fine control of the composition step width of a superconductor. It is intended for practical use as a thick film / deposited film / graded laminated film of the body.
【0007】[課題を解決するための手段]本発明者は
酸化物高温超電導体の噴霧熱分解法による超微粒子合成
において、熱分解後のエアロゾル状態ですでに超電導特
性を示す超微粒子を比較的簡単に直接合成できることに
着目した。また本方法によれば、溶液の組成を調製して
超電導体の部分的な組成を持つ超電導体前駆体微粒子や
他の微粒子も合成可能である。[Means for Solving the Problems] In the present inventors, in the synthesis of ultrafine particles of an oxide high-temperature superconductor by a spray pyrolysis method, the ultrafine particles that already exhibit superconducting properties in an aerosol state after pyrolysis are comparatively produced. We paid attention to the fact that it can be directly synthesized easily. According to this method, the composition of the solution can be adjusted to synthesize the superconductor precursor fine particles and other fine particles having a partial composition of the superconductor.
【0008】この特徴を生かしエアロゾル状態の微粒子
の供給量を弁などで制御することで、組成ステップ幅を
均一・微細に制御した比較的高速な積層成膜が行い得る
のではないかと考えた。また積層膜を熱処理して、固相
拡散反応を利用し各層の相互作用により結晶粒配向化を
起こさせて、異方性微細構造を持つ超電導体厚膜の作製
が可能となり得る。以上の観点で検討を重ねた結果、本
発明に到達した。By utilizing this feature and controlling the supply amount of the fine particles in the aerosol state with a valve or the like, it was thought that a relatively high-speed laminated film formation in which the composition step width was uniformly and finely controlled could be performed. It may also be possible to heat-treat the laminated film and cause the crystal grains to be oriented by the interaction of the respective layers by utilizing the solid phase diffusion reaction, thereby making it possible to produce a superconductor thick film having an anisotropic fine structure. As a result of repeated studies from the above viewpoints, the present invention has been achieved.
【0009】以下に本発明を詳細に説明する。本発明
は、 ( 1)噴霧熱分解法による超電導体微粒子またはその
前駆体微粒子・超電導以外の金属系微粒子などの2種類
の微粒子の合成、 ( 2)電磁弁などによる複数成分微粒子
の流れの制御とフィルタ−トラップなどによる膜形成、
の2つの構成要素よりなる(図1)。The present invention will be described in detail below. The present invention is ( 1) synthesis of two kinds of fine particles such as superconductor fine particles or precursor fine particles thereof / metal fine particles other than superconducting particles by a spray pyrolysis method, ( 2) control of flow of multi-component fine particles by a solenoid valve, etc. And film formation by filter-trap,
(Fig. 1).
【0010】 ( 1)では超電導体の組成となるように調製
した硝酸塩などの溶液を霧化装置により微小な液滴と
し、これを所定の温度・雰囲気・流量条件で反応ゾ−ン
内で極めて短時間の内に乾燥−反応−結晶化を起こさせ
て超電導体微粒子を得る。超電導体前駆体や他の微粒子
の場合は、それらの組成に応じた溶液を用いる。In ( 1), a solution of nitrate or the like prepared so as to have a composition of a superconductor is made into fine droplets by an atomizing device, and this is made extremely small in a reaction zone under predetermined temperature, atmosphere and flow rate conditions. Drying-reaction-crystallization is caused within a short time to obtain superconductor fine particles. In the case of the superconductor precursor and other fine particles, a solution according to their composition is used.
【0011】 ( 2)では合成された各微粒子を捕集部へ交
互に供給して積層膜を作製する。すなわち第1図に示す
ように2つの噴霧熱分解反応部に例えば電磁弁を設け、
一方の弁を開放し他方を閉じる。まず開放している方の
微粒子を捕集部へ送りフィルタ−上に堆積させる。一定
時間後に弁を切り替え、最初の微粒子層の上に次の微粒
子を積層化する。この操作を繰り返すことで積層膜を形
成させる。In ( 2), each of the synthesized fine particles is alternately supplied to the collection section to form a laminated film. That is, as shown in FIG. 1, two spray pyrolysis reaction sections are provided with, for example, solenoid valves,
Open one valve and close the other. First, the open particles are sent to the collecting part and deposited on the filter. After a certain period of time, the valve is switched to stack the next fine particles on the first fine particle layer. By repeating this operation, a laminated film is formed.
【0012】積層する各層の厚みは、電磁弁開放時間お
よび生成した微粒子の大きさにより、サブμm〜数 1 0μ
mと制御可能である。The thickness of each layer to be laminated depends on the opening time of the solenoid valve and the size of the produced fine particles, and is from sub-μm to several 10 μm.
m is controllable.
【0013】[0013]
【実施例】実施例1 イットリウム系超電導体について、超電導体−銀積層膜
の作製を行った。まずイットリウム、バリウム、銅が原
子比で 1 : 2:3となるように調製した硝酸塩溶液を作製し
た。溶液濃度は 0.03 m ol /l とした。反応ゾ−ン温度 700
℃、キャリアガス流量は酸素 1l 毎分として噴霧熱分解を
行った。得られた超電導体微粒子を捕集部でフィルタ−
上に堆積した。Example 1 A superconductor-silver laminated film was prepared for an yttrium-based superconductor. First, a nitrate solution was prepared in which the atomic ratio of yttrium, barium, and copper was 1 : 2: 3. The solution concentration was 0. 03 m ol / l. Reaction zone temperature 7 00
The spray pyrolysis was carried out at 0 ° C. and the carrier gas flow rate was 1 l / min of oxygen. The obtained superconductor fine particles are filtered at the collecting part.
Deposited on top.
【0014】一定時間後に電磁弁を切り替え銀の0.2 m ol
/l 硝酸塩溶液を反応ゾ−ン温度 6 00℃、キャリアガス流
量酸素 1l 毎分で噴霧熱分解し、得られた銀粒子を先に堆
積した超電導体層の上に積層化する。電磁弁の切り替え
時間は1時間とした。得られた積層膜は断面観察より超
電導層約 3 0μm、銀層約 5 μmの均一な積層厚膜であっ
た。[0014] of silver switching the solenoid valve after a certain period of time 0. 2 m ol
/ l nitrate solution and the reaction zone - emission temperature 6 0 0 ° C., to decompose evaporative a carrier gas flow of oxygen 1l per minute, laminating on the resulting silver particles previously deposited superconductor layer. The switching time of the solenoid valve was 1 hour. The cross-sectional observation of the obtained laminated film revealed that the superconducting layer was about 30 μm thick and the silver layer was about 5 μm.
【0015】作製された超電導体−銀積層膜を焼結する
ことで積層界面に平行な粒配向化が生じ、超電導臨界電
流特性が向上することがわかった。It was found that by sintering the produced superconductor-silver laminated film, grain orientation parallel to the laminating interface occurs and the superconducting critical current characteristics are improved.
【0016】実施例2 ビスマス系超電導体について、異方性微細構造をもつ厚
膜の作製を行った。まずビスマス,鉛が原子比で 2 : 1と
なるように調製した硝酸塩溶液を作製した。溶液濃度は
0.0 7 m ol /l とした.反応ゾ−ン温度 6 00℃、キャリアガ
ス流量は酸素 1l 毎分として噴霧熱分解を行った。得られ
た超電導体前駆体 ( a ) 微粒子を捕集部でフィルタ−上に
堆積した。Example 2 With respect to a bismuth superconductor, a thick film having an anisotropic fine structure was produced. First, a nitrate solution was prepared in which the atomic ratio of bismuth and lead was 2 : 1. Solution concentration
It was 0.0 7 m ol / l. The reaction zone - emission temperature 6 0 0 ° C., carrier gas flow rate was spray pyrolysis as oxygen 1l per minute. The obtained superconductor precursor ( a ) fine particles were deposited on the filter in the collection part.
【0017】一定時間後に電磁弁を切り替え、ストロン
チウム、カルシウム、銅を 2: 1 :2 となるように調製した
溶液濃度 0.0 7 m ol /l 硝酸塩溶液を反応ゾ−ン温度 6 00
℃、キャリアガス流量酸素 1l 毎分で噴霧熱分解し、得ら
れた超電導体前駆体 ( b ) 微粒子を先に堆積した超電導体
前駆体 ( a ) 層の上に積層化する。電磁弁の切り替え時間
は 3 0分とした。The switching solenoid valve after a predetermined time, strontium, calcium, copper 2: 1: 2 become thus prepared solution concentration 0.0 7 m ol / l nitrate solution and the reaction zone - emission temperature 6 0 0
C., spray pyrolysis at a carrier gas flow rate of oxygen of 1 l / min, and the obtained superconductor precursor ( b ) fine particles are laminated on the superconductor precursor ( a ) layer previously deposited. The switching time of the solenoid valve was 30 minutes.
【0018】得られた積層膜は断面観察により、超電導
体前駆体 ( a ) 層約 1 0μm、 ( b ) 層約 2 0μmの均一な積層
膜であった(図2)。これを焼結することで積層界面に
垂直方向に粒成長が起こり、結晶粒の配向化を行わせる
ことができた。The cross-section of the obtained laminated film was a uniform laminated film having a superconductor precursor ( a ) layer of about 10 μm and a ( b ) layer of about 20 μm (FIG. 2). By sintering this, grain growth occurred in the direction perpendicular to the stacking interface, and the crystal grains could be oriented.
【0019】[0019]
【発明の効果】本発明は以上説明したように他の積層成
膜法に比べ、組成ステップ幅を均一・微細に制御した積
層成膜を可能とするものであり、さらに膜質の向上によ
る臨界電流密度の増大により、厚膜などとしての超電導
材料の実用化を促進するものとして期待される。INDUSTRIAL APPLICABILITY As described above, the present invention enables stacked film formation in which the composition step width is uniformly and finely controlled as compared with other stacked film formation methods, and the critical current is improved by improving the film quality. The increase in density is expected to promote the practical application of superconducting materials such as thick films.
【図1】本方法の装置構成図を示す。FIG. 1 shows an apparatus configuration diagram of this method.
【図2】図面に代えて、本方法で作製されたビスマス系
超電導体前駆体 ( a ) − ( b ) 積層膜の電子顕微鏡写真を示
す。FIG. 2 shows an electron micrograph of a bismuth-based superconductor precursor ( a ) - ( b ) laminated film produced by the present method, instead of the drawing.
Claims (1)
子や超電導体前駆体微粒子または超電導体以外の金属系
微粒子を噴霧熱分解法によって直接合成し、これらのエ
アロゾル状態の微粒子の供給量を制御して異なる組成の
微粒子層がシ−ケンシャルに堆積された積層膜を作製す
る方法。A yttrium-based / bismuth-based superconductor fine particle, a superconductor precursor fine particle, or a metal fine particle other than a superconductor is directly synthesized by a spray pyrolysis method, and the supply amount of these fine particles in an aerosol state is controlled to be different. A method for producing a laminated film in which a fine particle layer having a composition is sequentially deposited.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5169601A JP2600100B2 (en) | 1993-06-15 | 1993-06-15 | Manufacturing method of oxide fine particle laminated film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5169601A JP2600100B2 (en) | 1993-06-15 | 1993-06-15 | Manufacturing method of oxide fine particle laminated film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH077192A true JPH077192A (en) | 1995-01-10 |
JP2600100B2 JP2600100B2 (en) | 1997-04-16 |
Family
ID=15889523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5169601A Expired - Lifetime JP2600100B2 (en) | 1993-06-15 | 1993-06-15 | Manufacturing method of oxide fine particle laminated film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2600100B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008105935A (en) * | 2006-09-29 | 2008-05-08 | Dainippon Printing Co Ltd | Method for producing metal oxide film, and layered product |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012133412A (en) | 2010-12-17 | 2012-07-12 | Glory Ltd | Bill processing apparatus and mounting table for bill processing apparatus |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01179724A (en) * | 1988-01-12 | 1989-07-17 | Furukawa Electric Co Ltd:The | Production of oxide superconducting powder |
JPH01290507A (en) * | 1988-05-16 | 1989-11-22 | Sony Corp | Production of thin film of metal compound |
-
1993
- 1993-06-15 JP JP5169601A patent/JP2600100B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01179724A (en) * | 1988-01-12 | 1989-07-17 | Furukawa Electric Co Ltd:The | Production of oxide superconducting powder |
JPH01290507A (en) * | 1988-05-16 | 1989-11-22 | Sony Corp | Production of thin film of metal compound |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008105935A (en) * | 2006-09-29 | 2008-05-08 | Dainippon Printing Co Ltd | Method for producing metal oxide film, and layered product |
Also Published As
Publication number | Publication date |
---|---|
JP2600100B2 (en) | 1997-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hou et al. | Processing and applications of aerosol‐assisted chemical vapor deposition | |
Ozgit‐Akgun et al. | Template‐Based Synthesis of Aluminum Nitride Hollow Nanofibers Via Plasma‐Enhanced Atomic Layer Deposition | |
JP2600100B2 (en) | Manufacturing method of oxide fine particle laminated film | |
Charojrochkul et al. | Flame assisted vapour deposition of cathode for solid oxide fuel cells. 1. Microstructure control from processing parameters | |
US20230174386A1 (en) | Scalable synthesis of semi-conducting chevrel phase compounds via selfpropagating high temperature synthesis | |
CN101531374B (en) | Method for producing boron nanowire | |
JPH07118012A (en) | Oxide superconductor and its production | |
Takao et al. | Preparation of a multilayer and a compositional gradient layer composite by the aerosol filtration method | |
WO2002020879A1 (en) | Production method for composite oxide thin film and device therefor and composite oxide film produced thereby | |
JPH03140472A (en) | Production of built-up film of oxide fine particle | |
KR101343799B1 (en) | Method for separating carbon from the hydrocarbon gas | |
Santala et al. | Metallic Ir, IrO2 and Pt nanotubes and fibers by electrospinning and atomic layer deposition | |
Maatman et al. | Production of thin luminescent films by Chemical Aerosol Deposition Technology (CADT) | |
JP2001020073A (en) | Metallic oxide having laminated projection | |
Niu et al. | Formation mechanism of island CoO in La-Sr-Co-Fe oxygen transport membrane deposited by low pressure plasma spraying-thin film technology | |
JPH02263756A (en) | Production of oxide superconductor ceramics | |
JP2955939B2 (en) | Method of forming high-temperature superconductor thick film | |
JPH05170448A (en) | Production of thin ceramic film | |
JPH03236157A (en) | Manufacture of electrode | |
JPH07237906A (en) | Production of oxide superconductor | |
JPH01224208A (en) | Method for synthesizing oxide superconductor precursor | |
JP2001115262A (en) | Metallic oxide having laminated projection | |
JPH04219318A (en) | Production of oxide superconductor film | |
Awano et al. | New Fabrication Method of Thick Film of Oxide Superconductor by the Combination of Mist Pyrolysis and Collision of Particles to Substrate | |
Wang et al. | Superconducting Y 1 Ba 2 Cu 3 O 7− δ Films by RF Plasma Aerosol Evaporation at Atmospheric Pressure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |