JPH07237906A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH07237906A
JPH07237906A JP6028544A JP2854494A JPH07237906A JP H07237906 A JPH07237906 A JP H07237906A JP 6028544 A JP6028544 A JP 6028544A JP 2854494 A JP2854494 A JP 2854494A JP H07237906 A JPH07237906 A JP H07237906A
Authority
JP
Japan
Prior art keywords
fine particles
oxide superconducting
oxide
superconducting
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6028544A
Other languages
Japanese (ja)
Inventor
Junya Nishino
順也 西野
Seishi Takada
清史 高田
Tsuneo Ayabe
統夫 綾部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP6028544A priority Critical patent/JPH07237906A/en
Publication of JPH07237906A publication Critical patent/JPH07237906A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To produce an oxide superconductor excellent in superconductivity by securing superconductivity in the neighborhood of the grain boundary of an oxide and improve moldability of the superconductive material. CONSTITUTION:This method for production of an oxide superconductor is carried out by blending amorphous oxide superconductor fine particles prepared by the chemical liquid phase method with a crystallized oxide superconductor powder, molding the resultant mixture and sintering the same.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体の製造
方法に係り、特に、酸化物の粒界近傍の超電導性を確保
する技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconductor, and more particularly to a technique for ensuring superconductivity in the vicinity of oxide grain boundaries.

【0002】[0002]

【従来の技術】酸化物超電導体膜や線材等の超電導複合
体を製造する場合には、予め構成元素を所望の比率で配
合した酸化物超電導微粒子を製造しておくことが必要で
ある。この場合に、構成元素の配合比の均一な粒径の小
さな酸化物超電導微粒子を使用することが、酸化物超電
導体の超電導特性向上を図る上で有利であり、これらの
関連技術として、例えば、特開平04−171613号
公報(酸化物超電導体膜の製造方法及び製造装置)、特
開平04−175207号公報(酸化物超電導微粒子の
製造方法及び製造装置)及び特開平04−175285
号公報(酸化物超電導体膜の製造方法及び製造装置)が
提案されている。
2. Description of the Related Art When manufacturing a superconducting composite such as an oxide superconducting film or a wire, it is necessary to manufacture oxide superconducting fine particles in which constituent elements are mixed in a desired ratio in advance. In this case, it is advantageous to use small oxide superconducting fine particles having a uniform particle size with a uniform composition ratio of the constituent elements in order to improve the superconducting properties of the oxide superconductor. JP-A-04-171613 (manufacturing method and manufacturing apparatus for oxide superconductor film), JP-A-04-175207 (manufacturing method and manufacturing apparatus for oxide superconducting fine particles) and JP-A-04-175285.
Japanese Unexamined Patent Application Publication (method and apparatus for manufacturing oxide superconductor film) has been proposed.

【0003】一方、超電導体を製造する場合には、上述
の酸化物超電導微粒子を原料として成形品を作成し、該
成形品を焼結することによって行なわれる。この場合に
あって、酸化物超電導微粒子の仮焼粉からなる成形体、
または非結晶成形体を焼結して得られる焼結体を粉砕し
たものの成形体を所望の温度で加熱焼成することによっ
て、超電導体を製造するようにしている。例えば、Y系
の超電導体の加熱焼成条件は、温度:950℃、加熱時
間:1〜5時間程度とされ、Bi系の超電導体の加熱焼
成条件は、温度:860℃、加熱時間:1〜5時間程度
とされる。
On the other hand, when manufacturing a superconductor, a molded product is prepared by using the above oxide superconducting fine particles as a raw material, and the molded product is sintered. In this case, a molded body made of calcined powder of oxide superconducting fine particles,
Alternatively, a sintered body obtained by sintering an amorphous compact is crushed, and the compact is heated and fired at a desired temperature to produce a superconductor. For example, the heating and firing conditions for the Y-based superconductor are: temperature: 950 ° C., heating time: 1 to 5 hours, and the heating and firing conditions for the Bi-based superconductor: temperature: 860 ° C., heating time: 1 to It is about 5 hours.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述のような
超電導体の製造方法であると、以下のような解決すべき
点が残される。 所望形状の超電導体を成形するための材料として、仮
焼粉や焼結体の粉砕品を使用すると、粒体の表面が結晶
化していることにより、結晶相互間の導電性が損なわ
れ、超電導特性が低下し易い。 粒体の間の空隙が大きくなって、焼結性及び導電性が
損なわれる。
However, in the method of manufacturing a superconductor as described above, the following points to be solved remain. When a calcined powder or a crushed product of a sintered body is used as a material for forming a superconductor of a desired shape, the crystallinity of the surface of the granules impairs the conductivity between the crystals, resulting in superconductivity. The characteristics tend to deteriorate. The voids between the particles become large, and the sinterability and conductivity are impaired.

【0005】本発明は、かかる事情に鑑みてなされたも
ので、酸化物の粒界近傍の超電導性を確保して、超電導
特性の優れた高焼結状態の酸化物超電導体を提供すると
ともに、超電導体の成形性を向上させることを目的とし
ている。
The present invention has been made in view of the above circumstances, and provides an oxide superconductor in a highly sintered state which has excellent superconducting properties by ensuring superconductivity in the vicinity of oxide grain boundaries. The purpose is to improve the formability of the superconductor.

【0006】[0006]

【課題を解決するための手段】酸化物超電導体の製造方
法として、化学液相法で生成した非晶質酸化物超電導微
粒子と結晶化した酸化物超電導粉体とを混合し、該混合
物を成形して焼結する構成を採用する。酸化物超電導粉
体の粒径に対して、非晶質酸化物超電導微粒子の粒径が
相対的に著しく小さくなる関係とし、かつ、非晶質酸化
物超電導微粒子の粒径が0.1μm単位以下となる管理
をする。非晶質酸化物超電導微粒子にあっては、酸化物
超電導粉体との混合前に、低温予備加熱工程を付加して
もよい。
As a method for producing an oxide superconductor, amorphous oxide superconducting fine particles produced by a chemical liquid phase method and crystallized oxide superconducting powder are mixed, and the mixture is molded. Then, a structure for sintering is adopted. The particle size of the amorphous oxide superconducting fine particles is made to be significantly smaller than the particle size of the oxide superconducting powder, and the particle size of the amorphous oxide superconducting fine particles is 0.1 μm or less. Manage. For the amorphous oxide superconducting fine particles, a low temperature preheating step may be added before mixing with the oxide superconducting powder.

【0007】[0007]

【作用】化学液相法で生成した非晶質酸化物超電導微粒
子は、酸化物超電導粉体と比較して著しく粒径が小さく
なる。非晶質酸化物超電導微粒子を酸化物超電導粉体と
混合すると、粒径の差によって酸化物超電導粉体の空隙
を非晶質酸化物超電導微粒子が埋めて空隙率が低下し、
混合物の成形体の形状保持性が向上する。混合物の成形
体を焼結すると、その際に非晶質酸化物超電導微粒子の
結晶化が生じて、酸化物超電導粉体の結晶間の接合をな
し、両者の間を一体化状態とした酸化物超電導体が製造
される。非晶質酸化物超電導微粒子に、400℃前後の
温度の低温予備加熱工程を付加すると、非晶質酸化物超
電導微粒子に含まれる硝酸塩、炭酸塩及び水分等が気化
状態となって除去され純度が向上する。
[Function] The amorphous oxide superconducting fine particles produced by the chemical liquid phase method have a remarkably smaller particle size than the oxide superconducting powder. When the amorphous oxide superconducting fine particles are mixed with the oxide superconducting powder, the voids of the oxide superconducting powder are filled with the amorphous oxide superconducting fine particles due to the difference in particle size, and the porosity decreases,
The shape retention of the molded body of the mixture is improved. When the molded body of the mixture is sintered, crystallization of the amorphous oxide superconducting fine particles occurs at that time, forming a bond between the crystals of the oxide superconducting powder, and an oxide in which the two are integrated. A superconductor is manufactured. When the low-temperature preheating step at a temperature of about 400 ° C. is added to the amorphous oxide superconducting fine particles, nitrates, carbonates and water contained in the amorphous oxide superconducting fine particles are vaporized and removed, and the purity is improved. improves.

【0008】[0008]

【実施例】以下、本発明に係る酸化物超電導体の製造方
法の一実施例を図1及び図2に基づいて説明する。図1
は、酸化物超電導体の製造工程を示し、また、図2は、
非晶質酸化物超電導微粒子による酸化物超電導粉体の接
合状況を示している。
EXAMPLE An example of a method for producing an oxide superconductor according to the present invention will be described below with reference to FIGS. Figure 1
Shows a manufacturing process of an oxide superconductor, and FIG.
It shows the bonding situation of oxide superconducting powder by amorphous oxide superconducting fine particles.

【0009】以下、各工程順に説明する。図1に示す酸
化物超電導体の製造工程では、S1ないしS3及びS4
で示す工程により非晶質酸化物超電導微粒子(非晶質微
粒子)及び酸化物超電導粉体が製造され、S5ないしS
8の工程で酸化物超電導材が製造される。
The respective steps will be described below in order. In the manufacturing process of the oxide superconductor shown in FIG. 1, S1 to S3 and S4 are used.
Amorphous oxide superconducting fine particles (amorphous fine particles) and oxide superconducting powder are manufactured by the process shown in S.
An oxide superconducting material is manufactured in the process of 8.

【0010】〔S1:化学液相法によるミスト化工程〕
特開平04−175207号公報等に準ずる化学液相法
によって、焼結すべき酸化物超電導粉体に合わせた所望
配合比のY系やBi系等の構成元素を、硝酸塩の形で含
む水溶液をキャリアガスによりミスト化する工程と、分
級処理により粒径の小さなミストを選別する工程とを経
る。
[S1: Mist formation step by chemical liquid phase method]
An aqueous solution containing constituent elements in the form of nitrates, such as Y-based and Bi-based, having a desired mixing ratio in accordance with the oxide superconducting powder to be sintered is prepared by a chemical liquid phase method according to Japanese Patent Application Laid-Open No. 04-175207. It goes through a step of forming a mist with a carrier gas and a step of selecting a mist having a small particle size by a classification treatment.

【0011】〔S2:乾燥工程及び低温予備加熱処理工
程〕選別したミストは、特開平04−175207号公
報等の技術に準じて、キャリアガスとともに100℃な
いし120℃の温度で加熱されて乾燥ミストとなる。こ
の乾燥ミストは、水溶液時の配合比率を引き継いだ状態
で保持され、高熱が付加されていないため、硝酸塩等が
付着した状態の非晶質微粒子となる。乾燥ミストは、4
00℃前後の温度で加熱され、硝酸塩、炭酸塩及び水分
等を気化状態にして除去する。つまり、NOx,C
2 ,H2 Oの形で除去する。この際にアルゴン等の不
活性ガス雰囲気とするとともに、微量のO2 を添加する
ことにより、酸化ガス等の発生を促進させる。
[S2: Drying Step and Low-Temperature Preheat Treatment Step] The selected mist is heated with a carrier gas at a temperature of 100 ° C. to 120 ° C. according to the technique disclosed in Japanese Patent Laid-Open No. 04-175207 to dry mist. Becomes This dry mist is maintained in a state where the blending ratio in the aqueous solution is taken over, and since high heat is not applied, it becomes amorphous fine particles in a state where nitrates and the like are attached. Dry mist is 4
It is heated at a temperature of around 00 ° C. to remove nitrates, carbonates, water and the like in a vaporized state. That is, NOx, C
It is removed in the form of O 2 and H 2 O. At this time, the atmosphere of an inert gas such as argon and the addition of a slight amount of O 2 accelerate the generation of the oxidizing gas.

【0012】〔S3:非晶質微粒子〕予備加熱処理され
た酸化物は、当初の配合比の構成元素を含んだ状態を保
持している。このような酸化物微粒子を400〜600
℃に調温保持することにより、酸化物微粒子中に残存す
る硝酸塩やH2 OやCO2 等の不純物を除去した非晶質
酸化物超電導微粒子(非晶質微粒子)が生成される。こ
の非晶質酸化物超電導微粒子は、ここまでの工程で60
0℃以上の温度が付加されていないために、ほとんど結
晶化及び造粒化が行なわれず、非晶質微粒子の性質を保
持した酸化物微粒子で不純物を含まない、つまり、非晶
質酸化物超電導微粒子(超電導セラミックス前駆体)と
なっており、その粒径が例えばサブミクロン単位(0.
1μm単位)以下に形成される。
[S3: Amorphous Fine Particles] The preheated oxide retains the state of containing the constituent elements in the initial mixing ratio. 400 to 600 such oxide fine particles
By keeping the temperature at 0 ° C., amorphous oxide superconducting fine particles (amorphous fine particles) from which nitrates remaining in the oxide fine particles and impurities such as H 2 O and CO 2 are removed are produced. The amorphous oxide superconducting fine particles are 60
Since a temperature of 0 ° C. or higher is not added, almost no crystallization and granulation are performed, and oxide fine particles that retain the properties of amorphous fine particles do not contain impurities, that is, amorphous oxide superconductivity. The particles are fine particles (superconducting ceramics precursor), and the particle size is, for example, in the submicron unit (0.
1 μm unit) or less.

【0013】〔S4:酸化物超電導粉体の生成〕焼結す
べき酸化物超電導粉体の仮焼粉(超電導仮焼粉)を用意
する。該超電導仮焼粉は、所望配合比のY系やBi系等
の構成元素を含むものであり、例えばYBa2 Cu3
x やBi2 Sr2 Ca2 Cu3 x が選択される。この
場合における超電導仮焼粉の粒径は、非晶質微粒子の粒
径よりも遥かに大きくなるものの、例えば1〜5μm程
度に設定される。
[S4: Generation of Oxide Superconducting Powder] A calcined powder of the oxide superconducting powder to be sintered (superconducting calcined powder) is prepared. The superconducting calcined powder contains constituent elements such as Y-based and Bi-based in a desired mixing ratio, and is, for example, YBa 2 Cu 3 O.
x or Bi 2 Sr 2 Ca 2 Cu 3 O x is selected. The particle size of the superconducting calcined powder in this case is much larger than the particle size of the amorphous fine particles, but is set to, for example, about 1 to 5 μm.

【0014】〔S5:酸化物超電導原料粉〕S3及びS
4の工程で得られる非晶質微粒子と超電導仮焼粉とは、
少なくとも非晶質微粒子の空隙を超電導仮焼粉で埋める
ように、つまり、非晶質微粒子の空隙率よりも若干多い
量の超電導仮焼粉を混入して攪拌混合される。なお、非
晶質酸化物超電導微粒子には、超電導仮焼粉間の接合を
良好にする理由や、成形品の形状が複雑で形状維持性を
高める等の理由に基づいて、必要に応じてセルローズ系
バインダー材が若干添加される。また、非晶質微粒子に
粘性を付与して、超電導仮焼粉を成形した場合の形状保
持性を高めるため、従来技術と同様の有機溶剤が少量添
加される。
[S5: Oxide Superconducting Raw Material Powder] S3 and S
The amorphous fine particles and the superconducting calcined powder obtained in the step 4 are
At least the voids of the amorphous fine particles are filled with the superconducting calcined powder, that is, the superconducting calcined powder of an amount slightly larger than the porosity of the amorphous fine particles is mixed and stirred. In addition, the amorphous oxide superconducting fine particles may include cellulose as necessary based on the reason that the bonding between the superconducting calcined powders is good and the shape of the molded product is complicated and the shape maintainability is improved. A little binder material is added. In addition, a small amount of the same organic solvent as in the prior art is added in order to impart viscosity to the amorphous fine particles and improve shape retention when the superconducting calcined powder is molded.

【0015】〔S6:被焼成体の成形〕上述の混合物を
型押しする等の方法で、所望形状の成形体を成形する。
[S6: Molding of body to be fired] A molded body having a desired shape is molded by a method such as embossing the above mixture.

【0016】〔S7:成形品の焼成〕成形品にあって
は、前述に準じて、例えばY系の場合、温度:950
℃、加熱時間:1〜5時間程度、Bi系の場合、温度:
860℃、加熱時間:1〜5時間程度の加熱焼成条件に
より焼成される。この焼結によって、有機溶剤及びセル
ローズ系バインダ材は、温度上昇とともに熱分解してガ
ス化して除去される。
[S7: Firing of molded product] For the molded product, according to the above description, for example, in the case of Y system, temperature: 950
C, heating time: about 1 to 5 hours, in the case of Bi system, temperature:
Firing is performed under the heating and firing conditions of 860 ° C. and heating time: about 1 to 5 hours. By this sintering, the organic solvent and the cellulose-based binder material are thermally decomposed and gasified and removed as the temperature rises.

【0017】〔酸化物超電導体〕図2に示すように、隣
合う超電導仮焼粉1の接合部分に介在した状態の非晶質
酸化物超電導微粒子2は、焼結により微粒子部分で結晶
化及び粒子が成長する現象が生じ、非晶質酸化物超電導
微粒子2が超電導仮焼粉1の表面と溶着して接合層3を
形成して、安定化状態の高焼結性の酸化物超電導体Aと
なる。
[Oxide Superconductor] As shown in FIG. 2, the amorphous oxide superconducting fine particles 2 in a state of being interposed between the joints of the adjacent superconducting calcined powders 1 are crystallized and sintered in the fine particle portion by sintering. The phenomenon of particle growth occurs, and the amorphous oxide superconducting fine particles 2 are welded to the surface of the superconducting calcined powder 1 to form the bonding layer 3, and the highly-sinterable oxide superconductor A in a stabilized state. Becomes

【0018】成形品を焼成する際には、超電導仮焼粉1
と非晶質酸化物超電導微粒子2との間で、原子の拡散現
象が起こることが考えられる。この際に、接合層3は、
非晶質酸化物超電導微粒子2の焼成及び結晶化によって
酸化物超電導層となるため、酸化物超電導材である超電
導仮焼粉1との間に原子の拡散現象が生じても、同質材
である条件の下では、原子の拡散が超電導特性の変化に
影響を及ぼさないと考えられる。さらに、接合層3の部
分では、焼結時に非晶質部分が結晶化及び成長すること
によって、超電導仮焼粉1との一体化が促進されるた
め、接合境界層に大きな力を付加する必要がなく、形状
の変動が抑制される。
When firing the molded product, the superconducting calcined powder 1
It is considered that an atom diffusion phenomenon occurs between the amorphous oxide superconducting fine particles 2. At this time, the bonding layer 3 is
Since the oxide superconducting layer is formed by firing and crystallization of the amorphous oxide superconducting fine particles 2, even if a phenomenon of atom diffusion occurs with the superconducting calcined powder 1 which is an oxide superconducting material, it is a homogeneous material. Under the conditions, it is considered that atomic diffusion does not affect the change of superconducting properties. Further, in the portion of the bonding layer 3, since the amorphous portion is crystallized and grown during sintering to promote integration with the superconducting calcined powder 1, it is necessary to apply a large force to the bonding boundary layer. Therefore, the variation of the shape is suppressed.

【0019】〔他の実施態様〕なお、本発明にあって
は、次の技術を包含する。 a)Y,Cuの硝酸塩とBa金属をエタノール中で反応
させ合成したものの粉末を使用すること。 b)Bi,Ca,Cuの硝酸塩とSr金属をエタノール
中で反応させ合成したものの粉末を使用すること。
[Other Embodiments] The present invention includes the following techniques. a) Use a powder obtained by reacting a nitrate of Y or Cu with a Ba metal in ethanol. b) Use the powder of the one prepared by reacting Bi, Ca, Cu nitrate and Sr metal in ethanol.

【0020】[0020]

【発明の効果】本発明に係る酸化物超電導体の製造方法
によれば、以下のような効果を奏する。 (1) 非晶質酸化物超電導微粒子と酸化物超電導粉体
とを混合し、該混合物を成形して焼結することにより、
酸化物超電導体を製造するものであるから、酸化物の粒
界近傍の超電導性を確保して、超電導特性を向上させる
ことができる。 (2) 非晶質酸化物超電導微粒子と酸化物超電導粉体
とを同質材料とすることにより、焼結による酸化物超電
導体の構成元素の配合比の変動が抑制される。 (3) 焼成時に非晶質酸化物超電導微粒子が結晶化し
て、酸化物超電導材相互の一体化が行なわれるため、仮
焼粉の粒径や空隙による超電導特性の低下を抑制するこ
とができる。 (4) 酸化物超電導粉体に対して非晶質酸化物超電導
微粒子の粒径を著しく小さくして、例えばサブミクロン
以下とすることにより、空隙率を低下させて超電導材の
成形性を向上させ、かつ、超電導特性を向上させること
ができる。 (5) 非晶質酸化物超電導微粒子に対して酸化物超電
導粉体との混合前に低温予備加熱を行なうことにより、
硝酸塩、炭酸塩及び水分等の不要成分を気化して除去
し、純度を高めて酸化物超電導体の性能向上を図ること
ができる。
According to the method for producing an oxide superconductor according to the present invention, the following effects are exhibited. (1) By mixing amorphous oxide superconducting fine particles and oxide superconducting powder, and molding and sintering the mixture,
Since the oxide superconductor is manufactured, the superconductivity near the grain boundaries of the oxide can be secured and the superconducting characteristics can be improved. (2) By using the amorphous oxide superconducting fine particles and the oxide superconducting powder as the same material, variation in the compounding ratio of the constituent elements of the oxide superconductor due to sintering is suppressed. (3) Since the amorphous oxide superconducting fine particles are crystallized at the time of firing and the oxide superconducting materials are integrated with each other, it is possible to suppress the deterioration of the superconducting properties due to the particle size and the voids of the calcined powder. (4) By making the particle size of the amorphous oxide superconducting fine particles extremely smaller than that of the oxide superconducting powder, for example, submicron or less, the porosity is lowered and the formability of the superconducting material is improved. And, the superconducting property can be improved. (5) By performing low-temperature preheating on the amorphous oxide superconducting fine particles before mixing with the oxide superconducting powder,
Unnecessary components such as nitrates, carbonates and water can be vaporized and removed to improve the purity and improve the performance of the oxide superconductor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る酸化物超電導体の製造工程を示す
フローチャートである。
FIG. 1 is a flowchart showing manufacturing steps of an oxide superconductor according to the present invention.

【図2】本発明に係る酸化物超電導材の接合状況を示す
モデル図である。
FIG. 2 is a model diagram showing a bonding state of an oxide superconducting material according to the present invention.

【符号の説明】[Explanation of symbols]

A 酸化物超電導体 1 酸化物超電導粉体(超電導仮焼粉) 2 非晶質酸化物超電導微粒子(非晶質微粒子) 3 接合層 A Oxide superconductor 1 Oxide superconducting powder (superconducting calcined powder) 2 Amorphous oxide superconducting fine particles (amorphous fine particles) 3 Bonding layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/24 ZAA B // H01B 12/00 ZAA ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01L 39/24 ZAA B // H01B 12/00 ZAA

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 化学液相法で生成した非晶質酸化物超電
導微粒子と結晶化した酸化物超電導粉体とを混合し、該
混合物を成形して焼結することを特徴とする酸化物超電
導体の製造方法。
1. An oxide superconductor characterized by mixing amorphous oxide superconducting fine particles produced by a chemical liquid phase method and crystallized oxide superconducting powder, and molding and sintering the mixture. Body manufacturing method.
【請求項2】 酸化物超電導粉体の粒径よりも、非晶質
酸化物超電導微粒子の粒径が相対的に著しく小さく、か
つ、非晶質酸化物超電導微粒子の粒径が0.1μm単位
以下であることを特徴とする請求項1記載の酸化物超電
導体の製造方法。
2. The particle size of the amorphous oxide superconducting fine particles is significantly smaller than that of the oxide superconducting powder, and the particle size of the amorphous oxide superconducting fine particles is 0.1 μm unit. It is the following, The manufacturing method of the oxide superconductor of Claim 1 characterized by the following.
JP6028544A 1994-02-25 1994-02-25 Production of oxide superconductor Withdrawn JPH07237906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6028544A JPH07237906A (en) 1994-02-25 1994-02-25 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6028544A JPH07237906A (en) 1994-02-25 1994-02-25 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH07237906A true JPH07237906A (en) 1995-09-12

Family

ID=12251611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6028544A Withdrawn JPH07237906A (en) 1994-02-25 1994-02-25 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH07237906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982153A (en) * 1995-09-14 1997-03-28 Sumitomo Electric Ind Ltd Manufacture of oxide superconducting wire
WO2012067067A1 (en) * 2010-11-15 2012-05-24 日本電気硝子株式会社 Method for manufacturing superconducting material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982153A (en) * 1995-09-14 1997-03-28 Sumitomo Electric Ind Ltd Manufacture of oxide superconducting wire
WO2012067067A1 (en) * 2010-11-15 2012-05-24 日本電気硝子株式会社 Method for manufacturing superconducting material

Similar Documents

Publication Publication Date Title
JP3089294B2 (en) Manufacturing method of superconducting tape material
US5284822A (en) Oxide superconductor and process for producing the same
JPH07237906A (en) Production of oxide superconductor
JPH0328122A (en) Manufacture of object containing super conducting oxide material
JP2978538B2 (en) Superconducting material with high density crystal structure
JP3195041B2 (en) Oxide superconductor and manufacturing method thereof
JPH0745357B2 (en) Superconducting fibrous single crystal and method for producing the same
JP2600100B2 (en) Manufacturing method of oxide fine particle laminated film
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
JPH0238359A (en) Production of superconductor
JPH0421521A (en) Production of bi-based superconductor having ni base material
JPH01203258A (en) Production of oxide superconducting sintered body
JP2821568B2 (en) Method for producing superconducting whisker composite
JPS5827604B2 (en) Chiyodendo Tainoseiho
JPH02229722A (en) Method for synthesizing oxide fine particle by spray drying
JPH02120234A (en) Production of oxide superconductor
JP2765138B2 (en) Preparation method of high quality oxide superconducting thin film
JPH02302324A (en) Method for formation of conductive film and product produced by it
JP3314102B2 (en) Manufacturing method of oxide superconductor
JPH07172945A (en) Joining method of oxide superconductor and oxide superconductor composite body
JPH04132616A (en) Production of bismuth-based oxide superconductor
Sun et al. Synthesis of high purity 110 K phase in the Bi (Pb)-Sr-Ca-Cu-O superconductor by the sol-gel method
JPH03290307A (en) Production of thick superconductive oxide film
JPH0393664A (en) Production of oxide superconductor
JPH03252348A (en) Production of superconductive oxide paste and oxide superconductor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508