JPH03140472A - Production of built-up film of oxide fine particle - Google Patents

Production of built-up film of oxide fine particle

Info

Publication number
JPH03140472A
JPH03140472A JP28109089A JP28109089A JPH03140472A JP H03140472 A JPH03140472 A JP H03140472A JP 28109089 A JP28109089 A JP 28109089A JP 28109089 A JP28109089 A JP 28109089A JP H03140472 A JPH03140472 A JP H03140472A
Authority
JP
Japan
Prior art keywords
film
superconductor
fine particles
built
base plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28109089A
Other languages
Japanese (ja)
Other versions
JPH0774454B2 (en
Inventor
Masanobu Tanno
正信 淡野
Hiroyoshi Takagi
弘義 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1281090A priority Critical patent/JPH0774454B2/en
Publication of JPH03140472A publication Critical patent/JPH03140472A/en
Publication of JPH0774454B2 publication Critical patent/JPH0774454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form a dense thick film or a linear built-up film of a superconductor by spraying and pyrolyzing a soln. contg. necessary constitutional elements to synthesize fine particles for crystallizing the superconductor and spraying the fine particles on a base plate at high velocity and forming the dense built-up film on the base plate. CONSTITUTION:A metallic salt soln. or an organic acid soln. which contains the respective constitutional elements of Ba, Y and Cu for a Y-based superconductor or of Bi, Pb, Sr, Ca and Cu for a Bi-based superconductor is sprayed with a soln. atomizer 1 and spray pyrolyzed. The fine particles crystallized as the superconductor are directly synthesized. These fine particles being an aerosol state are sprayed on a base plate 7 from a nozzle 6 at high velocity by utilizing the pressure difference due to decompression or pressurization. A dense built-up film is formed on the room-temp. or heated base plate 7 by utilizing the inertia force of the fine particles. Thereby practical utilization of the superconductive material as the thick film or a wire rod is promoted.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は酸化物高温超電導体の厚膜、線状堆積膜または
圧粉体の製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a method for producing a thick film, a linear deposited film, or a green compact of an oxide high temperature superconductor.

「従来技術及びその間厘点」 従来、酸化物高温超電導体の成膜方法としては、(1)
スパッタリング法、(2)蒸発法、(3)イオンビーム
法、(4)CV D法、(5)スプレーパイロリシス法
、(6)塗布膜熱分解法、(7)スクリーン印刷法等が
知られている。
"Prior art and its disadvantages" Conventionally, methods for forming oxide high-temperature superconductors include (1)
Sputtering method, (2) evaporation method, (3) ion beam method, (4) CVD method, (5) spray pyrolysis method, (6) coated film pyrolysis method, (7) screen printing method, etc. are known. ing.

これらのうち、(1)〜(4)は薄膜作製法として研究
が進められており、副脚された高特性の薄膜(ミクロン
オーダー以下)が比較的低温(最低で500°C程度)
の基板上に作製ずろことが可能となってきている。しか
し、これらは電子デバイスを実用化の念頭に置いたもの
であり、許容電流量は小さい。Mi電W体を線材やテー
プ材等の形で比較的多伍の電流を流す分野に応用したり
、磁気シールドなどの形状を付与するためには、バルク
体とするか、または厚膜や線状堆積膜を作製する必要が
ある。(4)〜(7)は厚膜作製法として現在研究が進
んでいるものである。(4)のCVD法は、原料として
金属塩化物、有機金属ガスを用い、気相反応により、加
熱した基板上超電導体を析出させるものである。有機金
属ガスを用いたMOCVD法では、薄膜のみならず高速
堆積技術の進展による厚膜化への期待が大きいが、原料
ガスの制御技術やコストの問題がある。(5)のスプレ
ーパイロリシス法は、金属塩溶液を400〜500℃程
度に加熱した基板上に吹き付け、これを数回繰り返して
前駆体を堆積させ、これをさらに高温で熱分解〜結晶化
して厚膜とするものであり、比較的簡便に成膜が可能で
あるが、膜の均質性や組成の制御に問題がある。(6)
の塗布膜熱分解法は、スプレーパイロリシス法に類似し
ているが、ナフテン酸や金属アルコキシド等の溶液をデ
ィッピング等により基板表面に塗布し、焼成するもので
ある。
Among these, (1) to (4) are being researched as thin film production methods, and the secondary high-performance thin films (micron order or less) are produced at relatively low temperatures (minimum of about 500°C).
It has become possible to fabricate them on different substrates. However, these are designed with practical use in electronic devices in mind, and the allowable current amount is small. In order to apply Mi electric W bodies to fields where relatively large amounts of current flow in the form of wires or tape materials, or to provide shapes such as magnetic shields, it is necessary to make them into bulk bodies, or to use thick films or wires. It is necessary to produce a deposited film with a similar shape. Methods (4) to (7) are currently being researched as methods for producing thick films. The CVD method (4) uses a metal chloride and an organometallic gas as raw materials, and deposits a superconductor on a heated substrate by a gas phase reaction. The MOCVD method using organometallic gas has high expectations for not only thin films but also thick films due to advances in high-speed deposition technology, but there are problems with raw material gas control technology and cost. In the spray pyrolysis method (5), a metal salt solution is sprayed onto a substrate heated to about 400 to 500°C, this is repeated several times to deposit a precursor, which is then thermally decomposed and crystallized at a higher temperature. Although it is a thick film and can be formed relatively easily, there are problems in controlling the homogeneity and composition of the film. (6)
The coated film pyrolysis method is similar to the spray pyrolysis method, but a solution of naphthenic acid, metal alkoxide, etc. is applied to the substrate surface by dipping or the like, and then baked.

(5)と同様に組成均質性の問題や、膜にクラックが入
りやすいことや残留炭素の影響等、問題点が多く、臨界
電流密度も低いものしか得られていない。また、これら
の方法では、いずれも基板温度を800℃〜900℃と
いった高温に保つ過程を製膜時に、またはボストアニー
ルとして必要としており、その際の基板との反応や高温
による基板の品質低下が問題となっている。
Similar to (5), there are many problems such as the problem of compositional homogeneity, the tendency for cracks to occur in the film, and the influence of residual carbon, and only a low critical current density has been obtained. In addition, all of these methods require a process to maintain the substrate temperature at a high temperature of 800°C to 900°C during film formation or as a boss annealing, which may cause reactions with the substrate or deterioration of substrate quality due to high temperatures. This has become a problem.

「発明の概要」 本発明はこれらの欠点を解消し、Mi電導体の緻密な厚
膜を作製し、基板加熱を行わないかまたは低温加熱条件
における膜質の向上を可能とする成膜法として、酸化物
高温超電導体の厚膜としての実用化を目的とする。
"Summary of the Invention" The present invention solves these drawbacks and provides a film forming method that can produce a dense thick film of Mi conductor and improve the film quality without heating the substrate or under low-temperature heating conditions. The aim is to commercialize oxide high-temperature superconductors as thick films.

本発明者は、酸化物高温超伝導体の超微粒子合成法の研
究を進める過程において、噴霧熱分解法により、熱分解
後のエアロゾル状態ですでに超電導特性を示す超微粒子
を直接合成することに成功し、この特徴が室温や低温加
熱条件での成膜に有効ではないかと考え検討を重ねた結
果、本発明に到達した。
In the process of researching methods for synthesizing ultrafine particles of oxide high-temperature superconductors, the present inventors decided to use spray pyrolysis to directly synthesize ultrafine particles that already exhibit superconducting properties in the aerosol state after thermal decomposition. This was a success, and we thought that this feature might be effective for film formation at room temperature or low-temperature heating conditions, and as a result of repeated studies, we arrived at the present invention.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、(a)噴霧熱分解法による超電導体超微粒子
の合成(b)エアロゾル衝突堆積法による(a)で合成
した超微粒子のin 5itu (その場)堆積による
膜形成の・2つの構成要素よりなる。
The present invention has two configurations: (a) synthesis of superconductor ultrafine particles by spray pyrolysis; (b) film formation by in-situ deposition of the ultrafine particles synthesized in (a) by aerosol impact deposition. Consists of elements.

(第1図)。まず(a)について説明する。噴霧熱分解
法による超電導体の超微粒子合成を行う。これは文献1
に詳しく述べられているが、超電導体の組成となるよう
に調製した硝酸塩等の’a 渣を霧化装置により微小な
液滴とし、これを所定の温度、雰囲気、流量条件により
反応ゾーン内で極めて短時間(イツトリウム系では数秒
程度)の内に乾燥−熱分解−結晶化を起こさせ、超電導
体超微粒子を得るものである。
(Figure 1). First, (a) will be explained. We synthesize ultrafine particles of superconductors using spray pyrolysis. This is document 1
As described in detail in 2007, a residue of nitrate, etc., prepared to have the composition of a superconductor is made into minute droplets using an atomizer, and these are placed in a reaction zone under predetermined temperature, atmosphere, and flow conditions. Drying, thermal decomposition, and crystallization occur within an extremely short period of time (about a few seconds in the case of yttrium) to obtain ultrafine superconductor particles.

生成した超電導体の超電導特性は生成条件に大きく影響
される。例えばイツトリウム系超電導体の場合、980
〜1000℃程度の温度条件でキャリアガスに酸素を用
いて0.7〜0.8リットル毎分の流量で反応を行った
場合、得られた微粒子はX線回折により結晶性が良好で
あることが確認され、また温度〜磁化特性により超電導
特性が、エアロゾルとして得られた状態のままで(後の
高温での熱処理がない状態で)確認される(第2図)。
The superconducting properties of the produced superconductor are greatly influenced by the production conditions. For example, in the case of yttrium-based superconductors, 980
When the reaction is carried out at a temperature of ~1000°C using oxygen as a carrier gas at a flow rate of 0.7 to 0.8 liters per minute, the resulting fine particles have good crystallinity as determined by X-ray diffraction. is confirmed, and superconducting properties are confirmed by the temperature-magnetization characteristics in the state obtained as an aerosol (without subsequent heat treatment at high temperature) (Figure 2).

次に(b)のエアロゾル衝突堆積法による微粒子堆積膜
の形成であるが、この概念は、賀集ら(文献2)により
提案されているもので、蒸発法による金属超微粒子の生
成と基板上への吹き付けによる緻密膜の形成法として、
ガスデポジション法と呼ばれている。一般に、高純度の
金属超微粒子の場合、生成から次のプロセスへ移行する
際に酸化や凝集を起こしやすい点が問題となっていたが
、高真空の超微粒子生成室から差動排気により膜生成室
へ超微粒子を浮遊状態で送り、音速程度の高速でノズル
から噴出させ、粒子の慣性力を利用して強い力で基板上
に密着堆積させる。このため、金属超微粒子の場合は表
面を清浄に保ったままハンドリングが可能で、緻密膜作
製に効果を発揮している。賀集らはイツトリウム系超電
導体に対しても、Y、Ba、Cuの金属超微粒子を生成
して上記の方法で緻密膜を作り、さらに基板を酸素中で
850°Cに加熱することにより超電導体膜作製を行っ
ているが、微粒子堆積膜の段階では超電導体にはなって
おらず、高温での加熱による結晶化及び酸化過程を必要
としている。
Next, (b) is the formation of a fine particle deposited film by the aerosol collision deposition method. This concept was proposed by Kashu et al. As a method of forming a dense film by spraying,
It is called the gas deposition method. In general, high-purity ultrafine metal particles have been problematic in that they are prone to oxidation and agglomeration during transition from generation to the next process, but film formation is now possible using differential pumping from a high-vacuum ultrafine particle generation chamber. Ultrafine particles are sent into a chamber in a suspended state, ejected from a nozzle at high speeds similar to the speed of sound, and are tightly deposited on a substrate using a strong force using the inertia of the particles. Therefore, in the case of ultrafine metal particles, it is possible to handle them while keeping the surface clean, which is effective in producing dense films. Kashu et al. also developed superconductors for yttrium-based superconductors by producing ultrafine metal particles of Y, Ba, and Cu to form a dense film using the method described above, and then heating the substrate to 850°C in oxygen. Although the film is being fabricated, it is not a superconductor at the stage of fine particle deposition, and requires crystallization and oxidation processes by heating at high temperatures.

そこで、本発明者は、既に目的の結晶相にに結晶化した
微粒子を同様の方法で成膜させることを考えて検討を重
ねた結果、(a)で生成した既に超電導体としての結晶
1ヒが完了した超微粒子を用いることにより、基板上に
堆積した状態で既に緻密な超電導体膜となったものが得
られるようになった(第3図及び第4図)。粒子の堆積
方法としては、(a)のシステム最終過程の生成微粒子
捕集部分から、差動排気により圧力をコントロールしな
がら減圧室(数〜500Torr以下)に微粒子をエア
ロゾル状態で搬送し・、ノズル(先端口径0.2〜3m
m程度)から差圧により噴出させ、ノズル先端から0.
5〜5mm程度の距離に設置した基板上に堆積させる方
法を採った。
Therefore, as a result of repeated studies considering the possibility of forming a film using a similar method using microparticles that have already been crystallized into the desired crystalline phase, the inventors of the present invention found that the crystals already formed in (a) can be used as a superconductor. By using ultrafine particles that have been completely processed, it has become possible to obtain a dense superconductor film that is already deposited on a substrate (FIGS. 3 and 4). The method for depositing particles is to transport the particles in an aerosol state from the particulate collection section in the final process of the system in (a) to a decompression chamber (several to 500 Torr or less) while controlling the pressure by differential pumping, and then to the nozzle. (Tip diameter 0.2~3m
0.0 m) from the nozzle tip using a differential pressure.
A method was adopted in which the material was deposited on a substrate placed at a distance of about 5 to 5 mm.

注意すべき点としては、微粒子搬送過程において、熱沈
着により微粒子が壁面に1寸着する場合があるので、そ
の場合は搬送管を100〜200℃程度に加熱する必要
がある。また、(a)のプロセスと(b)のプロセスに
おける圧力差は、(a)でのキャリアガス流量や(IJ
)での成膜状態により最適条件に制御する必要がある。
It should be noted that during the fine particle transport process, fine particles may adhere to the wall surface by one inch due to thermal deposition, and in that case, it is necessary to heat the transport pipe to about 100 to 200°C. In addition, the pressure difference between the process (a) and the process (b) is determined by the carrier gas flow rate in (a) and (IJ
) It is necessary to control the conditions to the optimum depending on the film formation state.

また、基板を低速モーターにより1方向または平面方向
に駆動または回転させることにより、線状ないしは膜状
堆積物として超電導体を得ることができる。膜厚は微粒
子の1殻送量と基板の駆動速度により容易に制御可能で
ある。
Further, by driving or rotating the substrate in one direction or in a plane direction using a low-speed motor, a superconductor can be obtained as a linear or film-like deposit. The film thickness can be easily controlled by the amount of particles fed per shell and the driving speed of the substrate.

この方法によると〈 基板の後処理加熱が不必要となる
が、堆積膜の超電導特性を向上させるためには、基板を
400〜500 ’C程度に加熱し、結晶粒相互の結合
性を高める必要がある。
This method eliminates the need for post-treatment heating of the substrate, but in order to improve the superconducting properties of the deposited film, it is necessary to heat the substrate to about 400-500'C to increase the bonding properties between crystal grains. There is.

(文献1 ) M、Awano et、aM  Che
+n1stryLetters、43(1989) (文献2)賀集誠一部:金属、1989年1月号P、5
7 「実施例」 次に実施例を挙げて本発明を説明する。
(Reference 1) M, Awano et, aM Che
+n1stry Letters, 43 (1989) (Reference 2) Seibu Kashu: Metal, January 1989 issue P, 5
7 "Example" Next, the present invention will be described with reference to Examples.

(実施例1) イツトリウム系超電導体について次の方法で超電導体微
粒子膜の成膜を行った。
(Example 1) A superconductor fine particle film was formed on an yttrium-based superconductor by the following method.

まず、イツトリウム、バリウム、銅が原子比でI:  
2:  3となるように調製した硝酸塩溶液を作製した
。溶液濃度は0.05mol/Iとした。
First, yttrium, barium, and copper have an atomic ratio of I:
A nitrate solution with a ratio of 2:3 was prepared. The solution concentration was 0.05 mol/I.

反応ゾーン温度990°C、キャリアガス流量は酸素0
.71毎分とし、噴霧熱分解を1テった。得られた超電
導体微粒子は減圧チャンバーに搬送され、口径0.5m
mのノズルでMgO単結晶基板上に成膜した。基板は2
0mm毎時の速度で直線駆動させた。得られた膜は断面
観察より密度90%以上の緻密な厚膜で、平均膜厚は0
.6mmであった。500°C48時間の酸素中アニー
ルによりTc=80r(の超電導特性を示した。
Reaction zone temperature 990°C, carrier gas flow rate 0 oxygen
.. 71 per minute and 1 spray pyrolysis. The obtained superconductor fine particles were transported to a vacuum chamber with a diameter of 0.5 m.
A film was formed on an MgO single crystal substrate using a nozzle of m. The board is 2
It was linearly driven at a speed of 0 mm/hour. The obtained film was a dense thick film with a density of 90% or more according to cross-sectional observation, and the average film thickness was 0.
.. It was 6 mm. By annealing in oxygen at 500° C. for 48 hours, superconducting properties of Tc=80r were exhibited.

(実施例2) ビスマス系超電導体について、次の方法で超電導体微粒
子膜の成膜を行った。
(Example 2) A superconductor fine particle film was formed using the following method for a bismuth-based superconductor.

まず、ビスマス、鉛、ストロンチウム、カルシウム、銅
を2: 0.1: 2:  1.2: 2.3となるよ
うに調製した硝酸塩溶)αを作製した。溶?α;農度は
0.03mol/Iとした。反応ゾーン温度750℃、
キャリアガス流量はアルゴン0.51毎分とし、噴霧熱
分解を行った。得られた超電導体(低Tc相)微粒子は
減圧チャンバーに1般送され、口径1mmのノズルでジ
ルコニア多結晶体基板上に成膜した。基板は2On+m
@時の速度でX方向に、100mm毎分でX方向に、そ
れぞれ直線駆動させた。得られた膜は断面観察より密度
90%以上の緻密な厚膜で、平均膜厚は0.2+nmで
あった。Tc=65I(の超電導特性を示した。
First, a nitrate solution α in which bismuth, lead, strontium, calcium, and copper were prepared in a ratio of 2:0.1:2:1.2:2.3 was prepared. Melt? α; Agricultural degree was 0.03 mol/I. Reaction zone temperature 750℃,
The carrier gas flow rate was 0.51 argon per minute, and spray pyrolysis was performed. The obtained superconductor (low Tc phase) fine particles were generally transported to a reduced pressure chamber and formed into a film on a zirconia polycrystalline substrate using a nozzle with a diameter of 1 mm. The board is 2On+m
It was linearly driven in the X direction at a speed of @ hours and in the X direction at a speed of 100 mm per minute. The obtained film was a dense thick film with a density of 90% or more as determined by cross-sectional observation, and the average film thickness was 0.2+nm. It showed superconducting properties of Tc=65I.

「発明の効果」 本発明は以上説明したようここ、曲の成膜法に比べてよ
り低温の条件下において、基板」−に超電導体の緻密な
厚膜または線状堆積膜を成膜可能とするものであり、ざ
らに膜質の向上による臨界電流密度の増大により、厚膜
または線材(配線)としての超電導材料の実用化を促進
するものとして期待される。
``Effects of the Invention'' As explained above, the present invention makes it possible to form a dense thick film or linear deposited film of a superconductor on a substrate under lower temperature conditions than in the conventional film formation method. This is expected to promote the practical application of superconducting materials as thick films or wires (wiring) by increasing the critical current density due to rough improvements in film quality.

第1図Figure 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本方法の装置構成図を示す。第2図は噴霧熱分
解法により合成されたイツトリウム系超電導体超微粒子
の透過電子顕微鏡像による粒子構造写真を示す。第3図
は本発明により作成された超電導体の、線状堆積膜断面
の走差電子顕微鏡像による膜構造写真を示す。第4図は
イツトリウム系超電導膜のX線回折図形を示す。図中の
(000)は超電導相の各回折ピークに相当する面指数
及びYSZは基板に由来するピークを表す。 2: キャリヤガス導入口 3:反応ゾーン 4:圧力rA!!弁 6: 真空チャンバ 6: ノズル 7二基板 8:  X−Y及び回転駆動部 75ト翁真空ポンプ 第3図 第2VA 0・  1jt、 sn 1 、メ・3゜ 手続補正書彷幻 第4図 1、事件の表示 平成1年特許願第281090号 2、発明の名称 酸化物微粒子堆積膜の製法 3、補正をする者 事件との関係 特許出願人 住 所  東京都千代田区霞が関1丁目3番1号(11
4)名 称  工業技術院長   杉 浦  賢4、指
定代理人 0 θ 0 (0) 0 0 平成2年2月13日(発送日二平成2年2月27日)6
、補正により増加する請求項の数  07、補正の対象 別 ■ ■ ■ 紙 明細書第3ページ第3行の「基板上」の次に「に」を挿
入します。 明細書第7ページ第10行の「に」を削除します。 明細書第11ページ第12行の「走差電子顕微鏡像によ
る膜構造写真を示す。」を「粒子構造を示すat鏡写真
である。」に訂正します。
FIG. 1 shows a diagram of the apparatus configuration of this method. FIG. 2 shows a transmission electron microscope image of the particle structure of ultrafine yttrium-based superconductor particles synthesized by the spray pyrolysis method. FIG. 3 shows a photograph of the film structure of the superconductor produced according to the present invention, taken as a scanning electron microscope image of a cross section of a linear deposited film. FIG. 4 shows the X-ray diffraction pattern of the yttrium-based superconducting film. In the figure, (000) represents a plane index corresponding to each diffraction peak of the superconducting phase, and YSZ represents a peak originating from the substrate. 2: Carrier gas inlet 3: Reaction zone 4: Pressure rA! ! Valve 6: Vacuum chamber 6: Nozzle 7 2 Substrates 8: X-Y and rotary drive unit 75 Vacuum pump Fig. 3 Fig. 2 VA 0.1jt, sn 1, Me. , Indication of the case 1999 Patent Application No. 281090 2 Title of the invention Method for manufacturing oxide fine particle deposited film 3 Person making the amendment Relationship to the case Patent applicant address 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo (11
4) Name Director of the Agency of Industrial Science and Technology Ken Sugiura 4, Designated Agent 0 θ 0 (0) 0 0 February 13, 1990 (shipment date 2 February 27, 1990) 6
, Number of claims increased due to amendment 07, By subject of amendment ■ ■ ■ Insert "ni" next to "on the board" in the third line of the third page of the paper specification. Delete "ni" from line 10 on page 7 of the statement. On page 11, line 12 of the specification, "This is a photograph of the membrane structure obtained by scanning electron microscopy." is corrected to "This is an AT mirror photograph showing the particle structure."

Claims (1)

【特許請求の範囲】[Claims]  イットリウム系超電導体に対しては、バリウム・イッ
トリウム・銅、ビスマス系超電導体に対してはビスマス
・鉛・ストロンチウム、カルシウム・銅の各構成元素を
含む金属塩溶液または有機酸溶液を噴霧熱分解して、超
電導体として結晶化した微粒子を直接合成し、このエア
ロゾル状態の微粒子を減圧または加圧による圧力差を利
用して基板上に高速で吹き付け、微粒子の慣性力を利用
して、緻密な堆積膜を室温または加熱した基板上に作製
する方法。
For yttrium-based superconductors, a metal salt solution or organic acid solution containing constituent elements of barium, yttrium, and copper, and for bismuth-based superconductors, bismuth, lead, strontium, calcium, and copper, is spray pyrolyzed. By directly synthesizing crystallized fine particles as a superconductor, the fine particles in an aerosol state are sprayed onto a substrate at high speed using the pressure difference caused by reduced or increased pressure, and the inertial force of the fine particles is used to create a dense deposit. A method in which films are prepared at room temperature or on heated substrates.
JP1281090A 1989-10-27 1989-10-27 Manufacturing method of oxide fine particle deposition film Expired - Lifetime JPH0774454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1281090A JPH0774454B2 (en) 1989-10-27 1989-10-27 Manufacturing method of oxide fine particle deposition film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1281090A JPH0774454B2 (en) 1989-10-27 1989-10-27 Manufacturing method of oxide fine particle deposition film

Publications (2)

Publication Number Publication Date
JPH03140472A true JPH03140472A (en) 1991-06-14
JPH0774454B2 JPH0774454B2 (en) 1995-08-09

Family

ID=17634198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1281090A Expired - Lifetime JPH0774454B2 (en) 1989-10-27 1989-10-27 Manufacturing method of oxide fine particle deposition film

Country Status (1)

Country Link
JP (1) JPH0774454B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574634U (en) * 1992-03-10 1993-10-12 大川原化工機株式会社 Spray pyrolysis device with pressure vent
JP2013513723A (en) * 2009-12-11 2013-04-22 エヌジマット・カンパニー Manufacturing process for high surface area embedded coatings with high wear resistance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452072A (en) * 1987-08-24 1989-02-28 Nippon Telegraph & Telephone Production of oxide superconductive sintered body
JPH01126226A (en) * 1987-11-11 1989-05-18 Agency Of Ind Science & Technol Method for synthesizing oxide particulate raw material
JPH01127629A (en) * 1987-11-10 1989-05-19 Sumitomo Electric Ind Ltd Production of hard alloy
JPH01172221A (en) * 1987-12-25 1989-07-07 Agency Of Ind Science & Technol Synthesis of starting material comprising fine oxide particle
JPH01226723A (en) * 1988-03-08 1989-09-11 Agency Of Ind Science & Technol Method for synthesizing particulate oxide raw material
JPH01226724A (en) * 1988-03-08 1989-09-11 Agency Of Ind Science & Technol Method for synthesizing fine oxide particles as starting material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452072A (en) * 1987-08-24 1989-02-28 Nippon Telegraph & Telephone Production of oxide superconductive sintered body
JPH01127629A (en) * 1987-11-10 1989-05-19 Sumitomo Electric Ind Ltd Production of hard alloy
JPH01126226A (en) * 1987-11-11 1989-05-18 Agency Of Ind Science & Technol Method for synthesizing oxide particulate raw material
JPH01172221A (en) * 1987-12-25 1989-07-07 Agency Of Ind Science & Technol Synthesis of starting material comprising fine oxide particle
JPH01226723A (en) * 1988-03-08 1989-09-11 Agency Of Ind Science & Technol Method for synthesizing particulate oxide raw material
JPH01226724A (en) * 1988-03-08 1989-09-11 Agency Of Ind Science & Technol Method for synthesizing fine oxide particles as starting material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574634U (en) * 1992-03-10 1993-10-12 大川原化工機株式会社 Spray pyrolysis device with pressure vent
JP2013513723A (en) * 2009-12-11 2013-04-22 エヌジマット・カンパニー Manufacturing process for high surface area embedded coatings with high wear resistance

Also Published As

Publication number Publication date
JPH0774454B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
US6440211B1 (en) Method of depositing buffer layers on biaxially textured metal substrates
Norton Synthesis and properties of epitaxial electronic oxide thin-film materials
US6399154B1 (en) Laminate article
US5032568A (en) Deposition of superconducting thick films by spray inductively coupled plasma method
JP2007019015A (en) Controlled conversion of metal oxyfluoride to superconductive oxide
KR20020035837A (en) Coated Conductor Thick Film Precursor
US5330966A (en) Method of preparing 2223 phase (Bi,Pb)-Sr-Ca-Cu-O superconducting films
JP2818751B2 (en) Method of forming oxide superconductor thin film
JP5535453B2 (en) Coated conductor with simplified layer structure
JPH03140472A (en) Production of built-up film of oxide fine particle
US8030247B2 (en) Synthesizing precursor solution enabling fabricating biaxially textured buffer layers by low temperature annealing
US5182255A (en) Shaped and fired articles of YBa2 Cu3 O7
JPH07118012A (en) Oxide superconductor and its production
EP0351139B1 (en) Method of making composite ceramic and copper superconducting elements
US4981839A (en) Method of forming superconducting oxide films using zone annealing
JP2539458B2 (en) Method and device for manufacturing superconducting thin film
JP3135755B2 (en) Rare earth oxide superconductor single crystal film and method for producing the same
JP2600100B2 (en) Manufacturing method of oxide fine particle laminated film
JPH0489378A (en) Production of oxide superconductor by chemical vapor deposition method of organic metal
Beauquis et al. Scaling-up of High-T C tapes by MOCVD, spray pyrolysis and MOD processes
Paranthaman Non-Fluorine Based Bulk Solution Techniques to Grow Superconducting YBa2Cu3O7− δ Films
Hur et al. Growth of superconducting Bi-Pb-Sr-Ca-Cu-O films by an ultrasonic spray pyrolysis method
JPH01224208A (en) Method for synthesizing oxide superconductor precursor
Wang et al. HIGH TC SUPERCONDUCTORS FABRICATED BY PLASMA AEROSOL MIST DEPOSITION TECHNIQUE
JPH07226115A (en) Ittrium oxide superconductive member and its manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term