JPH01226723A - Method for synthesizing particulate oxide raw material - Google Patents

Method for synthesizing particulate oxide raw material

Info

Publication number
JPH01226723A
JPH01226723A JP5458888A JP5458888A JPH01226723A JP H01226723 A JPH01226723 A JP H01226723A JP 5458888 A JP5458888 A JP 5458888A JP 5458888 A JP5458888 A JP 5458888A JP H01226723 A JPH01226723 A JP H01226723A
Authority
JP
Japan
Prior art keywords
soln
water
spray
dielectric constant
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5458888A
Other languages
Japanese (ja)
Other versions
JPH0572331B2 (en
Inventor
Masanobu Tanno
正信 淡野
Hiroyoshi Takagi
弘義 高木
Yasuyoshi Torii
鳥居 保良
Akihiro Tsuzuki
都築 明博
Norimitsu Murayama
宣光 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5458888A priority Critical patent/JPH01226723A/en
Publication of JPH01226723A publication Critical patent/JPH01226723A/en
Publication of JPH0572331B2 publication Critical patent/JPH0572331B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide oxide raw material for synthesizing oxide high temp. superconductor, capable of being synthesized at a low temp. and sintered, by mixing metal salt soln. and oxalic acid, etc., in the presence of a water-soluble org. solvent having smaller dielectric constant than water, when the precipitate of metal oxalate is produced. CONSTITUTION:The mixed soln. (S1) of acetate, nitrate, etc. of Bi, Sr, Ca, copper, etc., is prepd. so as to make the compsn. of the targeted oxide high temp. superconductor. When the mixed soln. (S1) is added with ammonium oxalate or ammonium carbonate soln. (S2), the aq. soln. contg. one or more kinds of water-soluble org. solvents having <=50 dielectric constant is added to both S1 and S2, or one side S1 or S2 to synthesize a soln. contg. particulate metal oxalate precipitate. The title material is obtd. by spray-drying and heat decomposing, or spray-heat decomposing. The water-soluble org. solvent above- mentioned decreases the solubility of metal oxalate and the dielectric constant of the soln., and thereby, contributes to increasing the number of generating crystal nuclei and making precipitated particles corpuscular.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は酸化物高温超伝導体の原料合成法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for synthesizing raw materials for oxide high temperature superconductors.

1°「i技術及びその問題点」 従来、酸化物高温超伝導材料の化学的手法による合成法
としては、(1)固相°反応法、(2)蒸発法、(3)
共沈法、(4)金属アルコキシド法等が知られている。
1° "i-Technology and its Problems" Conventionally, chemical methods for synthesizing oxide high-temperature superconducting materials include (1) solid phase reaction method, (2) evaporation method, and (3)
Co-precipitation method, (4) metal alkoxide method, etc. are known.

しかして上述(1)の固相反応法は、酸化物、炭酸塩等
の形でビスマス、ストロンチウム、カルシウム、銅等の
試薬を乳鉢、ボールミル等で混合し、仮焼、粉砕の過程
を繰り返すことによって目的とする相の均質な粉体を得
ようとするものであるが、生成粒子径は一般に大きくな
り、粉砕過程において試料汚染の問題が避けられない。
However, the solid phase reaction method described in (1) above involves mixing reagents such as bismuth, strontium, calcium, copper, etc. in the form of oxides, carbonates, etc. in a mortar, ball mill, etc., and repeating the steps of calcining and pulverizing. Although this method attempts to obtain a powder with the desired phase homogeneity, the resulting particle size generally increases, and the problem of sample contamination during the grinding process is unavoidable.

(2)の蒸発法は、所定の組成比の金属塩の混合溶液を
加熱して、溶媒を除去することにより乾燥試料を得、こ
れを粉砕、焼成することにより原料粉末を得る方法であ
るが、溶媒除去に際して各成分の溶解度差、分解・昇華
等の影響で組成の不均一性や組成全体の変動が生じやす
いことや、粉砕工程が必要かつ試料汚染の問題が起こる
The evaporation method (2) is a method in which a dry sample is obtained by heating a mixed solution of metal salts with a predetermined composition ratio to remove the solvent, and a raw material powder is obtained by pulverizing and calcining this. When removing the solvent, non-uniformity of the composition and fluctuations in the overall composition tend to occur due to differences in solubility of each component, decomposition, sublimation, etc., and a pulverization process is required, resulting in the problem of sample contamination.

(3)の共沈法は、金属酸塩の混合溶液に沈澱剤を加え
て単塩または複塩の沈欄粒子を形成させ、これをろ過、
乾燥、焼成することにより比較的容易に1μm以下〜数
μmの微粒子原料を合成することが可能である。しかし
、多成分系の場合、完全同時沈澱は理論上不可能であり
、希望する組成比の沈澱を得ることは困難である。
In the coprecipitation method (3), a precipitant is added to a mixed solution of metal salts to form precipitated particles of a single or double salt, which are then filtered,
By drying and firing, it is possible to synthesize fine particle raw materials with a size of 1 μm or less to several μm relatively easily. However, in the case of a multi-component system, complete simultaneous precipitation is theoretically impossible, and it is difficult to obtain a precipitate with a desired composition ratio.

(4)の金属アルコキシド法は、金属アルコキシド溶液
の加水分解により数10nm程度の超微粒子を合成する
ことが可能であるが、出発原料の金属アルコキシドが非
常に高価であり、多成分系の場合は、それぞれの金属の
溶解度が実用上問題がない程度に高い有機溶媒が必要と
なり、また複合アルコキシドの合成が困難であるため、
沈澱粒子の組成の不均一性に関して共沈法と同様の欠点
を持つ。
In the metal alkoxide method (4), it is possible to synthesize ultrafine particles of several tens of nanometers by hydrolyzing a metal alkoxide solution, but the metal alkoxide as a starting material is very expensive, and in the case of a multicomponent system, , an organic solvent is required in which the solubility of each metal is high enough to cause no practical problems, and synthesis of composite alkoxides is difficult.
It has the same drawbacks as the coprecipitation method regarding the non-uniformity of the composition of precipitated particles.

「発明の概要」 本発明はこれらの欠点を解消し、微粒で均質な、低温で
の合成が可能で易焼結性を有する、酸化物高温超伝導体
用の合成原料を提供することを目的とする。
"Summary of the Invention" The purpose of the present invention is to eliminate these drawbacks and provide a synthetic raw material for oxide high-temperature superconductors that is fine-grained and homogeneous, can be synthesized at low temperatures, and has easy sinterability. shall be.

本発明者は、酸化物高温超伝導体の原料合成方法の研究
を進める過程で、金属蓚酸塩沈澱生成時に■金属の硝酸
塩等の水溶液■蓚酸または蓚酸アンモニウムまたは炭酸
アンモニウムの両方または一方に、溶媒としてエタノー
ル等の誘電率が水より低い水溶性有機溶媒を添加するこ
とにより、■と■の混合時に生成する沈澱が微細化し、
これを噴霧乾燥することにより、出発溶液のpH1各成
分の仕込量の調節等の操作を必要とせずに容易に熱分解
の可能な微粒子を生じせしめることを見いだし本発明に
到達した。
In the process of researching a raw material synthesis method for oxide high-temperature superconductors, the present inventor discovered that when metal oxalate precipitates are formed, a solvent is added to an aqueous solution of oxalic acid, ammonium oxalate, and/or ammonium carbonate. By adding a water-soluble organic solvent such as ethanol with a dielectric constant lower than that of water, the precipitate formed when mixing ■ and ■ becomes finer.
The inventors have discovered that by spray-drying this, fine particles that can be easily thermally decomposed can be produced without requiring operations such as adjusting the amount of each component at pH 1 of the starting solution, and have thus arrived at the present invention.

すなわち本発明は、■目的の酸化物高温超伝導体組成と
なるように酢酸塩、硝酸塩等の金属塩混合溶液を調製し
■これに蓚酸または蓚酸アンモニウムまたは炭酸アンモ
ニウム溶液を6口えるが、その際に誘電率50以下の水
溶性有機溶媒の少なくとも一種以上を含む水溶液を■、
■の両方または一方(こ加え、微粒の金属蓚酸塩沈澱を
含んだ溶液を合成する。
That is, the present invention involves: (1) preparing a mixed solution of metal salts such as acetate and nitrate so as to have the desired composition of an oxide high-temperature superconductor; In particular, an aqueous solution containing at least one type of water-soluble organic solvent with a dielectric constant of 50 or less,
In addition to both or one of (2), a solution containing fine metal oxalate precipitates is synthesized.

さらに、この溶液を適当な条件下で噴霧乾燥することに
より容易に熱分解の可能な粒子を得、または噴霧熱分解
し、熱分解後の粒子径2〜3μm以下の微粒子原料粉末
を得ることを特徴とする。以下に本発明の詳細な説明す
る。
Furthermore, by spray drying this solution under appropriate conditions, particles that can be easily thermally decomposed can be obtained, or by spray pyrolysis, it is possible to obtain fine particle raw material powder with a particle size of 2 to 3 μm or less after thermal decomposition. Features. The present invention will be explained in detail below.

まず、金属塩混合溶液及び蓚酸または蓚酸アンモニウム
または炭酸アンモニウムに加える水溶性有機溶媒の量は
、飽和溶液に対して全溶液中の水:有機溶媒比が1=5
〜lO:1、また飽和溶液:溶媒比が1:1〜1:10
とする。水溶性有機溶媒を加える理由は、第一に金属蓚
酸塩の溶解度を減少させ結晶核の発生数を増大させるた
め、第二に溶液の誘電率を減少させイオン会合体を形成
しやすくするためであり、いずれも結晶核発生数の増大
と沈澱粒子の微粒化に寄与する。ここで、水の対有機溶
媒比がこれより大きいと、溶解度と誘電率の減少程度が
小さくなり、逆にこれより小さいと処理中の晶析が起こ
りやすくなる。
First, the amount of water-soluble organic solvent added to the metal salt mixed solution and oxalic acid, ammonium oxalate, or ammonium carbonate is such that the water:organic solvent ratio in the total solution is 1 = 5 with respect to the saturated solution.
~lO:1, and the saturated solution:solvent ratio is 1:1 to 1:10
shall be. The reasons for adding a water-soluble organic solvent are, firstly, to reduce the solubility of metal oxalate and increase the number of crystal nuclei, and secondly, to reduce the dielectric constant of the solution and facilitate the formation of ionic aggregates. Both contribute to an increase in the number of crystal nuclei generated and to the atomization of precipitated particles. Here, if the ratio of water to organic solvent is larger than this, the degree of decrease in solubility and dielectric constant will be small, whereas if it is smaller than this, crystallization will easily occur during treatment.

また飽和溶液の対溶媒比がこれより大きいとり過ぎるた
め、噴霧乾燥後のサイクロンによる捕集が困難となり他
の回収方法が必要になると製造能率が低下するためであ
る。使用される水溶性有機溶媒の例と物性を第1表に示
す。
In addition, if the ratio of the saturated solution to the solvent is too high, it becomes difficult to collect using a cyclone after spray drying, and if another collection method is required, the production efficiency will decrease. Table 1 shows examples and physical properties of the water-soluble organic solvents used.

沈澱粒子の微細・均質化のために、■と■の混合は撹拌
機等を用いて激しく撹拌した状趨で速やかに行う必要が
ある。
In order to make the precipitated particles fine and homogeneous, it is necessary to mix (1) and (2) quickly with vigorous stirring using a stirrer or the like.

噴霧乾燥の条件としては、試料の乾燥が速やかに行われ
、造粒粒子が捕集可能な大きさでできるだけ微粒になる
ように乾燥チャンバ内への試料入口・出口温度、噴霧空
気量、試料送液量、さらここは収率よく呻子を捕集でき
るようにサイクロン入口での吸引空気量を調節する必要
がある。これらの条件は試料溶液の濃度、乾燥チャンバ
の容積、サイクロンの形状等により最適条件が異なる。
The conditions for spray drying include sample inlet and outlet temperatures, atomizing air volume, and sample delivery so that the sample dries quickly and the granulated particles are as fine as possible with a collectable size. It is necessary to adjust the amount of liquid and the amount of air sucked at the cyclone inlet so that the larvae can be collected with good yield. The optimum conditions for these conditions differ depending on the concentration of the sample solution, the volume of the drying chamber, the shape of the cyclone, etc.

熱分解温度は試料の組成により異なるが、例えば B14Sr3Ca3Cu40yの場合820℃3時間の
焼成で超伝導相の結晶構造を示すことがX線回折により
確かめられた(第1図)。
Although the thermal decomposition temperature varies depending on the composition of the sample, for example, in the case of B14Sr3Ca3Cu40y, it was confirmed by X-ray diffraction that it exhibited a superconducting phase crystal structure after firing at 820°C for 3 hours (Figure 1).

噴霧熱分解の場合は、600〜1800℃程度の炉中や
プラズマ、化学炎等の高温条件下に導入する。この場合
も温度、噴霧液滴径、滞留時間等の噴霧に関する諸条件
は試料溶液の量、濃度、溶媒の種類、処理容器の形状、
試料の捕集方法等の条件に応じて最適条件を選ぶ必要が
ある。また得られた粒子の熱分解−結晶化が超伝導相合
成に至っていない場合は適当な加熱処理を行う。
In the case of spray pyrolysis, it is introduced into a furnace at about 600 to 1800°C, or under high temperature conditions such as plasma or chemical flame. In this case as well, various conditions related to spraying, such as temperature, spray droplet diameter, and residence time, include the amount of sample solution, concentration, type of solvent, shape of processing container, etc.
It is necessary to select optimal conditions depending on conditions such as the sample collection method. Further, if the thermal decomposition and crystallization of the obtained particles have not led to superconducting phase synthesis, an appropriate heat treatment is performed.

噴霧乾燥−熱分解、噴霧熱分解答々の過程を経て得られ
た微粒子の粒子径は1次粒子径2〜3゛μm以下の微粒
子であり、分析電子顕微鏡によるバルク及び微小領域の
組成分析結果から、ストイキオメトリ−が保たれかつ均
一組成であることが確認された。
The particle size of the fine particles obtained through the processes of spray drying-pyrolysis and spray pyrolysis is fine particles with a primary particle size of 2 to 3 μm or less, and the composition analysis results of the bulk and micro regions using an analytical electron microscope. It was confirmed that the stoichiometry was maintained and the composition was uniform.

このようにして得られた微粒子は低温で超伝導相が合成
され、微粒で易焼結性を有する。
The thus obtained fine particles have a superconducting phase synthesized at low temperatures, and are fine and easily sinterable.

また他の化学°的な合成法に比べて途中での沈澱条件の
コントロールの必要や組成変動の心配もなく、対象とす
る元素や組成を変えた場合への応用も広い。また処理装
置のスケールアップによる量産化が容易である。
In addition, compared to other chemical synthesis methods, there is no need to control precipitation conditions during the process and there is no need to worry about compositional fluctuations, and it can be widely applied to cases where the target element or composition is changed. Moreover, mass production by scaling up the processing equipment is easy.

「実施例」 次に実施例を挙げて本発明を説明する。"Example" Next, the present invention will be explained with reference to Examples.

(実施例1) 0.02M /IのBiaSr3CaaCu40yの硝
酸塩溶液5001を調製し、これに2倍体積の水−エタ
ノール=1:1溶液を混合した。0.5mol/ Iの
溶液を混合した。室温でこれらを急激に混合撹拌し、得
られた溶液を以下の条件で噴霧乾燥した。2流体ノズル
式噴霧、乾燥チャンバ入口温度200℃、出口温度10
0℃、噴霧空気圧1.5Kg/cm2、吸引空気量、0
.40m3/ min、試料送液量10cm3/ m 
ino  捕集粒子は径2〜5μmの凝集粒子で、これ
を820℃3時間熱処理することにより、2〜3μm以
下の超伝導相結晶構造を示す粒子が得られた。この原料
を用いて作成された焼結体は超伝導転移温度Tc= 9
4Kを示し、理論密度の95%まで緻密化した。
(Example 1) A nitrate solution 5001 of BiaSr3CaaCu40y of 0.02 M/I was prepared, and twice the volume of water-ethanol = 1:1 solution was mixed therein. A solution of 0.5 mol/I was mixed. These were rapidly mixed and stirred at room temperature, and the resulting solution was spray-dried under the following conditions. Two-fluid nozzle spray, drying chamber inlet temperature 200℃, outlet temperature 10
0℃, spray air pressure 1.5Kg/cm2, suction air amount, 0
.. 40m3/min, sample liquid flow rate 10cm3/m
The ino collection particles were agglomerated particles with a diameter of 2 to 5 μm, and by heat-treating them at 820° C. for 3 hours, particles exhibiting a superconducting phase crystal structure of 2 to 3 μm or less were obtained. The sintered body created using this raw material has a superconducting transition temperature Tc = 9
4K and was densified to 95% of the theoretical density.

(実施例2) 実施例1の金属硝酸塩水溶液及び蓚酸溶液に加える有機
溶媒としてエチレングリコールを用いた。水−エチレン
グリコール溶液の濃度は水: エチレングリコール=3
:1とした。
(Example 2) Ethylene glycol was used as an organic solvent to be added to the metal nitrate aqueous solution and oxalic acid solution of Example 1. The concentration of water-ethylene glycol solution is water: ethylene glycol = 3
:1.

噴霧乾燥条件は実施例1と同様、但し試料溶液温度は5
0℃に保った。噴霧乾燥粒子を820℃3時間の熱処理
することにより、第1図に示したと同様の超伝導相の結
晶相が得られた。
The spray drying conditions were the same as in Example 1, except that the sample solution temperature was 5.
It was kept at 0°C. By heat-treating the spray-dried particles at 820° C. for 3 hours, a superconducting crystalline phase similar to that shown in FIG. 1 was obtained.

粒子径は2〜3μmであった。The particle size was 2-3 μm.

(実施例3) 実施例1と同様の条件で調製した金属蓚酸塩を:含む溶
液を900℃に保った電気炉の反応管中に噴霧し、サイ
クロン及びフィルタにて生成粒子を捕集した。1次粒子
径、は0.5〜2μmであった。この粒子はビスマス、
ストロンチウム、カルシウム、銅の酸化物及び炭酸塩で
あり、さらに800℃1時間の熱処理により超伝導相の
結晶相を示した。
(Example 3) A solution containing metal oxalate prepared under the same conditions as in Example 1 was sprayed into a reaction tube of an electric furnace kept at 900°C, and generated particles were collected using a cyclone and a filter. The primary particle size was 0.5 to 2 μm. This particle is bismuth,
These are oxides and carbonates of strontium, calcium, and copper, and after being heat-treated at 800° C. for 1 hour, they exhibited a superconducting crystalline phase.

「発明の効果」 本発明は以上説明したように、信性に比べてより低温で
合成可能な、易焼結性の、酸化物高温超伝導体の均−組
成の微粒子原料を容易に製造するものであり、臨界電流
密度の向上など超伝導材料の実用化を促進するものとし
て期待される。
"Effects of the Invention" As explained above, the present invention can easily produce a fine particle raw material with a homogeneous composition for an oxide high temperature superconductor that can be synthesized at a lower temperature than the conventional one, is easy to sinter, and is easy to sinter. This is expected to promote the practical application of superconducting materials, such as improving critical current density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本方法により生成した超伝導相微粒子の粉末X
線回折パターンで、図中の(000)は各回折ピークに
相当する面指数を表す。
Figure 1 shows superconducting phase fine particle powder X produced by this method.
In the line diffraction pattern, (000) in the figure represents the plane index corresponding to each diffraction peak.

Claims (1)

【特許請求の範囲】 ビスマス、ストロンチウム、カルシウム、 銅等の金属塩溶液と、蓚酸または蓚酸アンモニウム溶液
または炭酸アンモニウム溶液とを、誘電率50以下の水
溶性有機溶媒の少なくとも一種以上を含む水溶液中で混
合し、これを噴霧乾燥−熱分解または噴霧熱分解するこ
とによる、酸化物高温超伝導体に用いる微粒子原料の合
成法。
[Claims] A metal salt solution such as bismuth, strontium, calcium, copper, etc. and an oxalic acid or ammonium oxalate solution or an ammonium carbonate solution are mixed in an aqueous solution containing at least one water-soluble organic solvent having a dielectric constant of 50 or less. A method for synthesizing particulate raw materials for use in oxide high-temperature superconductors by mixing and spray-drying-pyrolyzing or spray-pyrolyzing the mixture.
JP5458888A 1988-03-08 1988-03-08 Method for synthesizing particulate oxide raw material Granted JPH01226723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5458888A JPH01226723A (en) 1988-03-08 1988-03-08 Method for synthesizing particulate oxide raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5458888A JPH01226723A (en) 1988-03-08 1988-03-08 Method for synthesizing particulate oxide raw material

Publications (2)

Publication Number Publication Date
JPH01226723A true JPH01226723A (en) 1989-09-11
JPH0572331B2 JPH0572331B2 (en) 1993-10-12

Family

ID=12974879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5458888A Granted JPH01226723A (en) 1988-03-08 1988-03-08 Method for synthesizing particulate oxide raw material

Country Status (1)

Country Link
JP (1) JPH01226723A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140472A (en) * 1989-10-27 1991-06-14 Agency Of Ind Science & Technol Production of built-up film of oxide fine particle
FR2659961A1 (en) * 1990-03-23 1991-09-27 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF SUPERCONDUCTING PHASES BASED ON BISMUTH, STRONTIUM, CALCIUM AND COPPER AND A STABILIZING ELEMENT.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140472A (en) * 1989-10-27 1991-06-14 Agency Of Ind Science & Technol Production of built-up film of oxide fine particle
JPH0774454B2 (en) * 1989-10-27 1995-08-09 工業技術院長 Manufacturing method of oxide fine particle deposition film
FR2659961A1 (en) * 1990-03-23 1991-09-27 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF SUPERCONDUCTING PHASES BASED ON BISMUTH, STRONTIUM, CALCIUM AND COPPER AND A STABILIZING ELEMENT.

Also Published As

Publication number Publication date
JPH0572331B2 (en) 1993-10-12

Similar Documents

Publication Publication Date Title
CN1257100C (en) Method for producing multinary metal oxide powders in pulsed reactor
US8546284B2 (en) Process for the production of plasma sprayable yttria stabilized zirconia (YSZ) and plasma sprayable YSZ powder produced thereby
CN101124180A (en) Method for producing mixed oxides by way of spray pyrolysis
KR100753773B1 (en) Method for preparing perovskite oxide nanopowders
US5660774A (en) Process for making a sintered body from ultra-fine superconductive particles
KR20020091780A (en) Method for manufacturing single crystal ceramics powder, single crystal ceramics powder, composite materials, and electronic parts
CN1477055A (en) Method for producing high crystal composite oxide powder
Prasadarao et al. Sol-gel synthesis of Ln 2 (Ln= La, Nd) Ti 2 O 7
US5660773A (en) Process for making ultra-fine yttrium-iron-garnet particles
JPH0574530B2 (en)
JPH01226723A (en) Method for synthesizing particulate oxide raw material
JPH0572332B2 (en)
JP2007290885A (en) Method for producing inorganic particle
JPH0574529B2 (en)
JP4360070B2 (en) Method for producing highly crystalline double oxide powder
JPH0328109A (en) Production of compound oxide powder
JPH0159966B2 (en)
Lal et al. Preparation of Ferrite Powders by Chemical Methods—A Review
JP3412187B2 (en) Preparation of composite perovskite oxide powder
JPH03205316A (en) Production of perovskite type compound oxide powder
JPH02196023A (en) Production of oxide-based superconductor
JPH08699B2 (en) Synthesis of oxide fine particles by spray drying
JP3176119B2 (en) Acicular dielectric oxide particles and method for producing the same
JPH0558629A (en) Production of perovskite-type lead oxide
JPH06219745A (en) Production of lead-containing complex oxide powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term