JPH0574529B2 - - Google Patents

Info

Publication number
JPH0574529B2
JPH0574529B2 JP28464387A JP28464387A JPH0574529B2 JP H0574529 B2 JPH0574529 B2 JP H0574529B2 JP 28464387 A JP28464387 A JP 28464387A JP 28464387 A JP28464387 A JP 28464387A JP H0574529 B2 JPH0574529 B2 JP H0574529B2
Authority
JP
Japan
Prior art keywords
solution
particles
water
mixed
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28464387A
Other languages
Japanese (ja)
Other versions
JPH01126226A (en
Inventor
Masanobu Tanno
Hiroyoshi Takagi
Yasuyoshi Torii
Akihiro Tsuzuki
Norimitsu Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP28464387A priority Critical patent/JPH01126226A/en
Publication of JPH01126226A publication Critical patent/JPH01126226A/en
Publication of JPH0574529B2 publication Critical patent/JPH0574529B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は、均質微粒子原料を容易に製造し得る
ことにより、低温での合成が可能な、また易焼結
性を有する緻密な焼結体の作成を可能にする、酸
化物高温超伝導体の原料合成法に関するものであ
る。 「従来技術及びその問題点] 従来、酸化物高温超伝導材料の合成法として
は、(1)固相法、(2)蒸発法、(3)共沈法、(4)金属アル
コキシド法、(5)凍結乾燥法等が知られている。 しかして、上述(1)の固相法は、バリウム、イツ
トリウム、銅等の酸化物、炭酸塩等の試薬を乳
鉢、ボールミル等で粉砕、混合した上で焼成する
ものであるが、粒子径が数μm以上と粗粒になり、
かつ粒子の組成変動が比較的大きくなりやすく、
反応に高温・長時間の焼成が必要となり、また焼
結体の組成が不均質になりやすい欠点を有する。 (2)の蒸発法は、硝酸塩、有機酸塩等の混合溶液
を加熱することにより溶媒を除去して乾燥試料を
得、これを粉砕、焼成する方法であるが、溶媒除
去に際して各成分の溶解度差、分解等により組成
の不均質が生じやすく、また溶媒蒸発に時間がか
かる、粉砕工程が必要かつその過程での試料汚染
の問題を抱えている。 (3)の共沈法は、金属酸塩の混合溶液に沈殿材を
加えて単塩または複塩の沈殿を生成して、ろ過、
乾燥、焼成することにより比較的容易に1μm以下
〜数μmの微粒子原料を合成することが可能であ
るが、多成分系の場合、完全同時沈殿は理論上不
可能であり、希望する組成比の沈殿を得ることが
困難である。 (4)の金属アルコキシド法は、金属アルコキシド
の加水分解により数10nm程度の超微粒子を合成
することが可能であるが、出発原料の金属アルコ
キシドが非常に高価であり、また多成分系の場
合、複合アルコキシドの合成が困難であるため沈
殿の組成不均質性に関して共沈法と同様の欠点を
持つ。 (5)の凍結乾燥法は、試料溶液を冷媒中への噴霧
等により急速に凍結させ、減圧下での乾燥により
溶媒の除去を行うもので、試料への熱的影響は少
ない一方で、生成粒子径が大きく、成分が偏在し
やすい、乾燥に要する時間が長い等の欠点があ
る。 「発明の概要」 本発明はこれらの欠点を解消し、微粒で均質
な、低温での合成が可能で易焼結性を有する、酸
化物高温超伝導体の合成原料を提供することを目
的とする。 本発明者は、酸化物高温超伝導体の合成方法の
研究を進める過程で、金属シユウ酸塩沈殿生成時
に、金属硝酸塩水溶液シユウ酸またはシユウ
酸アンモニウムの両方または一方に溶媒としてエ
タノール等の誘電率が水より低い水溶性有機溶媒
を添加することにより、混合時に生成する沈殿が
微細化し、これを噴霧乾燥することにより、出発
溶液のPH、各成分の仕込量の調節等の操作を必要
とせずに容易に熱分解の可能な微粒子を生じせし
めることを見出し本発明に到達した。 すなわち本発明は、目的の酸化物高温超伝導体
組成となるように硝酸塩混合溶液を調整し、こ
れにシユウ酸またはシユウ酸アンモニウム溶液
を加える際に、誘電率50以下の水溶性有機溶媒の
少なくとも一種以上を含む水溶液を,の両方
または一方に加え、微粒の金属シユウ酸塩沈殿を
含んだ溶液を合成する。さらにこの溶液を適当な
条件下で噴霧乾燥することにより、容易に熱分解
の可能な粒子を得、熱分解後の粒子径0.1μm以下
〜0.5μmの微粒子原料粉末を得ることを特徴とす
る。以下に本発明を詳細に説明する。 まず、金属硝酸塩混合溶液及びシユウ酸または
シユウ酸アンモニウム溶液に加える水溶性有機溶
媒の量は、飽和溶液に対して全溶液中の水/有機
溶媒比が1/5〜10、また飽和溶液/溶媒比が1〜
1/10とする。水溶性有機溶媒を加える理由は、第
1に金属シユウ酸塩の溶解度を減少させ、結晶核
の発生数を増大させるため、第2に溶液の誘電率
を減少させイオン会合体を形成しやすくなるため
であり、いずれも結晶核発生数の増加と沈殿粒子
の微粒子に寄与する。ここで、水/有機溶媒比が
これより大きいと、溶解度、誘電率の減少が小さ
くなり、逆にこれより小さいと処理中の晶析が起
こりやすくなる。また飽和溶液/溶媒比がこれよ
り大きいと噴霧乾燥時の噴霧液滴中の溶質量が大
きくなるため造粒粒子径が大きくなり、これより
小さい場合には造粒粒子径が小さくなり過ぎるた
め、噴霧乾燥時のサイクロンによる捕集が困難と
なりエアフイルター等の捕集手段を必要とし、製
造能率も低下するためである。使用される水溶性
有機溶媒の例と物性を第1表に示す。
"Industrial Application Field" The present invention enables the creation of a dense sintered body that can be synthesized at low temperatures and has easy sinterability by easily producing a homogeneous fine particle raw material. This paper relates to a raw material synthesis method for oxide high-temperature superconductors. "Prior art and its problems" Conventionally, methods for synthesizing oxide high-temperature superconducting materials include (1) solid phase method, (2) evaporation method, (3) coprecipitation method, (4) metal alkoxide method, ( 5) Freeze-drying methods are known.The solid-phase method described in (1) above involves grinding and mixing reagents such as barium, yttrium, copper oxides, carbonates, etc. in a mortar, ball mill, etc. Although it is fired above, the grain size becomes coarse with a diameter of several μm or more.
In addition, the compositional fluctuations of the particles tend to be relatively large.
The reaction requires high-temperature and long-time firing, and the composition of the sintered body tends to be non-uniform. In the evaporation method (2), the solvent is removed by heating a mixed solution of nitrates, organic acid salts, etc. to obtain a dry sample, which is then crushed and fired. Compositional inhomogeneity tends to occur due to differences in composition, decomposition, etc., and it also takes time for solvent evaporation, requires a pulverization process, and has the problem of sample contamination during that process. In the coprecipitation method (3), a precipitant is added to a mixed solution of metal salts to form a precipitate of a single or double salt, followed by filtration.
By drying and firing, it is possible to synthesize fine particle raw materials with a size of 1 μm or less to several μm relatively easily, but in the case of a multi-component system, complete simultaneous precipitation is theoretically impossible, and it is difficult to achieve the desired composition ratio. It is difficult to obtain a precipitate. In the metal alkoxide method (4), it is possible to synthesize ultrafine particles of several tens of nanometers by hydrolyzing metal alkoxide, but the metal alkoxide as a starting material is very expensive, and in the case of a multi-component system, Since it is difficult to synthesize complex alkoxides, this method has the same drawbacks as the coprecipitation method regarding the compositional heterogeneity of the precipitate. In the freeze-drying method (5), the sample solution is rapidly frozen by spraying it into a refrigerant, and the solvent is removed by drying under reduced pressure. It has disadvantages such as large particle size, uneven distribution of components, and long drying time. "Summary of the Invention" The present invention aims to eliminate these drawbacks and provide a raw material for synthesizing an oxide high-temperature superconductor that is fine-grained and homogeneous, can be synthesized at low temperatures, and has easy sinterability. do. In the process of researching a method for synthesizing oxide high-temperature superconductors, the present inventor discovered that when metal oxalate precipitates were formed, a metal nitrate aqueous solution, oxalic acid and/or ammonium oxalate, was mixed with dielectric constant ethanol, etc. as a solvent. By adding a water-soluble organic solvent with a lower water-soluble organic solvent than water, the precipitate that forms during mixing becomes finer, and by spray drying this, there is no need for operations such as adjusting the pH of the starting solution and the amount of each component charged. The present invention was achieved by discovering that fine particles that can be easily thermally decomposed can be produced. That is, in the present invention, when a nitrate mixed solution is adjusted to have the desired oxide high temperature superconductor composition and oxalic acid or ammonium oxalate solution is added thereto, at least one water-soluble organic solvent with a dielectric constant of 50 or less is added. An aqueous solution containing one or more of these is added to one or both of the above to synthesize a solution containing fine metal oxalate precipitates. Further, by spray-drying this solution under appropriate conditions, particles that can be easily thermally decomposed are obtained, and a fine particle raw material powder having a particle diameter of 0.1 μm or less to 0.5 μm after thermal decomposition is obtained. The present invention will be explained in detail below. First, the amount of water-soluble organic solvent added to the metal nitrate mixed solution and the oxalic acid or ammonium oxalate solution is such that the water/organic solvent ratio in the total solution is 1/5 to 10 relative to the saturated solution, and the saturated solution/solvent Ratio is 1~
It will be 1/10. The reasons for adding a water-soluble organic solvent are: firstly, it reduces the solubility of metal oxalate and increases the number of crystal nuclei, and secondly, it reduces the dielectric constant of the solution and facilitates the formation of ionic aggregates. Both of these contribute to an increase in the number of crystal nuclei generated and to the fineness of precipitated particles. Here, if the water/organic solvent ratio is larger than this, the decrease in solubility and dielectric constant will be small, whereas if it is smaller than this, crystallization will easily occur during treatment. Also, if the saturated solution/solvent ratio is larger than this, the amount of solute in the sprayed droplets during spray drying will increase, resulting in a large granulated particle size, and if it is smaller than this, the granulated particle size will become too small. This is because it becomes difficult to collect using a cyclone during spray drying, necessitating a collection means such as an air filter, and production efficiency also decreases. Table 1 shows examples and physical properties of the water-soluble organic solvents used.

【表】 沈殿粒子の微細・均質化のために、金属硝酸塩
溶液と、シユウ酸またはシユウ酸アンモニウム溶
液の混合は攪拌機等を用いて激しく攪拌した状況
下で速やかに行う必要がある。 噴霧乾燥の条件としては、試料の乾燥が速やか
に行われ、造粒粒子が捕集可能かつ微粒となるよ
うに乾燥チヤンバ内への試料入口・出口温度、噴
霧空気量、試料送液量、さらには収率良く粒子を
捕集できるようにサイクロン入口での吸引空気量
を調節する必要がある。これらの条件は試料溶液
の濃度、乾燥チヤンバの容積、サイクロンの形状
等により最適条件が異なる。 熱分解温度は試料の組成により異なるが、750
〜800℃で約1時間焼成することにより、例えば
バリウム−イツトリウム−銅−酸素系での超伝導
相であるペロブスカイト型の結晶構造を示すこと
がX線回折により確められた。さらにこれを微粉
砕機で解砕することにより、単分散微粒子を得る
ことが可能である。 このようにして得られる原料粒子は、粒子径
0.1μm以下〜0.5μm、平均0.2〜0.3μmの均質組成
のものであり、低温でのペロブスカイト相の合成
が可能で易焼結性を有する。また沈殿生成及び噴
霧乾燥〜熱分解の過程を通じてPH調整、組成変動
等の心配がなく、容易に合成が可能でかつ他の金
属塩等への応用も広い。 「実施例」 次に実施例を挙げて本発明をさらに説明する。 (実施例 1) 0.5Nの硝酸バリウム、硝酸イツトリウム、硝
酸銅の各水溶液をモル比2:1:3になるように
混合し、これに4倍体積の水:エタノール=1:
1溶液を混合した。0.5Nのシユウ酸溶液に2倍
体積の水:エタノール=1:1溶液を混合した。 20℃でこれらを急激に混合攪拌し、得られた溶
液を以下の条件下で噴霧乾燥した。二流体ノズル
式噴霧機構、乾燥チヤンバ入口温度180℃、出口
温度90℃、噴霧空気圧2.0Kg/cm2、吸引空気量
0.40m3/min、試料送液量10m3/min。 捕集された粒子は一次粒子径0.1μm以下〜
0.5μm、二次粒子径1〜3μmである。これを800
℃で1時間加熱することにより、弱く凝集した粒
子径0.1〜0.5μmのペロブスカイト型結晶構造を有
する粒子(第1図参照)が得られた。またこれを
アトリシヨンミルで微粉砕することにより単分散
粒子が得られた。 この原料を用いて作成された焼結体はかさ密度
5.96g/cm3を示した。 (実施例 2) 実施例1の金属硝酸塩水溶液及びシユウ酸溶液
に加える水−エタノール溶液を水:エタノール=
3:1とした。噴霧乾燥条件は実施例1と同様。
800℃で熱分解後の粒子は一次粒子径0.3〜0.5μm
であつた。 (実施例 3) 実施例1の水溶性有機溶媒にエチレングリコー
ルを用いた。エチレングリコールの濃度は水:エ
チレングリコール=3:1とした。噴霧乾燥条件
は、入口温度200℃、出口温度100℃で他の条件は
同じとした。捕集された粒子の1次粒子径0.4〜
0.5μm、二次粒子径2〜3μmであり、焼成800℃、
1時間で0.5μm程度のペロブスカイト相の粒子が
得られた。 (実施例 4) 実施例1と同様の条件で得られた金属シユウ酸
塩を含む溶液に対して、実施例1と同様の噴霧機
構で600℃に加温した電気炉の反応管中へ噴霧し、
サイクロン及びフイルタにて生成粒子を捕集し
た。一次粒子径0.05μm〜0.3μm、二次粒子径0.5
〜1μmであつた。X線回折では炭酸バリウム、酸
化イツトリウム、酸化銅及びバリウム−銅、イツ
トリウム−銅化合物が認められ、750℃1時間の
焼成によりペロブスカイト単一相の0.1〜0.5μmの
粒子が得られた。 「発明の効果」 本発明は以上説明したように、低温での合成可
能な易焼結性の、酸化物高温超伝導体の均質微粒
子原料を容易に製造するものであり、超伝導材料
の実用化を促進するものとして期待される。
[Table] In order to make the precipitated particles fine and homogenized, the metal nitrate solution and the oxalic acid or ammonium oxalate solution must be mixed quickly under conditions of vigorous stirring using a stirrer or the like. The conditions for spray drying include the temperature of the sample inlet and outlet into the drying chamber, the amount of atomizing air, the amount of sample liquid, and so on, so that the sample dries quickly and the granulated particles can be collected and become fine particles. It is necessary to adjust the amount of suction air at the cyclone inlet to collect particles with good yield. The optimum conditions for these conditions differ depending on the concentration of the sample solution, the volume of the drying chamber, the shape of the cyclone, etc. The thermal decomposition temperature varies depending on the composition of the sample, but is 750
By firing at ~800°C for about 1 hour, it was confirmed by X-ray diffraction that it exhibited a perovskite-type crystal structure, which is a superconducting phase in the barium-yttrium-copper-oxygen system, for example. Furthermore, by crushing this with a pulverizer, it is possible to obtain monodisperse fine particles. The raw material particles obtained in this way have a particle size of
It has a homogeneous composition with a diameter of 0.1 μm or less to 0.5 μm, and an average of 0.2 to 0.3 μm. It is possible to synthesize a perovskite phase at low temperatures and has easy sinterability. In addition, there is no need to worry about PH adjustment or composition fluctuation through the process of precipitation formation and spray drying to thermal decomposition, and it can be easily synthesized and has a wide range of applications such as other metal salts. "Example" Next, the present invention will be further explained with reference to Examples. (Example 1) 0.5N aqueous solutions of barium nitrate, yttrium nitrate, and copper nitrate were mixed at a molar ratio of 2:1:3, and this was mixed with 4 times the volume of water:ethanol = 1:
1 solution was mixed. A 0.5N oxalic acid solution was mixed with twice the volume of a 1:1 water:ethanol solution. These were rapidly mixed and stirred at 20°C, and the resulting solution was spray-dried under the following conditions. Two-fluid nozzle spray mechanism, drying chamber inlet temperature 180℃, outlet temperature 90℃, spray air pressure 2.0Kg/cm 2 , suction air amount
0.40m 3 /min, sample flow rate 10m 3 /min. Collected particles have a primary particle diameter of 0.1 μm or less
The secondary particle size is 0.5 μm and the secondary particle size is 1 to 3 μm. This is 800
By heating at .degree. C. for 1 hour, weakly agglomerated particles having a perovskite crystal structure with a particle size of 0.1 to 0.5 .mu.m (see FIG. 1) were obtained. Furthermore, monodisperse particles were obtained by pulverizing this with an attrition mill. The sintered body made using this raw material has a bulk density of
It showed 5.96g/ cm3 . (Example 2) A water-ethanol solution added to the metal nitrate aqueous solution and oxalic acid solution of Example 1 was mixed with water:ethanol=
The ratio was 3:1. Spray drying conditions were the same as in Example 1.
Particles after thermal decomposition at 800℃ have a primary particle size of 0.3 to 0.5μm
It was hot. (Example 3) Ethylene glycol was used as the water-soluble organic solvent in Example 1. The concentration of ethylene glycol was water:ethylene glycol=3:1. The spray drying conditions were an inlet temperature of 200°C and an outlet temperature of 100°C, all other conditions being the same. Primary particle diameter of collected particles: 0.4~
0.5μm, secondary particle size 2-3μm, calcined at 800℃,
Perovskite phase particles of about 0.5 μm were obtained in 1 hour. (Example 4) A solution containing metal oxalate obtained under the same conditions as in Example 1 was sprayed into the reaction tube of an electric furnace heated to 600°C using the same spraying mechanism as in Example 1. death,
The generated particles were collected using a cyclone and a filter. Primary particle size 0.05μm~0.3μm, secondary particle size 0.5
It was ~1 μm. X-ray diffraction revealed barium carbonate, yttrium oxide, copper oxide, barium-copper, and yttrium-copper compounds, and by firing at 750° C. for 1 hour, perovskite single-phase particles of 0.1 to 0.5 μm were obtained. "Effects of the Invention" As explained above, the present invention is for easily producing a homogeneous fine particle raw material for an oxide high temperature superconductor that can be synthesized at low temperatures and is easy to sinter. It is expected that this will promote the development of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の方法により生成した微粒子
の粉末X線回折パターンで、図中の(○○○)は
各回折ピークに相当するペロブスカイト相の面指
数を表わす。
FIG. 1 is a powder X-ray diffraction pattern of fine particles produced by the method of Example 1, and (○○○) in the figure represents the surface index of the perovskite phase corresponding to each diffraction peak.

Claims (1)

【特許請求の範囲】[Claims] 1 バリウム、イツトリウム、銅の硝酸塩混合溶
液と、シユウ酸またはシユウ酸アンモニウム溶液
とを、誘電率50以下の水溶性有機溶媒の少なくと
も一種以上を含む水溶液中で混合し、これを噴霧
乾燥−熱分解、または噴霧熱分解することによ
る、酸化物高温超伝導体の微粒子原料の合成法。
1. A mixed solution of barium, yttrium, and copper nitrates and an oxalic acid or ammonium oxalate solution are mixed in an aqueous solution containing at least one type of water-soluble organic solvent with a dielectric constant of 50 or less, and the mixture is spray-dried and pyrolyzed. , or a method for synthesizing particulate raw materials for oxide high temperature superconductors by spray pyrolysis.
JP28464387A 1987-11-11 1987-11-11 Method for synthesizing oxide particulate raw material Granted JPH01126226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28464387A JPH01126226A (en) 1987-11-11 1987-11-11 Method for synthesizing oxide particulate raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28464387A JPH01126226A (en) 1987-11-11 1987-11-11 Method for synthesizing oxide particulate raw material

Publications (2)

Publication Number Publication Date
JPH01126226A JPH01126226A (en) 1989-05-18
JPH0574529B2 true JPH0574529B2 (en) 1993-10-18

Family

ID=17681122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28464387A Granted JPH01126226A (en) 1987-11-11 1987-11-11 Method for synthesizing oxide particulate raw material

Country Status (1)

Country Link
JP (1) JPH01126226A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2810047B2 (en) * 1988-03-04 1998-10-15 白水化学工業株式会社 Stable solution for producing superconductor and method for producing superconducting thin film
JPH0774454B2 (en) * 1989-10-27 1995-08-09 工業技術院長 Manufacturing method of oxide fine particle deposition film
KR100374704B1 (en) * 2000-04-07 2003-03-04 한국기계연구원 A Process for Manufacturing Nano Copper- Alumina Complex Powder

Also Published As

Publication number Publication date
JPH01126226A (en) 1989-05-18

Similar Documents

Publication Publication Date Title
US7473408B2 (en) Method for preparing single crystalline cerium oxide powders
US3514252A (en) Process for the preparation of stabilized zirconia powders
US8546284B2 (en) Process for the production of plasma sprayable yttria stabilized zirconia (YSZ) and plasma sprayable YSZ powder produced thereby
US5468427A (en) Process for making ultra-fine ceramic particles
KR100753773B1 (en) Method for preparing perovskite oxide nanopowders
US5523065A (en) Process for making ultra-fine barium titanate particles
US5660774A (en) Process for making a sintered body from ultra-fine superconductive particles
US5716565A (en) Process for making ultra-fine stabilized zirconia particles
Behera et al. Low temperature synthesis of spherical lanthanum aluminate nanoparticles
US5118659A (en) Production of superconductor materials using a helicoidal flow of hot gases to effect pulverization and drying
Saha et al. Synthesis of nanophase PLZT (12/40/60) powder by PVA-solution technique
US5660773A (en) Process for making ultra-fine yttrium-iron-garnet particles
JPH0574529B2 (en)
JPH0574530B2 (en)
US5660772A (en) Process for making ultra-fine barium hexaferrite particles
JPH0572332B2 (en)
JPH0572331B2 (en)
JP2004315344A (en) Method for manufacturing single crystal ceramic particle
JPH03141115A (en) Production of fine yttrium oxide powder
Garskaite et al. Syntheses and characterisation of Gd 3 Al 5 O 12 and La 3 Al 5 O 12 garnets
JPH06144837A (en) Synthesis of columbite-type niobic acid salt and synthesis of perovskite-type compound using the salt
JPH01294527A (en) Production of metallic oxide of perovskite type of abo3 type
JPH0159966B2 (en)
JPH0328109A (en) Production of compound oxide powder
JPH0712927B2 (en) Method for producing easily sinterable alumina powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term