JPH04219318A - Production of oxide superconductor film - Google Patents

Production of oxide superconductor film

Info

Publication number
JPH04219318A
JPH04219318A JP2403681A JP40368190A JPH04219318A JP H04219318 A JPH04219318 A JP H04219318A JP 2403681 A JP2403681 A JP 2403681A JP 40368190 A JP40368190 A JP 40368190A JP H04219318 A JPH04219318 A JP H04219318A
Authority
JP
Japan
Prior art keywords
oxide
elements
vapor deposition
laser
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2403681A
Other languages
Japanese (ja)
Other versions
JP2601034B2 (en
Inventor
Kensuke Fukushima
謙輔 福島
Shunichi Nishikida
錦田 俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2403681A priority Critical patent/JP2601034B2/en
Publication of JPH04219318A publication Critical patent/JPH04219318A/en
Application granted granted Critical
Publication of JP2601034B2 publication Critical patent/JP2601034B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain an oxide thin fifth having a perovskite structure with little deviation from the target composition by evaporating and depositing a volatile substance containing Cu and/or Bi and a group II element on a substrate under a prescribed vacuum degree. CONSTITUTION:A volatile substance is evaporated in a vacuum of 10<-3> to 10<-5>Torr to deposit an oxide superconductor thin film having perovskite structure or pseudo-perovskite structure on a substrate. In the above process, the volatile substance composed of metal or its oxide containing Cu and/or Bi element is evaporated by electron beam evaporation process and the volatile substance composed of an oxide containing a group II element is evaporated by laser evaporation process.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、酸化物超伝導膜の製造
方法に関する。詳しくは意図する組成からのずれの小さ
い酸化物超伝導膜を安定して製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconducting film. More specifically, the present invention relates to a method for stably producing an oxide superconducting film with a small deviation from the intended composition.

【0002】0002

【従来の技術】液体窒素の沸点(77K) 以上の超伝
導転移温度を有するY系酸化物超伝導体の発見以来、B
i系およびTl系などのペロブスカイト構造または擬ペ
ロブスカイト型構造をもつ酸化物超伝導薄膜の実用化が
図られている。
[Prior Art] Since the discovery of a Y-based oxide superconductor with a superconducting transition temperature higher than the boiling point of liquid nitrogen (77K), B
Efforts are being made to put into practical use oxide superconducting thin films having a perovskite structure or a pseudo-perovskite structure such as i-based and Tl-based structures.

【0003】ところが、これらの酸化物の超伝導特性は
構成原子の組成比に強く依存し、超伝導特性の優れたも
の程、厳密な組成制御を要求される。例えば、Bi系酸
化物超伝導体の場合、Bi、Sr、Ca、CuおよびO
 (酸素) からなる物質であるが、これはCaおよび
Cu組成比の増加とともに超伝導特性は向上する。しか
し、転移温度の最も高いBi2Sr2Ca2Cu3Ox
 の作製には仕込み組成比の厳密な調整を必要とする。 従って、優れた超伝導膜を作製する場合にも、膜組成比
の制御が不可欠であり、そのためには各元素の独立制御
が必要となってくる。
However, the superconducting properties of these oxides strongly depend on the composition ratio of the constituent atoms, and the better the superconducting properties, the more stringent compositional control is required. For example, in the case of Bi-based oxide superconductors, Bi, Sr, Ca, Cu and O
(oxygen), and its superconducting properties improve as the composition ratio of Ca and Cu increases. However, Bi2Sr2Ca2Cu3Ox, which has the highest transition temperature,
Preparation requires strict adjustment of the composition ratio of the ingredients. Therefore, when producing an excellent superconducting film, it is essential to control the film composition ratio, which requires independent control of each element.

【0004】現在、独立制御が可能である蒸着方法とし
て、複数の電子銃を使用した多元真空蒸着法があるが、
所定の組成をもつ酸化膜を安定して製造するのは容易で
はない。これは下記のような理由からである。
[0004]Currently, as a vapor deposition method that allows independent control, there is a multi-source vacuum vapor deposition method that uses a plurality of electron guns.
It is not easy to stably produce an oxide film having a predetermined composition. This is for the following reasons.

【0005】■  酸化物超伝導体の構成元素であるI
Ia族元素は沸点と融点の温度差が 900℃以下と他
元素と比較して小さいため、電子銃による局所加熱では
突沸 (スプラッシュ) が発生しやすく、蒸着流量が
安定しない。
■ I, a constituent element of oxide superconductors
Group Ia elements have a temperature difference of 900° C. or less between their boiling point and melting point, which is small compared to other elements, so local heating with an electron gun tends to cause bumping (splash), making the deposition flow rate unstable.

【0006】■  成膜中に導入する酸化ガス (O2
,O3 など) により蒸着面が酸化し、この蒸着面の
酸化による経時変化のため平均の蒸着量が電子ビームの
照射後、時間とともに減少する。
■ Oxidizing gas (O2
.

【0007】このようなことから、多元真空蒸着法にお
いて、膜組成を制御するには蒸着源数と同数の膜厚セン
サーを用意し、成膜中には各蒸着源毎に照射エネルギー
量を常時調整する必要があると報告されている(Jap
anese  Journal  of  Appli
edPhysics,Vol.27(1988), p
p.L1262〜L1264)。
For this reason, in the multi-source vacuum deposition method, in order to control the film composition, the same number of film thickness sensors as the number of deposition sources are prepared, and during film formation, the amount of irradiation energy is constantly monitored for each deposition source. It has been reported that adjustments need to be made (Jap
anese Journal of Appli
edPhysics, Vol. 27 (1988), p.
p. L1262-L1264).

【0008】しかし、このような方法では制御が難しく
なる上に、装置が複雑化して高価となる。また、それぞ
れの蒸着源に膜厚センサーを設置しても、各センサーが
他の蒸着源からの蒸着流、特にIIa族元素からの蒸着
流の影響を受けるため、成膜内の組成比を目的組成比と
一致させることは困難である。
However, with such a method, control becomes difficult, and the apparatus becomes complicated and expensive. In addition, even if a film thickness sensor is installed at each deposition source, each sensor is affected by the deposition flow from other deposition sources, especially the deposition flow from group IIa elements, so it is difficult to measure the composition ratio within the film. It is difficult to match the composition ratio.

【0009】一方、最近では酸化物超伝導体の焼結材を
ターゲットに用い、これにレーザー光を照射し、超伝導
膜を作製する試みがなされている (J.Mater.
Res. Vol.27(1988),P258〜26
4)。
On the other hand, recently, attempts have been made to fabricate a superconducting film by using a sintered material of an oxide superconductor as a target and irradiating it with laser light (J. Mater.
Res. Vol. 27 (1988), P258-26
4).

【0010】しかし、一般にレーザー蒸着法ではターゲ
ット組成と成膜組成は一致せず、特にCu元素比のずれ
が大きいという問題がある。このため、レーザー蒸着法
で任意の組成膜を得るにはターゲットの厳密な組成制御
を必要とする。
[0010] However, in general, the laser vapor deposition method has a problem in that the target composition and the film formation composition do not match, and in particular, there is a large discrepancy in the Cu element ratio. Therefore, in order to obtain a film with an arbitrary composition by laser vapor deposition, strict composition control of the target is required.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、成膜
内の構成元素を任意の組成比で再現性よく、即ち、意図
する組成からずれの小さい酸化物超伝導膜を安定して製
造することができる方法を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to stably produce an oxide superconducting film with a desired composition ratio of the constituent elements in the film with good reproducibility, that is, with a small deviation from the intended composition. Our goal is to provide a way to do so.

【0012】0012

【課題を解決するための手段】本発明者らは、酸化物超
伝導膜を目標組成から外れることなく作製することがで
きる方法を鋭意検討した結果、下記の知見を得た。
[Means for Solving the Problems] The present inventors have made the following findings as a result of intensive study on a method for producing an oxide superconducting film without deviating from the target composition.

【0013】■  電子ビーム蒸着法においては、電子
ビームの一定加熱出力に対する蒸着物質の蒸着量は、沸
点と融点の温度差の小さなIIa族元素を含む蒸着物質
では、突沸により不安定であり、被照射面の著しい経時
変化により減少するが、比較的沸点と融点の温度差の大
きな蒸着物質では、蒸着面は一様な溶融状態となり、突
沸による蒸着量の急激な変化を起こらず、時間に対して
安定した蒸発速度を得ることができる。
[0013] In the electron beam evaporation method, the amount of evaporation material deposited with respect to a constant heating output of the electron beam is unstable due to bumping in the evaporation material containing a group IIa element with a small temperature difference between the boiling point and the melting point. The amount decreases due to significant changes in the irradiated surface over time, but with deposited materials that have a relatively large temperature difference between the boiling point and melting point, the deposited surface will be in a uniform molten state, and there will be no rapid change in the amount of deposition due to bumping, and the amount will change over time. A stable evaporation rate can be obtained.

【0014】■  レーザー蒸着法においては、単一タ
ーゲットを用いた場合の成膜内の組成のずれは沸点と融
点の温度差の大きな蒸着物質において著しいが、沸点と
融点の温度差の小さなIIa族元素においてはほぼター
ゲット組成比と等しくなる。
[0014] In the laser evaporation method, when a single target is used, the compositional deviation within the deposited film is significant for evaporated materials with a large temperature difference between the boiling point and the melting point. In terms of elements, it is approximately equal to the target composition ratio.

【0015】■  沸点と融点の温度差の大きな蒸着物
質を電子ビーム蒸着法により、沸点と融点の温度差の小
さな蒸着物質をレーザー蒸着法により蒸着すれば、目標
組成比に対して組成のずれの小さい、任意の酸化膜を作
製することができる。
■ If a deposition material with a large temperature difference between the boiling point and the melting point is deposited using the electron beam evaporation method, and a deposition material with a small temperature difference between the boiling point and the melting point is deposited using the laser deposition method, the deviation of the composition from the target composition ratio can be reduced. Any small oxide film can be created.

【0016】ここに本発明の要旨は「蒸着物質として、
CuとBiのうちの1種以上の元素を含む金属またはそ
の酸化物、およびIIa族元素のうちの1種以上の元素
を含む酸化物を用い、これらの蒸着物質を真空度10−
3Torr〜10−5Torrの真空雰囲気内で蒸着さ
せて、基板上にペロブスカイト構造または擬ペロブスカ
イト型構造をもつ酸化物超伝導体の膜を製造する方法で
あって、前記CuとBiのうちの1種以上の元素を含む
金属またはその酸化物の蒸着物質は電子ビーム蒸着法に
より、IIa族元素のうちの1種以上の元素を含む酸化
物の蒸着物質はレーザー蒸着法により蒸着させることを
特徴とする酸化物超伝導膜の製造方法」にある。
[0016] The gist of the present invention is as follows.
Using a metal or an oxide thereof containing one or more elements of Cu and Bi, and an oxide containing one or more elements of group IIa elements, these vapor deposition materials are deposited under a vacuum degree of 10-
A method for producing a film of an oxide superconductor having a perovskite structure or a pseudo-perovskite structure on a substrate by vapor deposition in a vacuum atmosphere of 3 Torr to 10-5 Torr, the method comprising: one of the above-mentioned Cu and Bi; The vapor deposition material of a metal or its oxide containing the above elements is deposited by an electron beam evaporation method, and the vapor deposition material of an oxide containing one or more elements of Group IIa elements is deposited by a laser evaporation method. ``Method for manufacturing oxide superconducting film''.

【0017】上記電子ビームによる蒸着とレーザーによ
る蒸着とは同時に行ってもよい。
[0017] The above-mentioned electron beam vapor deposition and laser vapor deposition may be performed simultaneously.

【0018】[0018]

【作用】以下、添付図面を参照して本発明を詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the accompanying drawings.

【0019】図1は、本発明の方法を実施する装置の一
例を示した概略断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus for carrying out the method of the present invention.

【0020】図1において、1は基板、2は膜厚モニタ
ー、3は反応ガスノズル、4は蒸着物質、5は電子銃、
6はレーザー蒸着用ターゲット、7はレーザー入射口、
8はレーザー光、9は反応チェンバーである。
In FIG. 1, 1 is a substrate, 2 is a film thickness monitor, 3 is a reaction gas nozzle, 4 is a deposition material, 5 is an electron gun,
6 is a target for laser deposition, 7 is a laser entrance port,
8 is a laser beam, and 9 is a reaction chamber.

【0021】前記蒸着物質4とは、CuとBiのうちの
1種以上の元素を含む金属またはその酸化物であり、レ
ーザー蒸着用ターゲットはIIa族元素のうちの1種以
上の元素を含む酸化物から作られている。蒸着物質4と
して、CuとBiのうちの1種以上の元素を含む金属ま
たはその酸化物としたのは、金属の場合は高純度の元素
を供給することができるからであり、また酸化物の場合
は膜内への酸素導入が容易となるからである。
The vapor deposition substance 4 is a metal or an oxide thereof containing one or more elements of Cu and Bi, and the target for laser vapor deposition is an oxide containing one or more elements of group IIa elements. made from things. The reason why a metal containing one or more elements of Cu and Bi or an oxide thereof was used as the vapor deposition material 4 is because a metal can supply a highly pure element, and an oxide This is because oxygen can be easily introduced into the film in this case.

【0022】この蒸着物質4は、電子銃5から照射され
る電子ビームによって溶融し、基板1上に蒸着される。 一方、レーザー蒸着用ターゲット6は、レーザー入射口
7を介して照射されるレーザー光8によって溶融し、基
板1上に蒸着される。蒸着は反応チェンバー9内を10
−3Torr〜10−5Torrの真空度に保って行う
。これは、10−3Torrよりも低真空度では、各蒸
着粒子 (原子, 分子) の平均自由行程の距離が1
0cm以下と非常に短くなり、反応チェンバーの大きさ
が制限され、電子銃、レーザー蒸着用ターゲットおよび
その他の機材を反応チェンバー内へ入れるのが困難とな
るからであり、10−5Torrを超える高真空度では
、成膜内への酸素導入が不十分となり、酸化膜の作製が
困難となるからである。
This vapor deposition material 4 is melted by an electron beam irradiated from an electron gun 5 and is vapor deposited onto the substrate 1. On the other hand, the laser deposition target 6 is melted by the laser beam 8 irradiated through the laser entrance 7 and is deposited on the substrate 1 . Vapor deposition takes place inside the reaction chamber 9.
The vacuum level is maintained at −3 Torr to 10 −5 Torr. This means that at a vacuum level lower than 10-3 Torr, the mean free path distance of each evaporated particle (atom, molecule) is 1.
This is because the length is very short, less than 0 cm, which limits the size of the reaction chamber and makes it difficult to insert an electron gun, a target for laser deposition, and other equipment into the reaction chamber. This is because, if the temperature is too high, oxygen will not be sufficiently introduced into the film, making it difficult to form an oxide film.

【0023】図2は、Cu金属およびBi酸化物を蒸着
物質として用い、これらを電子ビームにより加熱蒸着し
たときの蒸発原子数と電子ビーム加熱出力との関係を調
べたものである。図3は、同じくCu金属およびBi酸
化物を蒸着物質として用い、これらを電子ビームにより
加熱蒸着したときの蒸発原子数と電子ビーム加熱時間と
の関係を調べたものである。図4は、IIa族元素から
Ca元素とSr元素を選び、これらを組成比で、Ca:
Sr=2:1、1:1および1:2で含む酸化物をター
ゲットとして使用したときのCa/Sr組成比とレーザ
ーエネルギー密度との関係を調べたものである。
FIG. 2 shows an investigation of the relationship between the number of evaporated atoms and the electron beam heating output when Cu metal and Bi oxide are used as vapor deposition materials and are heated and vapor deposited using an electron beam. FIG. 3 shows an investigation of the relationship between the number of evaporated atoms and the electron beam heating time when Cu metal and Bi oxide were similarly used as evaporation materials and were heated and evaporated with an electron beam. Figure 4 shows Ca element and Sr element selected from Group IIa elements, and their composition ratios as Ca:
The relationship between the Ca/Sr composition ratio and the laser energy density was investigated when oxides containing Sr=2:1, 1:1, and 1:2 were used as targets.

【0024】図2および図3から、蒸発原子数は電子ビ
ーム加熱出力に対してほぼ比例関係にあり、時間に対し
てもビーム照射開始直後から一定であることがわかる。 一方、図4から、いずれのターゲットも任意のレーザー
出力に対して、その蒸着比は一定であり、ターゲット組
成比と同じであることがわかる。
It can be seen from FIGS. 2 and 3 that the number of evaporated atoms is almost proportional to the electron beam heating output, and is constant with respect to time immediately after the start of beam irradiation. On the other hand, it can be seen from FIG. 4 that the evaporation ratio of any target is constant for any given laser output, and is the same as the target composition ratio.

【0025】従って、CuとBiのうちの1種以上の元
素を含む金属又はその酸化物の蒸着物質を電子ビームに
より、IIa族元素のうちの1種以上の元素を含む酸化
物の蒸着物質をレーザーにより蒸着させることにより、
目標組成比に対して組成ずれのない酸化物超伝導膜を製
造することができる。また、電子ビームの出力およびタ
ーゲット組成比を任意に選び、同時に蒸着することによ
り、目標組成比に対して組成のずれのない種々の組成比
をもった酸化物超伝導膜を製造することができる。
[0025] Therefore, a vapor deposition material of a metal or an oxide thereof containing one or more elements of Cu and Bi is evaporated with an electron beam, and a vapor deposition material of an oxide containing one or more elements of group IIa elements is evaporated with an electron beam. By vapor depositing with laser,
It is possible to manufacture an oxide superconducting film with no composition deviation with respect to a target composition ratio. In addition, by arbitrarily selecting the electron beam output and target composition ratio and performing simultaneous vapor deposition, it is possible to manufacture oxide superconducting films with various composition ratios without deviation from the target composition ratio. .

【0026】[0026]

【実施例】図1に示す装置で、Bi、Sr、Ca、Cu
の原子数比が表1に示すとおりである酸化膜を作製し、
原子数比の目標値に対する組成のずれを調べた。
[Example] In the apparatus shown in Fig. 1, Bi, Sr, Ca, Cu
An oxide film having an atomic ratio of as shown in Table 1 was prepared,
The deviation of the composition from the target value of the atomic ratio was investigated.

【0027】本発明例は、Bi2O3 およびCu純金
属を電子ビーム加熱により、SrおよびCa元素は、S
rCO3 およびCaCO3 の混合粉を所定の組成比
で混合し、1500℃の温度で加熱して得た固溶体バル
クをターゲットに用い、レーザーにより蒸着した。
In the example of the present invention, Bi2O3 and Cu pure metal are heated with an electron beam, and Sr and Ca elements are converted to Sr.
A solid solution bulk obtained by mixing a mixed powder of rCO3 and CaCO3 at a predetermined composition ratio and heating the mixture at a temperature of 1500° C. was used as a target for vapor deposition using a laser.

【0028】従来例は、複数の電子銃を備えた多元電子
ビーム蒸着法によるものと、単一ターゲットを使用した
レーザー蒸着法によるものであり、多元電子ビーム蒸着
法においては、Bi、Sr、CaおよびCuの純金属を
蒸着物質として、レーザー蒸着法においては、Bi2O
3 、SrCO3 、CaCO3 およびCuO のそ
れぞれの酸化物を所定の比となるように混合した後、8
50 ℃の温度で15時間仮焼し、粉砕と混合を繰り返
し、再び 850℃の温度で15時間焼結させて得た固
溶体バルクをターゲットに用いた。
Conventional examples include a multiple electron beam evaporation method equipped with a plurality of electron guns and a laser evaporation method using a single target. In the multiple electron beam evaporation method, Bi, Sr, Ca In the laser evaporation method, Bi2O
After mixing the respective oxides of 3, SrCO3, CaCO3 and CuO in a predetermined ratio, 8
A solid solution bulk obtained by calcining at a temperature of 50°C for 15 hours, repeating pulverization and mixing, and sintering again at a temperature of 850°C for 15 hours was used as a target.

【0029】なお、成膜時の真空度は全て5×10−4
Torrであり、作製した酸化膜の組成比はIPC分光
分析により求めた。
[0029] The degree of vacuum during film formation was 5 x 10-4 in all cases.
Torr, and the composition ratio of the produced oxide film was determined by IPC spectroscopy.

【0030】[0030]

【表1】[Table 1]

【0031】表1から明らかなとおり、本発明方法で作
製した酸化膜は、目標組成比に対して組成のずれが小さ
い。これに対して多元電子ビーム蒸着法およびレーザー
蒸着法で作製した酸化膜膜は、組成のずれが大きい。
As is clear from Table 1, the oxide film produced by the method of the present invention has a small deviation in composition from the target composition ratio. On the other hand, oxide films produced by multiple electron beam evaporation and laser evaporation have large compositional deviations.

【0032】[0032]

【発明の効果】実施例に示す如く、本発明方法によれば
目標組成通りの組成をもつ酸化物超伝導膜を安定して作
製することができる。
As shown in the examples, according to the method of the present invention, an oxide superconducting film having a target composition can be stably produced.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は、本発明の方法を実施する装置の一例を示した概
略断面図、 図2は、Cu金属およびBi酸化物を蒸着物質として用
い、これらを電子ビーム蒸着したときの蒸発原子数と電
子ビーム加熱出力との関係を示すグラフ、 図3は、Cu金属およびBi酸化物を蒸着物質として用
い、これらを電子ビーム蒸着したときの蒸発原子数と電
子ビーム加熱時間との関係を示すグラフ、 図4は、組成比で、Ca:Sr=2:1、1:1および
1:2で含む酸化物をターゲットとして使用し、レーザ
ー蒸着したときのCa/Sr組成比とレーザーエネルギ
ー密度との関係を示すグラフ、である。
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus for carrying out the method of the present invention, and FIG. 2 shows the number of evaporated atoms and electrons when Cu metal and Bi oxide are used as evaporation materials and electron beam evaporation is performed. A graph showing the relationship between the beam heating output and Fig. 3 is a graph showing the relationship between the number of evaporated atoms and the electron beam heating time when Cu metal and Bi oxide are used as evaporation materials and are subjected to electron beam evaporation. 4 shows the relationship between the Ca/Sr composition ratio and the laser energy density when laser evaporation is performed using oxides containing Ca:Sr=2:1, 1:1, and 1:2 as targets. This is a graph showing.

【符号の説明】[Explanation of symbols]

1は基板、2は膜厚モニター、3は反応ガスノズル、4
は蒸着物質、5は電子銃、6はレーザー蒸着用ターゲッ
ト、7はレーザー入射口、8はレーザー光、9は反応チ
ェンバー、である。
1 is the substrate, 2 is the film thickness monitor, 3 is the reaction gas nozzle, 4
5 is an evaporation material, 5 is an electron gun, 6 is a target for laser evaporation, 7 is a laser entrance, 8 is a laser beam, and 9 is a reaction chamber.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  蒸着物質として、CuとBiのうちの
1種以上の元素を含む金属またはその酸化物、およびI
Ia族元素のうちの1種以上の元素を含む酸化物を用い
、これらの蒸着物質を真空度10−3Torr〜10−
5Torrの真空雰囲気内で蒸着させて、基板上にペロ
ブスカイト構造または擬ペロブスカイト型構造をもつ酸
化物超伝導体の膜を製造する方法であって、前記Cuと
Biのうちの1種以上の元素を含む金属またはその酸化
物の蒸着物質は電子ビーム蒸着法により、IIa族元素
のうちの1種以上の元素を含む酸化物の蒸着物質はレー
ザー蒸着法により蒸着させることを特徴とする酸化物超
伝導膜の製造方法。
Claim 1: A metal or an oxide thereof containing one or more elements of Cu and Bi, and I
Using oxides containing one or more elements of group Ia elements, these vapor deposition materials are heated at a vacuum level of 10-3 Torr to 10-
A method for producing an oxide superconductor film having a perovskite structure or pseudo-perovskite structure on a substrate by vapor deposition in a vacuum atmosphere of 5 Torr, the method comprising: depositing one or more elements of Cu and Bi on a substrate; An oxide superconductor characterized in that the vapor deposition material of a metal or its oxide is deposited by an electron beam evaporation method, and the vapor deposition material of an oxide containing one or more elements of group IIa elements is deposited by a laser vapor deposition method. Membrane manufacturing method.
【請求項2】  電子ビーム蒸着法による蒸着とレーザ
ー蒸着法による蒸着を同時に行うことを特徴とする請求
項1記載の酸化物超伝導膜の製造方法。
2. The method for producing an oxide superconducting film according to claim 1, wherein the deposition by electron beam evaporation and the deposition by laser evaporation are performed simultaneously.
JP2403681A 1990-12-19 1990-12-19 Manufacturing method of oxide superconducting film Expired - Lifetime JP2601034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2403681A JP2601034B2 (en) 1990-12-19 1990-12-19 Manufacturing method of oxide superconducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2403681A JP2601034B2 (en) 1990-12-19 1990-12-19 Manufacturing method of oxide superconducting film

Publications (2)

Publication Number Publication Date
JPH04219318A true JPH04219318A (en) 1992-08-10
JP2601034B2 JP2601034B2 (en) 1997-04-16

Family

ID=18513406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2403681A Expired - Lifetime JP2601034B2 (en) 1990-12-19 1990-12-19 Manufacturing method of oxide superconducting film

Country Status (1)

Country Link
JP (1) JP2601034B2 (en)

Also Published As

Publication number Publication date
JP2601034B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
KR910007382B1 (en) Superconductor material and method of manufacturing super-conductor film
US4925829A (en) Method for preparing thin film of compound oxide superconductor by ion beam techniques
EP0288711B1 (en) Rapid, large area coating of high-Tc superconductors
JP2786200B2 (en) Raw material mixture for forming oxide superconductor thin film and method for forming oxide superconductor thin film
EP0342039B1 (en) Josephson device and method of making same
US5196398A (en) Process for producing thallium type superconducting thin film
JPH04219318A (en) Production of oxide superconductor film
US5478800A (en) Process for preparing a superconducting thin film
CN114040808B (en) Solid precursor feed system for thin film deposition
US5264413A (en) Bi-Sr-Ca-Cu-O compounds and methods
Wahl et al. CVD processes for coatings and surface modifications
JPH0442853A (en) Formation of high-temperature superconductive thick film by gas-deposition method and forming device therefore
US4914080A (en) Method for fabricating superconductive film
EP0412007A2 (en) Process for preparing superconducting thin films
JPH0365502A (en) Preparation of superconductive thin film
JP2564598B2 (en) Oxide superconductor and manufacturing method thereof
JP2557446B2 (en) Method for producing complex oxide-based superconducting thin film
CA1281247C (en) Methods for high tc superconductor film deposition
JPH05170448A (en) Production of thin ceramic film
JP2817299B2 (en) Preparation method of composite oxide superconducting thin film
DE19611949A1 (en) Producing composite material
Auciello et al. Computer-Controlled Ion Beam Sputter-Deposition of Superconducting Oxide Films
JPH01203222A (en) Production of thin oxide superconducting film
JPH04285013A (en) Formation of oxide superconductor thin film
JPH02255534A (en) Production of bi-containing superconducting thin film