JPH01230403A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH01230403A
JPH01230403A JP63053516A JP5351688A JPH01230403A JP H01230403 A JPH01230403 A JP H01230403A JP 63053516 A JP63053516 A JP 63053516A JP 5351688 A JP5351688 A JP 5351688A JP H01230403 A JPH01230403 A JP H01230403A
Authority
JP
Japan
Prior art keywords
substrate
superconductor
liquid particles
superconducting
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63053516A
Other languages
Japanese (ja)
Other versions
JP2633892B2 (en
Inventor
Tsuneyuki Kanai
恒行 金井
Teruo Kumagai
熊谷 輝夫
Atsuko Soeda
添田 厚子
Takaaki Suzuki
孝明 鈴木
Kunihiro Maeda
邦裕 前田
Yuichi Kamo
友一 加茂
Shinpei Matsuda
松田 臣平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63053516A priority Critical patent/JP2633892B2/en
Publication of JPH01230403A publication Critical patent/JPH01230403A/en
Application granted granted Critical
Publication of JP2633892B2 publication Critical patent/JP2633892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To obtain the title superconductor in continuous form with great critical current density, by spraying a solution of metallic salts containing the constituent metallic elements of a material for the aimed superconductor and continuously adhering to a heated substrate. CONSTITUTION:Firstly, metallic salts containing the constituent metallic elements by a material for the aimed superconductor are dissolved in water or an organic solvent. Thence, the resultant solution is sprayed using, e.g., supersonic wave into liquid particles which are carried, together with oxygen gas, onto a heated substrate to effect continuous adherence to said substrate. Furthermore, if needed, a heat treatment is made in an oxidative atmosphere. Preferably, the diameter of said liquid particles is 0.1-10mum, the substrate temperature 300-980 deg.C. Said material pref. consist mainly of Y-Ba-Cu. The substrate to be used may be any one of the following substrates: metallic substrates such as of platinum, gold, silver and superalloy; ceramic substrates such as of MgO, SrTiO3, Al2O3 and ZrO2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物超電導体の製造方法に係り、特に、臨界
電流密度が大きな長尺な酸化物超電導材料を製造するの
に好適な酸化物超電材料の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an oxide superconductor, and in particular, an oxide suitable for producing a long oxide superconductor material having a large critical current density. This invention relates to a method for producing superelectric materials.

〔従来の技術〕[Conventional technology]

従来、超電導材料はNbaSnやNbaGe等の金属間
化合物が知られており、実用化されている。
Conventionally, intermetallic compounds such as NbaSn and NbaGe have been known as superconducting materials and have been put into practical use.

これらの金属間化合物では超電導状態が得られる臨界温
度Tcは最も高いNb3Geでも23°にであり、冷却
には液体ヘリウムを用いることが必要であった。ところ
が1987年になってYBazCu307−a系酸化物
はTcか約90°にと従来の金属間化合物に比へて飛躍
的に高いことが発見された。この]゛cの温度は液体窒
素の沸点である77°Kを大きく上まっており、酸化物
超電導体は極めて高価な液体ヘリウムを用いなくても、
安価な液体窒素を用いて冷却し、超電導状態が得られる
In these intermetallic compounds, the critical temperature Tc at which a superconducting state can be obtained is 23° even in Nb3Ge, which is the highest, and it was necessary to use liquid helium for cooling. However, in 1987, it was discovered that YBazCu307-a type oxide has a Tc of about 90°, which is dramatically higher than that of conventional intermetallic compounds. The temperature of [c] is much higher than the boiling point of liquid nitrogen, 77°K, and oxide superconductors can be made without using extremely expensive liquid helium.
A superconducting state can be obtained by cooling using inexpensive liquid nitrogen.

一般に、この酸化物超電導体はY2O3,BaCO3+
CuOの粉末をモル比でY:Ba:Cuが1=2:3の
組成になるように配合したあと、900’C前後の温度
で数時間仮焼したあと、粉砕し、ペレットに成形したあ
と、950℃前後の温度で数十時間焼成することによっ
て90’に級の超電導体が得られる。
Generally, this oxide superconductor is Y2O3, BaCO3+
After blending CuO powder with a molar ratio of Y:Ba:Cu of 1=2:3, calcining it at a temperature of around 900'C for several hours, crushing it, and forming it into pellets. , a 90' grade superconductor can be obtained by firing at a temperature of around 950° C. for several tens of hours.

この超電導材料をエネルギ関連の分野に適用しようとい
う研究が、現在線材化を中心に各所で活発に行なわれて
いる。この線材化の方法は、銀シースに超電導粉末をつ
めて、線引きと熱処理をくり返す方法、線引き後、圧延
を行なう方法、溶湯急冷却等の塑性加工を用いた方法で
は、現在までに得られている臨界電流密度はせいぜい3
.50OA/d程度である。
Research to apply this superconducting material to energy-related fields is currently being actively conducted in various places, with a focus on making wire rods. This method of making wire rods has not been achieved until now, by filling a silver sheath with superconducting powder and repeating wire drawing and heat treatment, by rolling the wire after drawing, or by using plastic processing such as rapid cooling of the molten metal. The critical current density is at most 3
.. It is about 50OA/d.

一方、エレクトロニクスデバイス関連の酸化物超電導体
の開発に多用されているスパッタ法は。
On the other hand, sputtering is often used in the development of oxide superconductors for electronic devices.

5rTiOa、あるいは、MgO基板を用いることによ
り。
By using 5rTiOa or MgO substrate.

0.5μm程度の単結晶膜を生成させ、100万A/d
以上の高いTcが得られている。しかし、7の方法は、
通常1μmの膜厚を得のに数時間を要し、長尺なテープ
状線材を得るには適切な方法ではない。
Generates a single crystal film of about 0.5 μm and generates 1 million A/d
A high Tc as above is obtained. However, method 7 is
Usually, it takes several hours to obtain a film thickness of 1 μm, and this method is not suitable for obtaining a long tape-shaped wire.

また、CVD法は成膜速度が極めて速く長尺な線材に最
も適した方法と考えられるが、超電体の構成成分の一つ
であるBa原料に蒸気圧の高い適切なものがなく、実用
化には至っていない。
Additionally, the CVD method has an extremely fast film deposition rate and is considered to be the most suitable method for producing long wires, but there is no suitable Ba raw material with high vapor pressure, which is one of the components of superelectric materials, and it is not practical. It has not yet become a reality.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、長尺で、しかも、Tcの高い良質な
テープ状線材を得ることができず、酸化物超電導体を電
力用機器の線材として用いるには問題があった。
With the above-mentioned conventional technology, it was not possible to obtain a long tape-like wire rod of good quality with a high Tc, and there was a problem in using the oxide superconductor as a wire rod for power equipment.

本発明の目的は、臨界電流密度の大きな長尺な酸化物超
電導体材料の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a long oxide superconductor material having a large critical current density.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、超電導材料を構成する成分金属元素を含む
金属塩を水、あるいは、有機溶媒に溶かす工程と、これ
を0.1〜10μmの液状粒子にする工程と、この液状
粒子を300 ’C〜980℃の加熱された基板上に搬
送する工程と、この搬送された粒子が基板に連続的に付
着する工程とからなる方法によって達成される。場合に
よっては、更に、300 ’C〜980℃での酸化雰囲
気中での熱処理も必要となる。
The above purpose is to dissolve a metal salt containing the component metal elements constituting the superconducting material in water or an organic solvent, to form liquid particles of 0.1 to 10 μm in size, and to heat the liquid particles at 300'C. This is achieved by a method consisting of a step of transporting the particles onto a substrate heated to ~980°C, and a step of continuously adhering the transported particles to the substrate. In some cases, further heat treatment in an oxidizing atmosphere at 300'C to 980C is required.

超電導体を構成級るLn(イツトリウム及び希土類元素
)、Ba、Cuの原料は、水あるいは有機溶媒に可能な
ものであれば、なんでも用いることができる。その代表
的なものは、BaではBa(NOa)2. B a C
l 2. B a (C2H302)21 B a(N
s)z等の金属塩をCuでは、CuC15,Cu(NO
a)、Cu(C2HaO2)z等の金属塩を、Lnでは
、 L n Cl 3. L n (NOa)s 、 
Y (Czl(302) s等の金属塩をあげることが
できる。
As the raw materials for Ln (yttrium and rare earth elements), Ba, and Cu that constitute the superconductor, any material that can be used in water or an organic solvent can be used. A typical example of Ba is Ba(NOa)2. B a C
l 2. B a (C2H302)21 B a (N
s) When using metal salts such as z, CuC15, Cu(NO
a), a metal salt such as Cu(C2HaO2)z, in Ln, L n Cl 3. L n (NOa)s,
Examples include metal salts such as Y (Czl(302)s).

基板は、白金、金、銀、超合金等の金属基板、MgO,
S rTios、A120a+ ZrO2等のセラミク
ス基板のいずれを用いてもよい。
The substrate may be a metal substrate such as platinum, gold, silver, superalloy, MgO,
Any ceramic substrate such as SrTios, A120a+ZrO2, etc. may be used.

金属塩を0.1〜10μmの液滴にする方法は、液状粒
子の大きさ、及び、均一性の点から超音波噴霧器等を用
いるのが望ましい。液滴径が0.1〜10μmであるの
は次の理由による。
For the method of turning the metal salt into droplets of 0.1 to 10 μm, it is desirable to use an ultrasonic atomizer or the like in view of the size and uniformity of the liquid particles. The reason why the droplet diameter is 0.1 to 10 μm is as follows.

液滴が10μm以上であると、液滴が基板上に付着し溶
媒が蒸発する過程で固化、結晶化がおこるが、この過程
で組成変動を生じさ特性の良い超電導特性は得られず、
一方、0.1μm以下であると基板上に堆積しにくく、
ミストして系外に逃れる割合が多くなるためである。
If the droplet is larger than 10 μm, solidification and crystallization will occur during the process in which the droplet adheres to the substrate and the solvent evaporates, but this process will cause compositional fluctuations and good superconducting properties will not be obtained.
On the other hand, if it is 0.1 μm or less, it will be difficult to deposit on the substrate.
This is because the proportion of mist that escapes from the system increases.

基板温度が300〜980℃であるのは、この温度より
低いと、用いた金属塩の分解及び反応が十分おこらず、
この温度より高いと、超電導組成からのBa及びCuの
分解蒸発が著しく、超電導組成からずれてしまうため、
良好な超電導特性を示さないようになるからである。
The reason why the substrate temperature is 300 to 980°C is because if the temperature is lower than this, the metal salt used will not decompose and react sufficiently.
If the temperature is higher than this, the decomposition and evaporation of Ba and Cu from the superconducting composition will be significant and the composition will deviate from the superconducting composition.
This is because good superconducting properties will not be exhibited.

以上の本発明の通電導体を製造するには、たとえば、試
薬のY(OAc)a、Ba(OAc)2. Cu(OA
C)2陽イオンのモル比が超電導組成になるように1:
2:3に秤量し、純水に溶かし溶液とする。この超電導
組成水溶液を超音波により噴霧し、酸素ガスとともに搬
送し、たとえば600 ’Cに加熱したMgO基板上に
連続的に付着させる。
In order to manufacture the above-described current-carrying conductor of the present invention, for example, the reagents Y(OAc)a, Ba(OAc)2. Cu(OA
C) The molar ratio of the two cations is 1: so that it becomes a superconducting composition.
Weigh it in a ratio of 2:3 and dissolve it in pure water to make a solution. This superconducting composition aqueous solution is atomized by ultrasonic waves, conveyed together with oxygen gas, and continuously deposited on an MgO substrate heated to, for example, 600'C.

これにより、MgO基板上に0面が基板面に手行に配向
したTcの大きな超電導薄膜を製造することができる。
This makes it possible to manufacture a superconducting thin film with a large Tc on the MgO substrate, with the 0-plane oriented toward the substrate surface.

本発明の溶液を噴震する方法によれば、たとえばアルカ
リ金属元素、フッ素等種々の元素を容易に系内に導入す
ることができる。
According to the method of ejecting a solution according to the present invention, various elements such as alkali metal elements and fluorine can be easily introduced into the system.

本発明により製造した超電導テープ状線材は、組成が極
めて均一で、ち密な膜となる。
The superconducting tape-shaped wire produced according to the present invention has an extremely uniform composition and forms a dense film.

〔作用〕[Effect]

本発明は、超電導材料を構成する金属塩の溶液を噴霧し
、これを加熱した基板上に連続的に付着させることによ
り、Tcの大きな酸化物超電導材料の製造を可能にした
ものである。本発明の超電導材料の特徴は、各結晶粒同
士が整合性の良い粒界で構成される。これは、第2図に
示すように、噴霧され基板3上に到達した、完全には結
晶化していない数μm以下の粒子2が、隣接して、すで
に、固化し結晶化した基板上の数μm以下の粒子1と、
エピタキシャル的な原子配列を行ない、整合性の良い粒
界を形成するためである。これにより、超電導電子が流
れ易い0面が、各粒子間で無理なくつながるように配列
される。従って、Jcの高い材料ができる。
The present invention makes it possible to produce an oxide superconducting material with a large Tc by spraying a solution of a metal salt constituting the superconducting material and continuously depositing it on a heated substrate. A feature of the superconducting material of the present invention is that each crystal grain is composed of well-coherent grain boundaries. As shown in FIG. 2, this means that particles 2 of several micrometers or less that have not been completely crystallized have already solidified and crystallized adjacent to the substrate 3 that have been sprayed and reached the substrate 3. Particles 1 of μm or less,
This is to perform epitaxial atomic arrangement and form grain boundaries with good consistency. As a result, the zero planes, through which superconducting electrons easily flow, are arranged so that each particle is connected with ease. Therefore, a material with high Jc can be produced.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

〈実施例1〉 超電導組成であるYBa2Cu307−gとなるように
Y(NOx)3・3H2015,5g、 B a (N
O3)219.6g、Cu(NO3)2・3Hz○ 9
.1gを秤量しこれらを蒸留水IQ中に溶かした。次に
、この水溶液を1 、7 MH7,の超音波発振子を用
いて噴霧し、これを0 、50 /minの酸素カスを
キャリアとして、700°Cに加熱したMg○基板上に
天分間連続的に供給した。その結果、約2μmの膜厚に
超電導物質が付着し、均一な約0.5μm程度の結晶粒
からなる多結晶体であった。
<Example 1> Y(NOx)3.3H2015.5g, B a (N
O3) 219.6g, Cu(NO3)2.3Hz○ 9
.. 1 g was weighed out and dissolved in distilled water IQ. Next, this aqueous solution was sprayed using an ultrasonic oscillator of 1.7 MH7, and was continuously sprayed onto a Mg○ substrate heated to 700°C using oxygen sludge at 0.50 min as a carrier. provided. As a result, the superconducting material was adhered to a film thickness of about 2 μm, and it was a polycrystalline body consisting of uniform crystal grains of about 0.5 μm.

この材料の電気特性を四端子法で調へたところ、Tco
nset = 96°K 、 Tcoffset91°
にであり、更に、77°Kにおける臨界電流密度は、約
10万A/cntであった。
When we investigated the electrical properties of this material using the four-terminal method, we found that Tco
nset = 96°K, Tcoffset91°
Moreover, the critical current density at 77°K was about 100,000 A/cnt.

〈実施例2〉 超電導組成であるYBa2Cu2O7−a組成が50g
となるように、Y(OAc)g、Ba(OAC)2.C
u(OAc)zを秤量し、これらを蒸留水IQ中に溶か
した。実施例1と同様の超音波発振子で噴霧させ、これ
を0 、5 Q /minの酸素ガスをキャリアとして
、基板上に連続的に供給した。基板は幅5mm。
<Example 2> 50g of YBa2Cu2O7-a composition, which is a superconducting composition
So that Y(OAc)g, Ba(OAC)2. C
u(OAc)z were weighed and these were dissolved in distilled water IQ. Atomization was performed using the same ultrasonic oscillator as in Example 1, and this was continuously supplied onto the substrate using oxygen gas of 0.5 Q /min as a carrier. The board is 5mm wide.

厚さ0.5nwnのAgテープであり、このテープは、
第1図に示すように、連続的に1m/hourの速度で
系動させた。なお、ノズル4の内径はφ5nn。
It is an Ag tape with a thickness of 0.5nwn, and this tape is
As shown in FIG. 1, the system was continuously moved at a speed of 1 m/hour. Note that the inner diameter of the nozzle 4 is φ5nn.

ノズル4の先端と基板3との間隔は3 mm 、基板温
度は750℃とした。5は噴霧流。
The distance between the tip of the nozzle 4 and the substrate 3 was 3 mm, and the substrate temperature was 750°C. 5 is a spray flow.

この製造した超電導テープは、約3m+n長さに切断し
、四端子法により電気特性を調べたところ。
The manufactured superconducting tape was cut into lengths of approximately 3m+n, and its electrical properties were examined using the four-terminal method.

Tconset= 95°K 、 Tcoffset=
 90°にであり。
Tconset=95°K, Tcoffset=
It's at 90°.

77°Kにおける臨界電流密度は5000 A / d
であった。
Critical current density at 77 °K is 5000 A/d
Met.

〈実施例3〉 カリウムでバリウムサイトを置換した。 YBal、8
KO,2Cu aoxなる超電導組成が50gとなるよ
うに、Y(NO3)3. B a (NO3)2. C
u (NO3)21KN○3を秤量し、蒸留水IQ中に
溶がした。これを、実施例1と全く同様の方法で、70
0℃に加熱したM g O基板上に十分量連続的に供給
した。
<Example 3> Barium sites were replaced with potassium. YBal, 8
Y(NO3)3. B a (NO3)2. C
u (NO3)21KN○3 was weighed and dissolved in distilled water IQ. This was carried out in exactly the same manner as in Example 1 for 70
A sufficient amount was continuously supplied onto an M g O substrate heated to 0°C.

その結果、膜厚が約3μmの超電導薄膜が得られた。こ
の膜を950℃で十時間アニールしたところ、2mn程
度の巨大な結晶粒から構成される構造のものが得られた
As a result, a superconducting thin film with a thickness of about 3 μm was obtained. When this film was annealed at 950° C. for 10 hours, a structure consisting of huge crystal grains of about 2 mm was obtained.

この膜の電気特性を四端子法で調べたところ。The electrical properties of this film were investigated using the four-terminal method.

Tconset= 98°K 、 Tcoffset=
 92°にであり。
Tconset=98°K, Tcoffset=
It's at 92°.

77°Kにおける臨界電流密度は15万A/cdであっ
た。
The critical current density at 77°K was 150,000 A/cd.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、臨界電流密度の大きな、長尺な酸化物
超電導材料を得らるので、エネルギ関連分野で最もニー
ズのある。Jcの高いコイルを容易に製造することがで
きる。
According to the present invention, it is possible to obtain a long oxide superconducting material with a large critical current density, which is most needed in energy-related fields. A coil with high Jc can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2本発明の一実施例の概略図、第2図は、整合
粒界を形成するメカニズムを示す換弐図である。 1・既に結晶化した粒子、2・付着直後のアモルファス
粒子、3・基板、4 ・ノズル、5・・噴霧流。 第1図 第2図
FIG. 1 is a schematic diagram of an embodiment of the present invention, and FIG. 2 is a perspective view showing the mechanism of forming coherent grain boundaries. 1. Already crystallized particles, 2. Amorphous particles immediately after deposition, 3. Substrate, 4. Nozzle, 5. Spray flow. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、超電導体材料を構成する成分金属元素を含む金属塩
を水あるいは有機溶媒に溶かす工程と、これを液状粒子
なする工程と、前記液状粒子を、加熱した基板上に搬送
する工程と、搬送された前記液状粒子が前記基板に連続
的に付着する工程と、更に、1$要に応じて、酸化雰囲
気中での熱処理工程とからなることを特徴とする酸化物
超電導体の製造方法。 2、特許請求の範囲第1項において、 前記超電導体材料を構成する前記分金属元素が、Y−B
a−Cuを主成分とすることを特徴とする酸化物超電導
体の製造方法。 3、特許請求の範囲第1項において、 前記液状粒子の直径が0.1〜10μm、基板温度が3
00〜980℃、であることを特徴とする酸化物超電導
体の製造方法。
[Claims] 1. A step of dissolving a metal salt containing a component metal element constituting a superconductor material in water or an organic solvent, a step of forming liquid particles from this, and a step of dissolving the liquid particles on a heated substrate. An oxide superconductor characterized by comprising a step of transporting, a step of continuously adhering the transported liquid particles to the substrate, and further a heat treatment step in an oxidizing atmosphere depending on the amount required. How the body is manufactured. 2. In claim 1, the metal element constituting the superconductor material is Y-B.
A method for producing an oxide superconductor characterized by containing a-Cu as a main component. 3. In claim 1, the diameter of the liquid particles is 0.1 to 10 μm, and the substrate temperature is 3.
A method for producing an oxide superconductor, characterized in that the temperature is 00 to 980°C.
JP63053516A 1988-03-09 1988-03-09 Manufacturing method of oxide superconductor Expired - Lifetime JP2633892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053516A JP2633892B2 (en) 1988-03-09 1988-03-09 Manufacturing method of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053516A JP2633892B2 (en) 1988-03-09 1988-03-09 Manufacturing method of oxide superconductor

Publications (2)

Publication Number Publication Date
JPH01230403A true JPH01230403A (en) 1989-09-13
JP2633892B2 JP2633892B2 (en) 1997-07-23

Family

ID=12944985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053516A Expired - Lifetime JP2633892B2 (en) 1988-03-09 1988-03-09 Manufacturing method of oxide superconductor

Country Status (1)

Country Link
JP (1) JP2633892B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160600A (en) * 2004-11-10 2006-06-22 Dainippon Printing Co Ltd Method for manufacturing metal oxide film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467827A (en) * 1987-09-08 1989-03-14 Toru Matsushita Manufacture of superconductor ceramic thin film
JPH0198277A (en) * 1987-05-26 1989-04-17 Rikagaku Kenkyusho Forming method for superconductor thin film
JPH01164729A (en) * 1987-09-21 1989-06-28 Toray Ind Inc Production of superconducting material
JPH01215981A (en) * 1988-02-23 1989-08-29 Toa Nenryo Kogyo Kk Method and apparatus for producing thin superconductor film
JPH01224209A (en) * 1988-01-27 1989-09-07 Westinghouse Electric Corp <We> Production of ceramic superconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198277A (en) * 1987-05-26 1989-04-17 Rikagaku Kenkyusho Forming method for superconductor thin film
JPS6467827A (en) * 1987-09-08 1989-03-14 Toru Matsushita Manufacture of superconductor ceramic thin film
JPH01164729A (en) * 1987-09-21 1989-06-28 Toray Ind Inc Production of superconducting material
JPH01224209A (en) * 1988-01-27 1989-09-07 Westinghouse Electric Corp <We> Production of ceramic superconductor
JPH01215981A (en) * 1988-02-23 1989-08-29 Toa Nenryo Kogyo Kk Method and apparatus for producing thin superconductor film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160600A (en) * 2004-11-10 2006-06-22 Dainippon Printing Co Ltd Method for manufacturing metal oxide film

Also Published As

Publication number Publication date
JP2633892B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
US5278138A (en) Aerosol chemical vapor deposition of metal oxide films
JPH08171821A (en) Thallium-based superconductive wire
JPH08506216A (en) Superconducting YBa formed at a low temperature. Lower 2 Cu Cu Lower 3 O Lower 7-x
US5330966A (en) Method of preparing 2223 phase (Bi,Pb)-Sr-Ca-Cu-O superconducting films
JPH01230403A (en) Production of oxide superconductor
JP2516251B2 (en) Manufacturing method of oxide superconducting film
Kumar et al. Low cost synthesis of high-Tc superconducting films on metallic substrates via ultrasonic spray pyrolysis
EP0351139B1 (en) Method of making composite ceramic and copper superconducting elements
JPH01230405A (en) Production of oxide superconducting thick film
US4981839A (en) Method of forming superconducting oxide films using zone annealing
JPH01252533A (en) Laminate of superconducting ceramics and production thereof
JP3181642B2 (en) Manufacturing method of oxide superconducting wire
JP2573650B2 (en) Superconductor manufacturing method
JPH0393110A (en) Superconducting wire-rod
JPH02208209A (en) Production of oxide superconductor precursor
JPH0489378A (en) Production of oxide superconductor by chemical vapor deposition method of organic metal
JPS63289722A (en) Manufacture of superconductor
JP2003308746A (en) Method and device for manufacturing oxide superconductive wire
JPH0782078A (en) Rare-earth metal oxide superconducting single crystal film and its production
JPH01203258A (en) Production of oxide superconducting sintered body
Grader et al. Forming methods for high Tc superconductors
JPH0774454B2 (en) Manufacturing method of oxide fine particle deposition film
JPH0640721A (en) Preparation of superconductive body with high critical electric current density
JPS63285157A (en) Production of superconductor
JPH08212846A (en) Oxide superconductive wire rod, its manufacture and superconductive coil using it