JPH08212846A - Oxide superconductive wire rod, its manufacture and superconductive coil using it - Google Patents

Oxide superconductive wire rod, its manufacture and superconductive coil using it

Info

Publication number
JPH08212846A
JPH08212846A JP7015769A JP1576995A JPH08212846A JP H08212846 A JPH08212846 A JP H08212846A JP 7015769 A JP7015769 A JP 7015769A JP 1576995 A JP1576995 A JP 1576995A JP H08212846 A JPH08212846 A JP H08212846A
Authority
JP
Japan
Prior art keywords
superconductor
base material
tape
oxide
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7015769A
Other languages
Japanese (ja)
Inventor
Toyotaka Yuasa
豊隆 湯浅
Toshiya Doi
俊哉 土井
Kazuhisa Higashiyama
和寿 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7015769A priority Critical patent/JPH08212846A/en
Publication of JPH08212846A publication Critical patent/JPH08212846A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE: To provide an oxide superconductive wire excellent in superconductive characteristic which is operated by use of liquid nitrogen as coolant. CONSTITUTION: This oxide superconductive wire is characterized by forming oxide superconductor layers 3 through silver or silver alloy layers 2 on at least both surfaces of a base material 1 consisting of metal or ceramics. Both the surface of the base material 1 are nipped by the base materials 2 and the superconductor layers 3 consisting of the same structural material, whereby the warpage or deformation based on the difference in thermal expansion coefficient among the base material 1, the base material 2, and the superconductor layer 3 is minimized, the cracking of the super conductor layer 3 can be prevented, and an oxide superconductive wire rod excellent in superconductive characteristic can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体ヘリウムまたは液
体窒素等による冷却により超電導性を発現する酸化物超
電導線材とその製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting wire which exhibits superconductivity by cooling with liquid helium or liquid nitrogen and a method for producing the same.

【0002】[0002]

【従来の技術】酸化物超電導体は、その結晶の形態が板
状であり、そのアスペクト比(結晶の厚さに対する結晶
粒の大きさの比)が大きいビスマス系超電導体は、線引
き圧延法のような機械的プロセスにより容易に配向する
が、77Kにおけるピン止め力が弱いため、1T(テス
ラ)以上の磁場中では超電導特性を失うため実用化が困
難である。
2. Description of the Related Art Oxide superconductors have a plate-like crystal form and have a large aspect ratio (ratio of crystal grain size to crystal thickness). Although it is easily oriented by such a mechanical process, the pinning force at 77K is weak, and thus the superconducting property is lost in a magnetic field of 1 T (tesla) or more, which makes practical application difficult.

【0003】一方、アスペクト比が小さいタリウム系超
電導体は、ジャパニーズ ジャーナル オブ アプライ
ド フィジックス(Jpn.J.Appl.Phy
s.)第32巻、484頁に記載されているように、7
7Kにおいて超電導体に1T以上の磁場が垂直に加えら
れても、輸送電流(Jc)を流すことができる。このた
め、線材としての応用が試みられてきた。
On the other hand, thallium-based superconductors having a small aspect ratio are available in Japanese Journal of Applied Physics (Jpn. J. Appl. Phy).
s. ) 32, p. 484, 7
Even if a magnetic field of 1 T or more is vertically applied to the superconductor at 7K, the transport current (Jc) can be passed. Therefore, application as a wire rod has been tried.

【0004】しかし、線材化のプロセスとして最も量産
に適している線引き圧延法を用いて行なった場合、Tl
系超電導体では結晶のアスペクト比が小さく、結晶配向
させることができなかった。また、ジャーナル オブ
アプライド フィジックス(J.Appl.Phy
s.)第32巻、2634頁に記載されているように、
Tl系超電導体は、多結晶体で結晶の方位がランダムの
場合、結晶が粒界弱接合となり、弱磁場では急激にJc
が低下すると云う問題がある。
However, when the wire-drawing rolling method, which is most suitable for mass production, is used as a wire rod forming process, Tl
In the superconductors, the crystal aspect ratio was so small that the crystals could not be oriented. The Journal of
Applied Physics (J. Appl. Phy
s. ) As described in Volume 32, page 2634,
The Tl-based superconductor is a polycrystalline body, and when the crystal orientation is random, the crystal becomes a weak junction at the grain boundary, and Jc suddenly increases in a weak magnetic field.
There is a problem that

【0005】この粒界弱接合の影響を低減するために
は、超電導体の結晶方向を一定方向に配向することが有
効である。即ち、こうした超電導体の結晶を如何に配向
させるかが実用化の鍵である。
In order to reduce the effect of weak grain boundary bonding, it is effective to orient the crystal direction of the superconductor in a fixed direction. That is, how to orient the crystal of such a superconductor is the key to practical use.

【0006】上記の配向の手法としては、基板上に薄い
超電導体層を堆積させることにより基板界面から配向し
た結晶を形成させる方法が有効である。
As a method of the above-mentioned orientation, a method of depositing a thin superconductor layer on the substrate to form oriented crystals from the interface of the substrate is effective.

【0007】また、こうした薄膜法を用いて線材化を行
う場合、超電導体層の厚さは0.1〜5μmであり、こ
れを坦持する金属基材の厚さは10〜100μmで、そ
のために線材オーバーオールでのJcは低いものとなっ
てしまう。そこで、如何に薄い金属基材に成膜を行い、
連続的に成膜するかが課題となる。
When a wire is formed using such a thin film method, the thickness of the superconductor layer is 0.1 to 5 μm, and the thickness of the metal base material carrying the superconductor layer is 10 to 100 μm. Moreover, the Jc of the wire rod overall is low. Therefore, how to form a film on a thin metal substrate,
The issue is whether to form films continuously.

【0008】現在、超電導線材の基材としては、銀及び
銀合金が有望なことが分かっている。しかし、薄い銀及
び銀合金基材に成膜を行った場合、強度が不足するため
にハンドリングが問題となり、実用可能な長尺線材の作
製は困難である。
At present, it has been found that silver and silver alloys are promising as the base material of the superconducting wire. However, when a film is formed on a thin silver or silver alloy base material, handling becomes a problem due to insufficient strength, and it is difficult to produce a practical long wire.

【0009】[0009]

【発明が解決しようとする課題】前記の従来技術による
線引き圧延法では、超電導線材中の結晶の方位がランダ
ムであり、結晶粒の粒界接合が粒界弱接合となりJcが
低下した。
In the wire-drawing rolling method according to the prior art described above, the orientation of the crystals in the superconducting wire is random, and the grain boundary bonding of the crystal grains becomes weak grain boundary bonding, resulting in a decrease in Jc.

【0010】これに対して、テープ状の金属基材上に薄
い超電導層を形成するプロセスでは、結晶がc軸及び面
内配向しているため、磁場でJcが急激に低下しない。
しかし、薄膜的な手法を用いて線材を作製する場合、基
材の厚さを減少させなければ、高いオーバーオールJc
を持つ線材を得ることはできない。
On the other hand, in the process of forming a thin superconducting layer on a tape-shaped metal substrate, since the crystals are oriented in the c-axis and in-plane, Jc does not drop sharply in the magnetic field.
However, when a wire rod is manufactured using a thin film method, unless the thickness of the base material is reduced, a high overall Jc is obtained.
You cannot get a wire rod with.

【0011】現在、超電導体の基材として用いられてい
る銀及び銀合金では、熱処理時に変形し、超電導体に
曲げ歪みを与える、コイル成形が困難などの問題があ
る。
At present, silver and silver alloys used as a base material for a superconductor have problems such as deformation during heat treatment, bending strain in the superconductor, and difficulty in coil forming.

【0012】本発明の目的は、酸化物超電導体を用い、
高いオーバーオールJcの酸化物超電導線材とその製法
を提供することにある。
An object of the present invention is to use an oxide superconductor,
An object is to provide a high overall Jc oxide superconducting wire and a method for producing the same.

【0013】本発明の他の目的は、上記超電導線材を用
いた超電導コイルや超電導磁石等の超電導機器を提供す
ることにある。
Another object of the present invention is to provide a superconducting device such as a superconducting coil or a superconducting magnet using the superconducting wire.

【0014】[0014]

【課題を解決するための手段】前記目的を達成する本発
明の要旨は次の通りである。
The gist of the present invention for achieving the above object is as follows.

【0015】〔1〕 金属またはセラッミクスからなる
基材の少なくとも表裏両面が、銀または銀合金層を介し
て酸化物超電導体層が形成されている酸化物超電導線
材。
[1] An oxide superconducting wire in which an oxide superconducting layer is formed on at least both front and back surfaces of a base material made of metal or ceramics with a silver or silver alloy layer interposed therebetween.

【0016】〔2〕 銀または銀合金からなるテープ状
基材に酸化物超電導体材料(またはその原料)を形成す
る工程と、金属またはセラミックスからなる基材の少な
くとも表裏両面に前記酸化物超電導体材料を形成したテ
ープ状基材を貼り合わせて複合化する工程と、これを焼
成することにより前記酸化物超電導体材料を超電導体化
する工程を含む酸化物超電導線材の製法。
[2] A step of forming an oxide superconductor material (or a raw material thereof) on a tape-shaped base material made of silver or a silver alloy, and the oxide superconductor on at least both front and back surfaces of the base material made of metal or ceramics. A process for producing an oxide superconducting wire, which comprises a step of laminating a tape-shaped base material on which a material is formed to form a composite, and a step of firing the composite material to make the oxide superconductor material a superconductor.

【0017】〔3〕 金属またはセラッミクスからなる
基材の少なくとも表裏両面に、銀または銀合金層を介し
て酸化物超電導体層が形成された酸化物超電導線材を巻
回してなる超電導コイル。
[3] A superconducting coil formed by winding an oxide superconducting wire having an oxide superconducting layer formed on at least both front and back surfaces of a base material made of metal or ceramics with a silver or silver alloy layer interposed therebetween.

【0018】〔4〕 金属またはセラッミクスからなる
基材の少なくとも表裏両面に、銀または銀合金層を介し
て酸化物超電導体層が形成された酸化物超電導線材を巻
回したものが、複数個積層形成されてなるコイルを備え
ている超電導磁石。
[4] A plurality of layers obtained by winding an oxide superconducting wire in which an oxide superconducting layer is formed with a silver or silver alloy layer interposed between at least both front and back surfaces of a base material made of metal or ceramics. A superconducting magnet having a formed coil.

【0019】本発明において、使用される酸化物超電導
体は、結晶のc軸が同じ方向に揃っているTl系、Bi
系、Y系超電導体が好ましい。
In the present invention, the oxide superconductor used is a Tl system or Bi system in which the c-axes of the crystals are aligned in the same direction.
And Y-based superconductors are preferred.

【0020】また、前記基材がAl、Ni、Cu−Al
合金、NiO、Al23、YSZ、SrTiO3、Mg
O、ZrO等から選ばれるものが用いられる。
The base material is Al, Ni, Cu-Al.
Alloy, NiO, Al 2 O 3 , YSZ, SrTiO 3 , Mg
A material selected from O, ZrO and the like is used.

【0021】以下に、本発明の酸化物超電導線材の構成
について、図面により具体的に説明する。
The structure of the oxide superconducting wire of the present invention will be specifically described below with reference to the drawings.

【0022】図1は、銀または銀合金からなる基材2上
に超電導体層3が形成されたものを、金属またはセラミ
ックスからなる基材1の両面に貼り合わせた超電導線材
の模式断面を示す。
FIG. 1 shows a schematic cross section of a superconducting wire in which a superconducting layer 3 formed on a base material 2 made of silver or a silver alloy is bonded to both sides of a base material 1 made of metal or ceramics. .

【0023】超電導体の熱処理工程において、基材1を
構成する材料が、基材2の銀または銀合金の結晶粒界か
ら拡散して超電導体と反応する恐れがあるので、基材1
を構成する金属またはセラミックス材料は安定なことが
要求される。そのため、Ni,Al,Cu−Alなど熱
処理によって酸化皮膜を形成し得る金属、NiO,Al
23,SrTiO3,MgO,ZrO等のセラッミクス
不織布、または、可撓性YSZを基材として用いる。
In the heat treatment step of the superconductor, the material forming the base material 1 may diffuse from the grain boundaries of the silver or silver alloy of the base material 2 and react with the superconductor.
It is required that the metal or ceramic material constituting the material is stable. Therefore, Ni, Al, Cu-Al, etc., which can form an oxide film by heat treatment, NiO, Al
A ceramics nonwoven fabric such as 2 O 3 , SrTiO 3 , MgO, ZrO or flexible YSZ is used as a base material.

【0024】この複合テープ状の超電導線は、超電導体
層の熱処理時における変形を抑制することができ、超電
導体層にマイクロクラック等の発生がなく、超電導特性
の良好なものを提供することができる。
This composite tape-shaped superconducting wire is capable of suppressing deformation of the superconducting layer during heat treatment, does not generate microcracks in the superconducting layer, and provides superconducting characteristics. it can.

【0025】本発明の酸化物超電導線材の具体的製法
は、酸化物超電導体材料(またはその原料)を溶媒に溶
解または分散させた液体中に浸漬、または、該液体を霧
状にしてテープ状の基材2上に堆積させることにより製
造した超電導体層を有する基材2を、基材1の両面に銀
ペーストで貼り合わせることで作製できる。
A specific method for producing the oxide superconducting wire of the present invention is to immerse the oxide superconducting material (or its raw material) in a liquid dissolved or dispersed in a solvent, or atomize the liquid to form a tape. The base material 2 having the superconductor layer produced by depositing on the base material 2 can be produced by bonding the both surfaces of the base material 1 with silver paste.

【0026】また、図1の模式断面図には、基材1の両
面にのみ基材2を介して超電導体層3を設けたものを示
したが、図2の模式断面図に示すように、基材1を基材
2と超電導体層3で包む構造のものがより信頼性が優れ
ているので好ましい。この場合は、基材1の約2倍の幅
の超電導体層3を形成した基材2を作製し、これをもっ
て基材1を包むことで作製することができる。
In the schematic cross-sectional view of FIG. 1, the superconductor layer 3 is provided only on both sides of the base material 1 with the base material 2 interposed therebetween. As shown in the schematic cross-sectional view of FIG. It is preferable that the base material 1 has a structure in which the base material 2 and the superconductor layer 3 are wrapped around the base material 1 because the reliability is more excellent. In this case, the base material 2 can be manufactured by forming the base material 2 on which the superconductor layer 3 having a width about twice that of the base material 1 is formed and wrapping the base material 1 with this.

【0027】上記に対し、基材1の片面にのみ基材2を
介して超電導体層3を形成した超電導線材(比較例)で
は、超電導体層3と基材1,2の熱膨張係数が異なるた
めに超電導体層にマイクロクラックが生じ易く、表1か
ら明らかなように、Ni基合金に銀を介してTl系超電
導体層を形成した線材のJcにかなりの差があることが
分かる。
On the other hand, in the superconducting wire (comparative example) in which the superconductor layer 3 is formed only on one surface of the base material 1 with the base material 2 interposed therebetween, the coefficient of thermal expansion of the superconductor layer 3 and the base materials 1 and 2 is large. Since they are different, microcracks are likely to occur in the superconductor layer, and as is clear from Table 1, it can be seen that there is a considerable difference in Jc of the wire material in which the Tl-based superconductor layer is formed on the Ni-based alloy via silver.

【0028】また、本発明では超電導体層の膜厚は、1
0μmまで膜厚とIcがほぼ比例関係を示しているのに
対し、比較例ではIc値が低い価を示している。
In the present invention, the film thickness of the superconductor layer is 1
While the film thickness and Ic show a nearly proportional relationship up to 0 μm, the comparative example shows a low Ic value.

【0029】[0029]

【表1】 [Table 1]

【0030】次に、本発明の超電導線材の浸漬塗布法に
よる製造装置の一例を図3の模式図で説明する。
Next, an example of an apparatus for manufacturing the superconducting wire according to the present invention by the dip coating method will be described with reference to the schematic view of FIG.

【0031】超電導体材料(またはその原料)を溶媒に
溶解または分散させたスラリー16に、片側にマスキン
グテープ14を貼った銀または銀合金からなるテープ状
の基材2を連続的に接触(この場合浸漬)させて、基材
2上に堆積させる。次に、マスキングテープ14を除去
することにより、銀または銀合金からなるテープ状の基
材2の一方の面を露出させ、この面に金属またはセラミ
ックスからなる基材1を接触させる。こうして基材1に
超電導体層3を設けた基材2を連続的に貼り合わせる
か、包囲,接着して、複合テープ状基材7を作製する。
次いで、所定の条件で熱処理を行うことにより、超電導
体線材を作製することができる。
A tape-shaped substrate 2 made of silver or a silver alloy having a masking tape 14 on one side is continuously contacted with a slurry 16 in which a superconductor material (or a raw material thereof) is dissolved or dispersed in a solvent (this). If so, it is deposited on the base material 2. Next, by removing the masking tape 14, one surface of the tape-shaped base material 2 made of silver or a silver alloy is exposed, and the base material 1 made of metal or ceramics is brought into contact with this surface. In this way, the base material 2 provided with the superconductor layer 3 on the base material 1 is continuously bonded, surrounded, or adhered to produce the composite tape-shaped base material 7.
Then, a heat treatment is performed under predetermined conditions to produce a superconductor wire.

【0032】また、図4は、本発明の超電導線材のスプ
レーパイロリシス法による製造装置の一例を示す模式図
である。
FIG. 4 is a schematic view showing an example of an apparatus for producing the superconducting wire according to the present invention by the spray pyrolysis method.

【0033】超電導体材料(またはその原料)を溶媒に
溶解または分散させたミスト18を、銀または銀合金か
らなるテープ状の基材2上に噴霧して堆積させる。次
に、前記と同様にして基材1に連続的に貼り合わせる
か、包囲,接着することで複合テープ状基材7(超電導
体線材)を作製することができる。次いで、所定の条件
で熱処理を行うことにより、超電導体線材を作製するこ
とができる。
A mist 18 in which a superconductor material (or its raw material) is dissolved or dispersed in a solvent is sprayed and deposited on a tape-shaped substrate 2 made of silver or a silver alloy. Next, the composite tape-shaped base material 7 (superconductor wire) can be produced by continuously bonding, enclosing, or adhering to the base material 1 in the same manner as described above. Then, a heat treatment is performed under predetermined conditions to produce a superconductor wire.

【0034】[0034]

【作用】本発明の超電導線材が優れた超電導特性を示す
のは、セラミックス等の基材1の表裏両面に、銀または
銀合金からなる基材2を介して同じ構成材料,ほぼ同じ
膜厚の超電導体層によって挾持された構成としたことに
ある。これによって、基材1,基材2および超電導体層
の熱膨張係数の違いに基づく反りや変形が相殺されるた
めに、その超電導特性を向上できたものと考える。
The superconducting wire of the present invention has excellent superconducting properties because it has the same constituent material and almost the same film thickness on both front and back surfaces of the base material 1 such as ceramics through the base material 2 made of silver or silver alloy. The structure is sandwiched between the superconductor layers. As a result, the warpage and deformation due to the difference in the coefficient of thermal expansion of the base material 1, the base material 2 and the superconductor layer are offset, so that the superconducting characteristics can be improved.

【0035】本発明の超電導体層はテープ状基材2上で
作製された薄膜からなり、超電導体の結晶が配向して超
電導線材となる。
The superconductor layer of the present invention comprises a thin film formed on the tape-shaped substrate 2, and the crystals of the superconductor are oriented to form a superconducting wire.

【0036】[0036]

【実施例】以下、本発明を実施例に基づき説明する。EXAMPLES The present invention will be described below based on examples.

【0037】〔実施例 1〕 工程1 超電導体材料として、Bi23、SrCO3、CaC
3、CuOをモル比で2:2:1:2に混合し、81
0℃で12時間仮焼,粉砕する工程を2回繰り返した。
この粉末がXRDからBi−2212相であることを確
認した。
Example 1 Step 1 As a superconductor material, Bi 2 O 3 , SrCO 3 and CaC were used.
O 3 and CuO were mixed at a molar ratio of 2: 2: 1: 2, and 81
The process of calcination and crushing for 12 hours at 0 ° C. was repeated twice.
It was confirmed from XRD that this powder had a Bi-2212 phase.

【0038】工程2 上記粉末をバインダーとしてポリビニルブチラールを配
合したトリクロロエチレン溶液に分散し、これに、片側
にマスキングテープを貼った厚さ30μm×幅20mm
×長さ5mの銀テープからなる基材2を浸漬し、1m/
分の速度で基材2を移動させ、厚さ100μmの超電導
体膜を付着形成した後、マスキングテープを除去した。
Step 2 The above powder was dispersed in a trichlorethylene solution containing polyvinyl butyral as a binder, and a masking tape was attached to one side of the solution to a thickness of 30 μm and a width of 20 mm.
× Immerse the base material 2 made of a silver tape having a length of 5 m, and
The substrate 2 was moved at a speed of a minute to deposit and form a 100 μm thick superconductor film, and then the masking tape was removed.

【0039】工程3 900℃で5時間熱処理することにより、NiO酸化皮
膜を形成した厚さ10μm×幅20mm×長さ5mのN
iテープからなる基材1の両面に、前記の銀テープ基材
2上に前記超電導体膜が付着したものを銀ペーストで接
着し、複合超電導体テープを作製した。
Step 3 Heat treatment was performed at 900 ° C. for 5 hours to form a NiO oxide film, and the thickness of N was 10 μm × width 20 mm × length 5 m.
A composite superconducting tape was produced by adhering, on both surfaces of the base material 1 made of i-tape, the silver tape base material 2 on which the superconducting film was adhered with a silver paste.

【0040】工程4 前記の複合超電導体テープを、厚さ100μmのポリテ
トラフロロエチレン(PTFE)シートを超電導体膜面
に挟んで、内径約10mm×外径約100mmの大きさ
に巻き取り成形し、150℃で30分乾燥後、PTFE
シートを取り除いて成形複合超電導体テープを得た。
Step 4 The composite superconducting tape described above is wound into a size of about 10 mm inner diameter × about 100 mm outer diameter with a polytetrafluoroethylene (PTFE) sheet having a thickness of 100 μm sandwiched between the superconducting film surfaces. After drying at 150 ℃ for 30 minutes, PTFE
The sheet was removed to obtain a molded composite superconductor tape.

【0041】工程5 前記成形複合超電導体テープを、熱処理(大気中で50
0℃から885℃に1.5時間かけて昇温、885℃で
10分保持、5時間かけて835℃まで降温、1時間保
持後、室温まで3時間で降温)して、Bi−2212超
電導線材を作製した。
Step 5 The molded composite superconducting tape is heat treated (50
The temperature was raised from 0 ° C. to 885 ° C. over 1.5 hours, held at 885 ° C. for 10 minutes, cooled down to 835 ° C. over 5 hours, held for 1 hour, and then cooled down to room temperature in 3 hours) to obtain Bi-2212 superconductivity. A wire rod was produced.

【0042】これのXRDによる分析の結果、超電導体
の主結晶相がBi−2212相で、(00n)の回折ピ
ークが強く、結晶がc軸配向していることを確認した。
As a result of XRD analysis, it was confirmed that the main crystal phase of the superconductor was the Bi-2212 phase, the (00n) diffraction peak was strong, and the crystal was c-axis oriented.

【0043】〔実施例 2〕 工程1 超電導体材料として、Bi23、SrCO3、CaC
3、CuOをモル比で2:2:2:3に混合し、81
0℃で12時間仮焼,粉砕する工程を2回繰り返した。
この粉末がXRDからBi−2223相であることを確
認した。
Example 2 Step 1 As a superconductor material, Bi 2 O 3 , SrCO 3 and CaC were used.
O 3 and CuO were mixed at a molar ratio of 2: 2: 2: 3, and 81
The process of calcination and crushing for 12 hours at 0 ° C. was repeated twice.
It was confirmed from XRD that this powder had a Bi-2223 phase.

【0044】工程2、3及び4 実施例1と同様に行い、成形複合超電導体テープを作製
した。
Steps 2, 3 and 4 A molded composite superconductor tape was prepared in the same manner as in Example 1.

【0045】工程5 前記成形複合超電導体テープを、熱処理(アルゴン8%
酸素中で835℃,100時間加熱)して、Bi−22
23超電導線材を作製した。
Step 5 The molded composite superconducting tape was heat-treated (argon 8%).
(Heated in oxygen at 835 ° C for 100 hours) to give Bi-22
23 superconducting wire was produced.

【0046】これのXRDによる分析の結果、超電導体
の主結晶相がBi−2223相で、(00n)の回折ピ
ークが強く、結晶がc軸配向していることを確認した。
As a result of XRD analysis, it was confirmed that the main crystal phase of the superconductor was Bi-2223 phase, the (00n) diffraction peak was strong, and the crystal was c-axis oriented.

【0047】〔実施例 3〕 工程1 超電導体材料として、(BaCO3またはSrCO3)、
CaCO3、CuOをモル比で2:1:2に混合し、8
40℃で12時間仮焼,粉砕する工程を2回繰り返し
た。
Example 3 Step 1 As a superconductor material, (BaCO 3 or SrCO 3 ),
Mix CaCO 3 and CuO in a molar ratio of 2: 1: 2,
The process of calcination and crushing for 12 hours at 40 ° C. was repeated twice.

【0048】工程2 実施例1の工程2と同様にして、厚さ30μm×幅20
mm×長さ5mの銀テープからなる基材2上に厚さ10
μmの超電導体を付着形成した。
Step 2 In the same manner as in Step 2 of Example 1, thickness 30 μm × width 20
10 mm thick on the base material 2 made of silver tape of 5 mm length x 5 mm
A μm superconductor was deposited.

【0049】工程3及び4 実施例1と同様に行い、成形複合超電導体テープを作製
した。
Steps 3 and 4 A molded composite superconductor tape was prepared in the same manner as in Example 1.

【0050】工程5 前記成形複合超電導体テープを、熱処理(Tl蒸気を供
給しながら純酸素中で820℃,10時間加熱)し、T
l−2212超電導線材を作製した。
Step 5 The molded composite superconducting tape is heat-treated (heated at 820 ° C. for 10 hours in pure oxygen while supplying Tl vapor) to obtain T.
The 1-222 superconducting wire was produced.

【0051】これのXRDによる分析の結果、超電導体
の主結晶相がTl−2212相で、(00n)の回折ピ
ークが強く、結晶がc軸配向していることを確認した。
As a result of XRD analysis, it was confirmed that the main crystal phase of the superconductor was the T1-2212 phase, the (00n) diffraction peak was strong, and the crystal was c-axis oriented.

【0052】〔実施例 4〕 工程1 超電導体材料として、(BaCO3またはSrCO3)、
CaCO3、CuOをモル比で2:2:3に混合し、8
40℃で12時間仮焼,、粉砕する工程を2回繰り返し
た。
Example 4 Step 1 As a superconductor material, (BaCO 3 or SrCO 3 ),
CaCO 3 and CuO were mixed in a molar ratio of 2: 2: 3, and 8
The process of calcination at 40 ° C. for 12 hours and crushing was repeated twice.

【0053】工程2,3及び4 実施例3と同様に行い、成形複合超電導体テープを作製
した。
Steps 2, 3 and 4 A molded composite superconductor tape was prepared in the same manner as in Example 3.

【0054】工程5 前記成形複合超電導体テープを、熱処理(Tl蒸気を供
給しながら純酸素中で850℃,10時間加熱)し、T
l−2223超電導線材を作製した。
Step 5 The molded composite superconductor tape is heat-treated (heated in pure oxygen at 850 ° C. for 10 hours while supplying Tl vapor) to give T.
A 1-222 superconducting wire was produced.

【0055】これのXRDによる分析の結果、超電導体
の主結晶相がTl−2223相で、(00n)の回折ピ
ークが強く、結晶がc軸配向していることを確認した。
As a result of XRD analysis, it was confirmed that the main crystal phase of the superconductor was the Tl-2223 phase, the (00n) diffraction peak was strong, and the crystal was c-axis oriented.

【0056】〔実施例 5〕 工程1〜4 実施例4と同様に行い、成形複合超電導体テープを作製
した。
[Example 5] Steps 1 to 4 The same procedure as in Example 4 was carried out to produce a molded composite superconductor tape.

【0057】工程5 前記成形複合超電導体テープを、熱処理(Tl蒸気及び
Pb蒸気を供給しながら純酸素中で850℃,10時間
加熱)し、Tl−1223超電導線材を作製した。
Step 5 The molded composite superconductor tape was heat-treated (heated in pure oxygen at 850 ° C. for 10 hours while supplying Tl vapor and Pb vapor) to prepare a T-1223 superconducting wire.

【0058】これのXRDによる分析の結果、超電導体
の主結晶相はTl−1223相で、(00n)の回折ピ
ークが強く、がc軸配向していることを確認した。
As a result of XRD analysis, it was confirmed that the main crystal phase of the superconductor was the Tl-1223 phase, the (00n) diffraction peak was strong, and was oriented along the c-axis.

【0059】〔実施例 6〕 工程1 Y:Ba:Cuをモル比で1:2:3に混合し、アセチ
ルアセトナート,ピリジン及びプロピオン酸の混合溶媒
に溶解した後、エバポレータで溶媒の殆どを除き、残渣
をメタノール溶液とした。
Example 6 Step 1 Y: Ba: Cu was mixed at a molar ratio of 1: 2: 3 and dissolved in a mixed solvent of acetylacetonate, pyridine and propionic acid, and most of the solvent was evaporated with an evaporator. The residue was removed to give a methanol solution.

【0060】工程2 前記メタノール溶液を片側にマスキングテープを貼った
厚さ30μm×幅20mm×長さ5mの銀テープからな
る基材2に浸漬塗布後、空気中で500℃まで25分で
昇温する工程を、基材2上に膜厚2〜3μmの前駆体が
成膜できるまで繰り返した後、マスキングテープを除去
した。
Step 2 The above methanol solution is applied by dipping onto a base material 2 made of a silver tape having a thickness of 30 μm × a width of 20 mm × a length of 5 m, which has a masking tape attached on one side, and then heated in air to 500 ° C. in 25 minutes. The above step was repeated until a precursor having a film thickness of 2 to 3 μm could be formed on the base material 2, and then the masking tape was removed.

【0061】工程3及び4 実施例1の工程3,4と同様にして成形複合超電導体テ
ープを作製した。
Steps 3 and 4 A molded composite superconductor tape was produced in the same manner as in Steps 3 and 4 of Example 1.

【0062】工程5 前記の成形複合超電導体テープを、酸素分圧2×10~4
atmの雰囲気中で770℃,20時間の熱処理を行った
後、純酸素中で770℃,0.5時間の熱処理を行い、
2.5時間かけて室温まで降温し、Y−123超電導線
材を作製した。
Step 5 An oxygen partial pressure of 2 × 10 4 was applied to the above-mentioned molded composite superconductor tape.
After heat treatment at 770 ° C for 20 hours in an atmosphere of atm, heat treatment at 770 ° C for 0.5 hour in pure oxygen,
The temperature was lowered to room temperature over 2.5 hours to produce a Y-123 superconducting wire.

【0063】これのXRDによる分析の結果、超電導体
の主結晶相がY−123相で、(00n)の回折ピーク
が強く、結晶がc軸配向していることを確認した。
As a result of XRD analysis, it was confirmed that the main crystal phase of the superconductor was the Y-123 phase, the (00n) diffraction peak was strong, and the crystal was c-axis oriented.

【0064】〔実施例 7〕 工程1 Bi:Sr:Ca:Cuをモル比で2:2:1:2に混
合し、アセチルアセトナート,ピリジン及びプロピオン
酸の混合溶媒に溶解した後、エバポレータで溶媒の殆ど
を除き、残渣をメタノール溶液とした。
Example 7 Step 1 Bi: Sr: Ca: Cu was mixed at a molar ratio of 2: 2: 1: 2, dissolved in a mixed solvent of acetylacetonate, pyridine and propionic acid, and then evaporated with an evaporator. Most of the solvent was removed and the residue was made into a methanol solution.

【0065】工程2〜4 実施例6の工程2〜4と同様にして成形複合超電導体テ
ープを作製した。
Steps 2-4 A molded composite superconductor tape was produced in the same manner as in Steps 2-4 of Example 6.

【0066】工程5 前記の成形複合超電導体テープを、酸素分圧2×10~4
atmの雰囲気中で770℃,20時間の熱処理を行った
後、大気中で500℃から885℃に1.5時間で昇
温、885℃で10分保持、5時間で835℃まで降
温、1時間保持した後、室温まで3時間で降温し、Bi
−2212超電導線材を作製した。
Step 5 An oxygen partial pressure of 2 × 10 4 was applied to the above-mentioned molded composite superconductor tape.
After performing a heat treatment at 770 ° C for 20 hours in an atmosphere of atm, raise the temperature from 500 ° C to 885 ° C in the atmosphere for 1.5 hours, hold at 885 ° C for 10 minutes, lower the temperature to 835 ° C in 5 hours, 1 After holding for 2 hours, the temperature is lowered to room temperature in 3 hours.
-21212 superconducting wire was produced.

【0067】これのXRDによる分析の結果、超電導体
の主結晶相がBi−2212相で、(00n)の回折ピ
ークが強く、結晶がc軸配向していることを確認した。
As a result of XRD analysis, it was confirmed that the main crystal phase of the superconductor was the Bi-2212 phase, the (00n) diffraction peak was strong, and the crystal was c-axis oriented.

【0068】〔実施例 8〕 工程1 Bi:Sr:Ca:Cuをモル比で2:2:2:3に混
合し、実施例7の工程1と同様にしてメタノール溶液を
得た。
[Example 8] Step 1 Bi: Sr: Ca: Cu were mixed at a molar ratio of 2: 2: 2: 3, and a methanol solution was obtained in the same manner as in Step 1 of Example 7.

【0069】工程2〜4 実施例6の工程2〜4と同様にして成形複合超電導体テ
ープを作製した。
Steps 2-4 A molded composite superconductor tape was produced in the same manner as in Steps 2-4 of Example 6.

【0070】工程5 前記の成形複合超電導体テープを、酸素分圧2×10~4
atmの雰囲気中で770℃,20時間の熱処理を行った
後、アルゴン8%酸素中で835℃,100時間加熱
し、Bi−2223超電導線材を作製した。
Step 5 An oxygen partial pressure of 2 × 10 4 was applied to the above-mentioned molded composite superconductor tape.
After performing heat treatment at 770 ° C. for 20 hours in an atmosphere of atm, heating was performed in argon 8% oxygen at 835 ° C. for 100 hours to produce a Bi-2223 superconducting wire.

【0071】これのXRDによる分析の結果、超電導体
の主結晶相がBi−2223相で、(00n)の回折ピ
ークが強く、結晶がc軸配向していることを確認した。
As a result of XRD analysis, it was confirmed that the main crystal phase of the superconductor was Bi-2223 phase, the (00n) diffraction peak was strong, and the crystal was c-axis oriented.

【0072】〔実施例 9〕 工程1 Ba、Ca、Cuの金属ナフテン酸塩をBa:Ca:C
uのモル比で2:1:2に混合し、トルエン溶液とし
た。
Example 9 Step 1 Ba, Ca and Cu metal naphthenates were mixed with Ba: Ca: C.
It was mixed at a molar ratio of u of 2: 1: 2 to prepare a toluene solution.

【0073】工程2〜4 実施例6の工程2〜4と同様にして成形複合超電導体テ
ープを作製した。
Steps 2-4 A molded composite superconductor tape was produced in the same manner as steps 2-4 of Example 6.

【0074】工程5 前記の成形複合超電導体テープを、熱処理(Tl蒸気を
供給しながら純酸素中で820℃,10時間加熱)し、
Tl−2212超電導線材を作製した。
Step 5 The above-mentioned molded composite superconductor tape was heat-treated (heating in pure oxygen at 820 ° C. for 10 hours while supplying Tl vapor),
A T1-2212 superconducting wire was produced.

【0075】これのXRDによる分析の結果、超電導体
の主結晶相がTl−2212相で、(00n)の回折ピ
ークが強く、結晶がc軸配向していることを確認した。
As a result of XRD analysis, it was confirmed that the main crystal phase of the superconductor was the T1-2212 phase, the (00n) diffraction peak was strong, and the crystal was c-axis oriented.

【0076】〔実施例 10〕 工程1 Ba、Ca、Cuの金属ナフテン酸塩をBa:Ca:C
uのモル比で2:2:2に混合し、トルエン溶液とし
た。
Example 10 Step 1 Ba, Ca and Cu metal naphthenates were mixed with Ba: Ca: C.
It was mixed at a molar ratio of u of 2: 2: 2 to prepare a toluene solution.

【0077】工程2〜4 実施例6の工程2〜4と同様にして成形複合超電導体テ
ープを作製した。
Steps 2-4 A molded composite superconductor tape was produced in the same manner as in Steps 2-4 of Example 6.

【0078】工程5 前記の成形複合超電導体テープを、熱処理(Tl蒸気を
供給しながら純酸素中で850℃,10時間加熱)し、
Tl−2223超電導線材を作製した。
Step 5 The molded composite superconductor tape is heat-treated (heating in pure oxygen at 850 ° C. for 10 hours while supplying Tl vapor),
A Tl-2223 superconducting wire was produced.

【0079】これのXRDによる分析の結果、超電導体
の主結晶相がTl−2223相で、(00n)の回折ピ
ークが強く、結晶がc軸配向していることを確認した。
As a result of XRD analysis, it was confirmed that the main crystal phase of the superconductor was the Tl-2223 phase, the (00n) diffraction peak was strong, and the crystal was c-axis oriented.

【0080】〔実施例 11〕 工程1 Ba、Ca、Cuの金属ナフテン酸塩をBa:Ca:C
uのモル比で2:2:3に混合し、トルエン溶液とし
た。
Example 11 Step 1 Ba, Ca, Cu metal naphthenate was added to Ba: Ca: C.
It was mixed at a molar ratio of u of 2: 2: 3 to prepare a toluene solution.

【0081】工程2〜4 実施例6の工程2〜4と同様にして成形複合超電導体テ
ープを作製した。
Steps 2-4 A molded composite superconductor tape was produced in the same manner as steps 2-4 of Example 6.

【0082】工程5 前記の成形複合超電導体テープを、熱処理(Tl蒸気及
びPb蒸気を供給しながら純酸素中で850℃,30時
間加熱)を行いTl−1223超電導線材を作製した。
Step 5 The molded composite superconductor tape was heat-treated (heating in pure oxygen at 850 ° C. for 30 hours while supplying Tl vapor and Pb vapor) to produce a T-1223 superconducting wire.

【0083】これのXRDによる分析の結果、超電導体
の主結晶相がTl−1223相で、(00n)の回折ピ
ークが強く、結晶がc軸配向していることを確認した。
As a result of XRD analysis, it was confirmed that the main crystal phase of the superconductor was the T1-1223 phase, the (00n) diffraction peak was strong, and the crystal was c-axis oriented.

【0084】〔実施例 12〕 工程1 Ba(NO2)2、Ca(NO2)2、Cu(NO2)2の硝酸塩
を、Ba:Ca:Cuの原子比が2:2:3となるよう
秤量し、0.05mol/lの水溶液を作製した。
Example 12 Step 1 Ba (NO 2 ) 2 , Ca (NO 2 ) 2 and Cu (NO 2 ) 2 nitrates have a Ba: Ca: Cu atomic ratio of 2: 2: 3. Were weighed to prepare an aqueous solution of 0.05 mol / l.

【0085】工程2 前記水溶液を超音波振動子により直径数μmの液滴に
し、ヒータで600℃に加熱した厚さ30μm×幅20
mm×長さ5mの銀テープ状基材2上に吹き付けた。こ
のとき基材2は速度10mm/時で移動させて連続成膜
を行い、約5μmの前駆体膜を形成した。
Step 2 The aqueous solution was made into droplets having a diameter of several μm by an ultrasonic oscillator, and heated to 600 ° C. by a heater, and the thickness was 30 μm × width 20
It was sprayed onto a silver tape-shaped substrate 2 having a length of mm × 5 m. At this time, the substrate 2 was moved at a speed of 10 mm / hour for continuous film formation to form a precursor film of about 5 μm.

【0086】工程3 実施例1の工程3と同様にして複合テープ状基材を作製
した。
Step 3 A composite tape-shaped substrate was produced in the same manner as in Step 3 of Example 1.

【0087】工程4 前記複合テープ状基材をアルミナボビンに巻き付けたも
のを熱処理(Tl蒸気を供給しながら純酸素中で850
℃,10時間加熱)し、Tl−1223超電導線材を作
製した。
Step 4 The composite tape-shaped substrate wound around an alumina bobbin is heat-treated (850 850 in pure oxygen while supplying Tl vapor).
(Temperature heating for 10 hours) to produce a Tl-1223 superconducting wire.

【0088】これのXRDによる分析の結果、超電導体
の主結晶相がTl−1223相で、(00n)の回折ピ
ークが強く、結晶がc軸配向していることを確認した。
As a result of XRD analysis, it was confirmed that the main crystal phase of the superconductor was the Tl-1223 phase, the (00n) diffraction peak was strong, and the crystals were c-axis oriented.

【0089】〔実施例 13〕 工程1〜3 実施例12の工程1〜3と同様にして複合テープ状基材
を作製した。
[Example 13] Steps 1 to 3 In the same manner as Steps 1 to 3 of Example 12, a composite tape-shaped substrate was produced.

【0090】工程4 前記複合テープ状基材をアルミナボビンに巻き付けたも
のを熱処理(Tl蒸気を供給しながら純酸素中で830
℃,10時間加熱)し、Tl−2223超電導線材を作
製した。
Step 4 The composite tape-shaped substrate wound around an alumina bobbin is heat treated (830 in pure oxygen while supplying Tl vapor).
(Heating at 10 ° C. for 10 hours) to produce a Tl-2223 superconducting wire.

【0091】これのXRDによる分析の結果、超電導体
の主結晶相がTl−2223相で、(00n)の回折ピ
ークが強く、結晶がc軸配向していることを確認した。
As a result of XRD analysis, it was confirmed that the main crystal phase of the superconductor was the Tl-2223 phase, the (00n) diffraction peak was strong, and the crystal was c-axis oriented.

【0092】〔実施例 14〕 工程1 Ba(NO2)2、Ca(NO2)2、Cu(NO2)2の硝酸塩
を、Ba:Ca:Cuの原子比が2:1:2となるよう
秤量し、0.05mol/lの水溶液を作製した。
[Example 14] Step 1 Ba (NO 2 ) 2 , Ca (NO 2 ) 2 and Cu (NO 2 ) 2 nitrates were used, and the atomic ratio of Ba: Ca: Cu was 2: 1: 2. Were weighed to prepare an aqueous solution of 0.05 mol / l.

【0093】工程2及び3 実施例12の工程2及び3と同様にして複合テープ状基
材を作製した。
Steps 2 and 3 In the same manner as steps 2 and 3 of Example 12, a composite tape-shaped substrate was produced.

【0094】工程4 前記複合テープ状基材をアルミナボビンに巻き付けたも
のを熱処理(Tl蒸気を供給しながら純酸素中で850
℃,10時間加熱)し、Tl−2212超電導線材を作
製した。
Step 4 The composite tape-shaped substrate wound around an alumina bobbin is heat treated (850 in pure oxygen while supplying Tl vapor).
(Heating at 10 ° C. for 10 hours) to produce a T1-2212 superconducting wire.

【0095】これのXRDによる分析の結果、超電導体
の主結晶相がTl−2212相で、(00n)の回折ピ
ークが強く、結晶がc軸配向していることを確認した。
As a result of XRD analysis, it was confirmed that the main crystal phase of the superconductor was the T1-2212 phase, the (00n) diffraction peak was strong, and the crystal was c-axis oriented.

【0096】〔実施例 15〕 工程1 Bi(NO2)3、Sr(NO2)2、Ca(NO2)2、Cu(N
2)2の硝酸塩を、Bi:Sr:Ca:Cuの原子比が
2:2:1:2となるように秤量し、0.05mol/
lの水溶液を作製した。
Example 15 Step 1 Bi (NO 2 ) 3 , Sr (NO 2 ) 2 , Ca (NO 2 ) 2 , Cu (N
O 2 ) 2 nitrate was weighed so that the atomic ratio of Bi: Sr: Ca: Cu was 2: 2: 1: 2, and 0.05 mol /
An aqueous solution of 1 was prepared.

【0097】工程2及び3 実施例12の工程2及び3と同様にして複合テープ状基
材を作製した。
Steps 2 and 3 In the same manner as Steps 2 and 3 of Example 12, a composite tape-shaped substrate was produced.

【0098】工程4 前記複合テープ状基材をアルミナボビンに巻き付けたも
のを熱処理(大気中で500℃から885℃に1.5時
間で昇温、885℃で10分保持、5時間で835℃ま
で降温、1時間保持後、室温まで3時間で降温)し、B
i−2212超電導線材を作製した。
Step 4 The composite tape-shaped substrate wound around an alumina bobbin was heat-treated (the temperature was raised from 500 ° C. to 885 ° C. in 1.5 hours in the air, held at 885 ° C. for 10 minutes, and maintained at 835 ° C. for 5 hours). After cooling down to room temperature for 1 hour, lowering to room temperature in 3 hours), B
An i-2212 superconducting wire was produced.

【0099】これのXRDによる分析の結果、超電導体
の主結晶相がBi−2212相で、(00n)の回折ピ
ークが強く、結晶がc軸配向していることを確認した。
As a result of XRD analysis, it was confirmed that the main crystal phase of the superconductor was Bi-2212 phase, the (00n) diffraction peak was strong, and the crystal was c-axis oriented.

【0100】〔実施例 16〕 工程1 Bi(NO2)3、Sr(NO2)2、Ca(NO2)2、Cu(N
2)2の硝酸塩を、Bi:Sr:Ca:Cuの原子比が
2:2:2:3となるように秤量し、0.05mol/
lの水溶液を作製した。
Example 16 Step 1 Bi (NO 2 ) 3 , Sr (NO 2 ) 2 , Ca (NO 2 ) 2 , Cu (N
The nitrate of O 2 ) 2 was weighed so that the atomic ratio of Bi: Sr: Ca: Cu was 2: 2: 2: 3, and 0.05 mol /
An aqueous solution of 1 was prepared.

【0101】工程2及び3 実施例12の工程2及び3と同様にして複合テープ状基
材を作製した。
Steps 2 and 3 In the same manner as Steps 2 and 3 of Example 12, a composite tape-shaped substrate was produced.

【0102】工程4 前記複合テープ状基材をアルミナボビンに巻き付けたも
のを熱処理(アルゴン8%酸素中で835℃,100時
間加熱)し、Bi−2223超電導線材を作製した。
Step 4 The composite tape-shaped substrate wound around an alumina bobbin was heat-treated (heated in argon 8% oxygen at 835 ° C. for 100 hours) to prepare a Bi-2223 superconducting wire.

【0103】これのXRDによる分析の結果、超電導体
の主結晶相がBi−2223相で、(00n)の回折ピ
ークが強く、結晶がc軸配向していることを確認した。
As a result of XRD analysis, it was confirmed that the main crystal phase of the superconductor was Bi-2223 phase, the (00n) diffraction peak was strong, and the crystal was c-axis oriented.

【0104】〔実施例 17〕前記各実施例で用いた銀
テープの基材2の代わりに、MgO等を入れたOxide-d
isprsive-alloyのAg−Mg合金テープからなる基材2
を用い、同様に複合超電導線材を作製した。その結果同
様な特性と、より機械的強度の大きなものを得ることが
できた。
[Example 17] Oxide-d containing MgO or the like in place of the base material 2 of the silver tape used in each of the above Examples.
Base material 2 made of isprsive-alloy Ag-Mg alloy tape
Using, the composite superconducting wire was produced in the same manner. As a result, it was possible to obtain the same characteristics and higher mechanical strength.

【0105】また、前記各実施例で作成した複合超電導
線材を複数個組み合わせた後、巻き締め、エポキシ樹脂
を含浸,硬化して超電導コイルを作製した。該超電導コ
イルの臨界電流密度は表1に記載した本発明の複合テー
プ状線材の臨界電流密度と同じであり、いずれも優れた
特性を示した。
Further, a plurality of composite superconducting wires prepared in the above-mentioned respective examples were combined, then wound, tightened, impregnated with epoxy resin and cured to prepare a superconducting coil. The critical current density of the superconducting coil was the same as the critical current density of the composite tape-shaped wire material of the present invention shown in Table 1, and all showed excellent characteristics.

【0106】[0106]

【発明の効果】本発明の複合超電導線材は、その基材の
表裏を同じ構成材料からなる超電導体層で挾持した構造
としたことで、基材と超電導体層との熱膨張係数の違い
に基づく反りや変形が少なく、超電導体層にクラック等
の発生が防止でき、優れた超電導特性のものを提供する
ことができる。
EFFECTS OF THE INVENTION The composite superconducting wire of the present invention has a structure in which the front and back of the base material are sandwiched by superconducting layers made of the same constituent material, so that the difference in thermal expansion coefficient between the base material and the superconducting layer It is possible to provide a material having excellent superconducting properties, which is less likely to warp or deform due to cracks, which can prevent cracks from occurring in the superconducting layer.

【0107】従って、磁場中で液体窒素により冷却,運
転される高い臨界電流密度の超電導線、超電導マグネッ
ト等の超電導機器を提供することができる。
Therefore, it is possible to provide a superconducting device such as a superconducting wire or a superconducting magnet having a high critical current density which is cooled and operated by liquid nitrogen in a magnetic field.

【0108】また、本発明の複合超電導線材を用いた超
電導機器は、液体窒素で冷却,運転が可能となるため、
冷却システム,断熱構造等を簡素化することができる。
Further, since the superconducting equipment using the composite superconducting wire of the present invention can be cooled and operated by liquid nitrogen,
The cooling system, heat insulation structure, etc. can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の超電導線材の模式断面図で
ある。
FIG. 1 is a schematic sectional view of a superconducting wire according to an embodiment of the present invention.

【図2】本発明の他の実施例の超電導線材の模式断面図
である。
FIG. 2 is a schematic sectional view of a superconducting wire according to another embodiment of the present invention.

【図3】本発明の超電導線材の浸漬塗布法による製造装
置の一例を示す模式構成図である。
FIG. 3 is a schematic configuration diagram showing an example of an apparatus for manufacturing a superconducting wire according to the present invention by a dip coating method.

【図4】本発明の超電導線材のスプレーパイロリシス法
による製造装置の一例を示す模式構成図である。
FIG. 4 is a schematic configuration diagram showing an example of an apparatus for manufacturing a superconducting wire according to the present invention by a spray pyrolysis method.

【符号の説明】[Explanation of symbols]

1…基材1(金属またはセラミックス)、2…基材2
(銀または銀合金)、3…超電導体層、4…基材1送り
出しスプール、5…基材2送り出しスプール、6…リー
ル、7…複合テープ状基材、8…複合テープ状基材巻取
りスプール、9…ヒーター、10…膜厚検出装置、11
…乾燥系、12…撹拌機、13…粘度計、14…マスキ
ングテープ、15…マスキングテープ巻取りリール、1
6…スラリー、17…原料タンク、18…ミスト、19
…霧化器、20…超音波振動子、21…搬送ガス供気
口、22…搬送ガス排気口。
1 ... Base material 1 (metal or ceramics), 2 ... Base material 2
(Silver or silver alloy), 3 ... Superconductor layer, 4 ... Substrate 1 delivery spool, 5 ... Substrate 2 delivery spool, 6 ... Reel, 7 ... Composite tape substrate, 8 ... Composite tape substrate winding Spool, 9 ... Heater, 10 ... Film thickness detection device, 11
... Drying system, 12 ... Stirrer, 13 ... Viscometer, 14 ... Masking tape, 15 ... Masking tape take-up reel, 1
6 ... Slurry, 17 ... Raw material tank, 18 ... Mist, 19
... atomizer, 20 ... ultrasonic transducer, 21 ... carrier gas supply port, 22 ... carrier gas exhaust port.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 金属またはセラッミクスからなる基材の
少なくとも表裏両面が、銀または銀合金層を介して酸化
物超電導体層が形成されていることを特徴とする酸化物
超電導線材。
1. An oxide superconducting wire, characterized in that an oxide superconducting layer is formed on at least both front and back surfaces of a base material made of metal or ceramics with a silver or silver alloy layer interposed therebetween.
【請求項2】 前記基材がAl、Ni、Cu−Al合
金、NiO、Al23、YSZ、SrTiO3、Mg
O、ZrOのいずれかで構成されている請求項1に記載
の酸化物超電導線材。
2. The base material is Al, Ni, Cu—Al alloy, NiO, Al 2 O 3 , YSZ, SrTiO 3 , Mg.
The oxide superconducting wire according to claim 1, which is composed of either O or ZrO.
【請求項3】 前記酸化物超電導体層が結晶のc軸が同
じ方向に揃っている酸化物超電導体である請求項1また
は2に記載の酸化物超電導線材。
3. The oxide superconducting wire according to claim 1, wherein the oxide superconductor layer is an oxide superconductor in which c-axes of crystals are aligned in the same direction.
【請求項4】 銀または銀合金からなるテープ状基材に
酸化物超電導体材料(またはその原料)を形成する工程
と、金属またはセラミックスからなる基材の少なくとも
表裏両面に前記酸化物超電導体材料を形成したテープ状
基材を貼り合わせて複合化する工程と、これを焼成する
ことにより前記酸化物超電導体材料を超電導体化する工
程を含むことを特徴とする酸化物超電導線材の製法。
4. A step of forming an oxide superconductor material (or a raw material thereof) on a tape-shaped base material made of silver or a silver alloy, and the oxide superconductor material on at least both front and back surfaces of the base material made of metal or ceramics. A method for producing an oxide superconducting wire, comprising: a step of laminating a tape-shaped base material on which is formed to form a composite; and a step of firing the composite material to make the oxide superconducting material a superconductor.
【請求項5】 前記銀または銀合金からなるテープ状基
材に酸化物超電導体材料(またはその原料)を形成する
にあたり、前記酸化物超電導体材料(またはその原料)
を溶媒に溶解または分散させた液体中に浸漬、または、
該液体を霧状にしてテープ状基材上に堆積させる請求項
4に記載の酸化物超電導線材の製法。
5. The oxide superconductor material (or its raw material) when forming the oxide superconductor material (or its raw material) on the tape-shaped substrate made of the silver or silver alloy.
Immersed in a liquid dissolved or dispersed in a solvent, or
The method for producing an oxide superconducting wire according to claim 4, wherein the liquid is atomized and deposited on a tape-shaped substrate.
【請求項6】 金属またはセラッミクスからなる基材の
少なくとも表裏両面に、銀または銀合金層を介して酸化
物超電導体層が形成された酸化物超電導線材を巻回して
なることを特徴とする超電導コイル。
6. A superconducting wire comprising an oxide superconducting wire formed by winding an oxide superconducting layer with a silver or silver alloy layer interposed between at least both front and back surfaces of a base material made of metal or ceramics. coil.
【請求項7】 金属またはセラッミクスからなる基材の
少なくとも表裏両面に、銀または銀合金層を介して酸化
物超電導体層が形成された酸化物超電導線材を巻回した
ものが、複数個積層形成されてなるコイルを備えている
ことを特徴とする超電導磁石。
7. A laminate of a plurality of layers obtained by winding an oxide superconducting wire having an oxide superconducting layer formed with a silver or silver alloy layer on at least both front and back surfaces of a base material made of metal or ceramics. A superconducting magnet having a coil formed by
JP7015769A 1995-02-02 1995-02-02 Oxide superconductive wire rod, its manufacture and superconductive coil using it Pending JPH08212846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7015769A JPH08212846A (en) 1995-02-02 1995-02-02 Oxide superconductive wire rod, its manufacture and superconductive coil using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7015769A JPH08212846A (en) 1995-02-02 1995-02-02 Oxide superconductive wire rod, its manufacture and superconductive coil using it

Publications (1)

Publication Number Publication Date
JPH08212846A true JPH08212846A (en) 1996-08-20

Family

ID=11898015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7015769A Pending JPH08212846A (en) 1995-02-02 1995-02-02 Oxide superconductive wire rod, its manufacture and superconductive coil using it

Country Status (1)

Country Link
JP (1) JPH08212846A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305386A (en) * 2006-05-10 2007-11-22 Sumitomo Electric Ind Ltd Superconducting wire rod, superconductor, superconducting apparatus, manufacturing method of the superconducting wire rod, and manufacturing method of the superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305386A (en) * 2006-05-10 2007-11-22 Sumitomo Electric Ind Ltd Superconducting wire rod, superconductor, superconducting apparatus, manufacturing method of the superconducting wire rod, and manufacturing method of the superconductor

Similar Documents

Publication Publication Date Title
EP1925040B1 (en) High temperature superconducting wires and coils
JP5101779B2 (en) Structure for high critical current superconducting tape
US7893006B2 (en) Systems and methods for solution-based deposition of metallic cap layers for high temperature superconductor wires
US6226858B1 (en) Method of manufacturing an oxide superconductor wire
Jergel Synthesis of high-Tc superconducting films by deposition from an aerosol
CA1305259C (en) Crystalline rare earth alkaline earth copper oxide thick film conductor
JP5513154B2 (en) Oxide superconducting wire and manufacturing method of oxide superconducting wire
JP2009503792A (en) Improved structure with high critical current density in YBCO coating
JP5415696B2 (en) Thick film superconducting film with improved functions
JP5799081B2 (en) Thick oxide film with single layer coating
JP2695561B2 (en) Method for manufacturing article made of metal body having superconductor layer
JPH08212846A (en) Oxide superconductive wire rod, its manufacture and superconductive coil using it
US5087607A (en) Process for preparing superconductive thick films
JP2877367B2 (en) Superconducting wire
US5189010A (en) Process for preparing superconductive thick films
JP3099891B2 (en) Superconducting material
JP2813287B2 (en) Superconducting wire
JPH09275009A (en) Plate-shaped conductor with triaxial orientation oxide superconductors and laminated superconductive magnet
JP2654555B2 (en) Superconducting device manufacturing method
JPH01151110A (en) Manufacture of oxide system superconductive film
YAMAMOTO et al. THE RECENT PROGRESS IN THE DEVELOPMENT ON HIGH-TEMPERATURE SUPERCONDUCTORS WITHIN MITSUBISHI CABLE INDUSTRIES, LTD. K. YAMAMOTO, J. KAI, A. OKUHARA, Y. TAKADA, H. KATO and M. HIRAOKA Central research laboratory
Beauquis et al. Coated conductors and HTS materials by chemical deposition processes
JPH01151111A (en) Manufacture of oxide system superconductive film
JPH03252007A (en) Oxide superconductor and manufacture thereof
YAMAMOTO et al. THE RECENT PROGRESS IN THE DEVELOPMENT ON HIGH-TEMPERATURE SUPERCONDUCTORS WITHIN MITSUBISHI CABLE INDUSTRIES, LTD.