JPH01151110A - Manufacture of oxide system superconductive film - Google Patents

Manufacture of oxide system superconductive film

Info

Publication number
JPH01151110A
JPH01151110A JP62309999A JP30999987A JPH01151110A JP H01151110 A JPH01151110 A JP H01151110A JP 62309999 A JP62309999 A JP 62309999A JP 30999987 A JP30999987 A JP 30999987A JP H01151110 A JPH01151110 A JP H01151110A
Authority
JP
Japan
Prior art keywords
film
oxide
layer
superconducting
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62309999A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Ikeno
池野 義光
Tsukasa Kono
河野 宰
Koichi Saruwatari
猿渡 光一
Seiju Maejima
正受 前嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62309999A priority Critical patent/JPH01151110A/en
Publication of JPH01151110A publication Critical patent/JPH01151110A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To manufacture an oxide system superconductive film having nonorientation, a thick film thickness, and a high critical temperature by laminating film bodies with a series of processes composed of a film forming process and a heat treatment process repeated two times or more, and also changing an application direction in the film forming process at every film body. CONSTITUTION:A film body B1, composed of an oxide superconductor or its precursor body, of the first layer is formed with a given film thickness on a base substrate A. Then a heat treatment is applied to the body B1. After that a film body B2 of the second layer, a film body B3 of the third layer... a film body Bn, are laminated in order on the body B1 with the series of processes, composed of a film forming process and a heat treatment process forming such body B1, repeated required times. In this case, an application direction is made to a cross direction to the application direction of the body B, of the first layer when the body B2 of the second layer is formed by an application method. Similarly, the application direction in the body B3 of the third layer is made to cross the application direction of the body B2 of the second layer. An oxide system superconductive film B composed of film bodies B1, B2... Bn is manufactured on the base substrate A with the application direction changed at every film body in the same manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばジョセフソン素子、超電導記憶素子等
の超電導デバイス、超電導マグネット用コイル、超電導
磁気シールド材などに使用可能な酸化物系超電導膜の製
造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides an oxide-based superconducting film that can be used for superconducting devices such as Josephson elements and superconducting memory elements, coils for superconducting magnets, superconducting magnetic shielding materials, etc. Relating to a manufacturing method.

〔従来の技術〕[Conventional technology]

近時、常電導状態から超電導状態に遷移する臨界温度(
T c)が液体窒素温度以上の高い値を示す酸化物系の
超電導体が種々発見されつつある。
Recently, the critical temperature at which the normal conducting state transitions to the superconducting state (
Various oxide-based superconductors are being discovered that exhibit a high value of T c) higher than the liquid nitrogen temperature.

このような酸化物系超電導体は、例えばA−B−Cu−
0系(但し、AはY、Sc、La、Yb、Er、Eu。
Such oxide-based superconductors are, for example, A-B-Cu-
0 series (However, A is Y, Sc, La, Yb, Er, Eu.

Ho、Dy等の周期律表第111a族元素を1種あるい
は2種以上を表し、BはBe、Mg、Ca、Sr、Ba
等の周期律表第1Ia族元素を1種あるいは2種以上を
表す)のものであり、液体ヘリウムで冷却することが必
要であった従来の合金系あるいは金属間化合物系の超電
導体に比べて格段に有利な冷却条件で使用できることか
ら、実用上極めて有望な超電導線材料とされている。
Represents one or more elements of group 111a of the periodic table such as Ho and Dy, and B represents Be, Mg, Ca, Sr, and Ba.
(expressing one or more elements of Group 1Ia of the periodic table), compared to conventional alloy-based or intermetallic compound-based superconductors that required cooling with liquid helium. Because it can be used under extremely advantageous cooling conditions, it is considered to be an extremely promising superconducting wire material in practical use.

そして、この種の酸化物系超電導体を製造するには、例
えばY−Ba−Cu−0系超電導体の場合、Y、03粉
末とB a CO!l粉末とCu2O粉末を所定の割合
で混合して混合粉末を得、次いでこの混合粉末をそのま
まあるいはこの混合粉末をスラリーまたはペーストとし
たうえ、チタン酸ストロンヂウム等からなる基板上に特
定方向に沿って塗布して膜体を形成し、次いでこの膜体
に酸素雰囲気中で熱処理を施すことによって基板上に酸
化物系超電導膜を生成させる方法などが知られている。
In order to manufacture this kind of oxide-based superconductor, for example, in the case of a Y-Ba-Cu-0 based superconductor, Y,03 powder and B a CO! A mixed powder is obtained by mixing L powder and Cu2O powder at a predetermined ratio, and then this mixed powder is used as it is or this mixed powder is made into a slurry or paste, and then applied along a specific direction onto a substrate made of strondium titanate, etc. A method is known in which an oxide-based superconducting film is formed on a substrate by coating to form a film body and then subjecting the film body to heat treatment in an oxygen atmosphere.

この方法によれば、基板」二に、高い臨界温度や臨界電
流密度などを示す酸化物系超電導膜を製造することが可
能である。
According to this method, it is possible to manufacture an oxide-based superconducting film exhibiting a high critical temperature, critical current density, etc. on the substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような製造方法では、得られる酸化
物系超電導膜の膜厚が数μR程度と非常に薄いことから
、例えば酸化物系超電導膜の厚さ方向に直交する方向に
流せる臨界電流(Ic)の容量が極めて小さく、このた
め実用に供し得る程度のTc値を示す酸化物系超電導膜
を製造するのが難しい問題があった。また、この製造方
法では、前記混合粉末あるいはスラリーまたはペースト
の塗布方向を特定して膜体を形成するため、得られる膜
厚の薄い超電導膜が特定方向に配向し昌い。
However, in such a manufacturing method, the thickness of the obtained oxide-based superconducting film is very thin, on the order of several μR, and therefore, for example, the critical current (Ic ) has an extremely small capacity, which makes it difficult to produce an oxide-based superconducting film that has a Tc value that can be put to practical use. In addition, in this manufacturing method, since the film body is formed by specifying the direction in which the mixed powder, slurry, or paste is applied, the resulting thin superconducting film is oriented in a specific direction.

このため、上記の超電導膜を例えば磁気シールドに使用
した場合に、上記超電導膜による完全反磁性が不十分な
ために、十分な磁気シールド効果を得ることができない
問題もあった。
For this reason, when the above superconducting film is used, for example, as a magnetic shield, there is a problem that a sufficient magnetic shielding effect cannot be obtained because the superconducting film has insufficient perfect diamagnetic properties.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明は、基体上に酸化物超電導体あるいは酸
化物超電導体の前駆体からなる膜体を塗布法により形成
する成膜工程と、該膜体を加熱する熱処理工程とからな
る一連の工程を2回以上繰り返して膜体を順次積層する
とともに、前記成膜工程での塗布方向を膜体ごとに変え
ることにより、全体として無配向で、しかも大きなIc
値を示し得る膜厚の厚い酸化物系超電導膜が得られるよ
うにした。
Therefore, the present invention provides a series of steps consisting of a film formation step of forming a film body made of an oxide superconductor or a precursor of an oxide superconductor on a substrate by a coating method, and a heat treatment step of heating the film body. By repeating this process two or more times to sequentially laminate the film bodies, and by changing the coating direction for each film body in the film forming process, it is possible to achieve an overall non-oriented and large Ic.
A thick oxide-based superconducting film capable of exhibiting a certain value can be obtained.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

この例では、まず第1図に示すように基体Aを用意する
。この基体Aには、例えば板材、線材、テープ材、筒状
体、柱状体など種々の形状のものが用いられる。そして
、このような基体Aの形成材料としては、例えば銀、金
、白金、ステンレス、アルミニウム、銅等の金属材料、
これらの合金材料、上記金属または合金材料の窒化物や
炭化物、ヂタン酸ストロンチウム、アルミナ、シリコン
、シリカ、ニオブ酸リチウム、サファイア、ルビー等の
結晶材料などが好適に用いられる。
In this example, first, a substrate A is prepared as shown in FIG. The substrate A may be of various shapes, such as a plate, a wire, a tape, a cylinder, or a column. Examples of materials for forming the base A include metal materials such as silver, gold, platinum, stainless steel, aluminum, and copper;
These alloy materials, nitrides and carbides of the above-mentioned metals or alloy materials, and crystalline materials such as strontium ditanate, alumina, silicon, silica, lithium niobate, sapphire, and ruby are preferably used.

次に、このような基体A上に酸化物超電導体あるいはそ
の前駆体からなる第1層目の膜体B1を所定の膜厚で形
成する。ここでの酸化物超電導体としては、A−B−C
−D系(ただし、AはY、Sc。
Next, a first layer film B1 made of an oxide superconductor or its precursor is formed on the substrate A to a predetermined thickness. The oxide superconductor here is ABC
-D series (A is Y, Sc.

La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、T
b、Dy、Ho。
La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, T
b, Dy, Ho.

Er、 T m、 Y b、 L uの周期律表第11
1a族元素のうち1種あるいは2種以上を表し、BはS
r、Ba、Ca。
Periodic table 11 of Er, T m, Y b, Lu
Represents one or more types of group 1a elements, B is S
r, Ba, Ca.

Be、Mg、Raの周期律表第]Ia族元素のうち1種
あるいは2種以上を表し、CはCu、Ag、Auの周期
律表第1b族元素とNb元素のうちCuあるいはCuを
含む2種以上を表し、DはO,S、Se、Te。
Represents one or more of Group Ia elements of Be, Mg, and Ra of Group Ia, and C includes Cu or Cu of Group 1B elements of the Periodic Table of Cu, Ag, and Au, and Nb elements. Represents two or more types, D is O, S, Se, Te.

Poの周期律表第v+b族元素およびF、Ca、Br、
I。
Group V+B elements of the periodic table of Po and F, Ca, Br,
I.

Atの周期律表第■b族元素のうちOあるいは0を含む
2種以上を表す。)のものが用いられる。そして、この
酸化物超電導体の各構成元素の組成は、例えばY−Ba
−Cu−0系超電導体の場合、Y 1゜8a (2−3
)、Cu (3−4)、O(7−δ)とされ、δは0≦
δ≦5の範囲とされる。また、上記酸化物超電導体の前
駆体は、」二記A−B−(、−D系超電導体の組成に比
べてその構成元素の酸素の一部が欠損して、その超電導
特性が芳しくないものである。
Represents two or more elements containing O or 0 among the elements of group 1b of the periodic table of At. ) are used. The composition of each constituent element of this oxide superconductor is, for example, Y-Ba
-Cu-0 based superconductor, Y 1゜8a (2-3
), Cu (3-4), O(7-δ), where δ is 0≦
The range is δ≦5. In addition, the precursor of the oxide superconductor described above has poor superconducting properties because a part of its constituent oxygen is deficient compared to the composition of the A-B-(, -D-based superconductor). It is something.

このような膜体B、を形成する成膜法としては、均一な
膜厚の膜体を形成できかつ膜体を特定の方向に配向させ
得る方法が用いられ、具体的にはドクターブレード法な
どの塗布法が用いられる。そして、成膜時において、上
記酸化物超電導体あるいはその前駆体は、上記成膜法の
種類、成膜条件などに応じて例えば粉末、スラリー、ペ
ーストなどに加工されて用いられる。粉末とするには、
通常、粉末法が用いられるが、この方法に限定されるも
のではなく、例えば酸化物超電導体を構成する各元素を
シュウ酸塩として共沈させ、その沈澱物を乾燥させて粉
末とする共沈法を用いることもてきる。また、酸化物超
電導体の構成元素のアルコキシド化合物、オキシケトン
化合物、シクロペンタジェニル化合物、アセチルアセト
ン化合物などを所定の比率で混合して混合液とし、この
混合液に水を加えて加水分解などしてゾル状にするとと
もに、このゾル状の物質を加熱してゲル化し、このゲル
を更に加熱して固相としたうえてボールミル等により粉
砕して粉末を得るゾルゲル法を適用してもよい。さらに
、このようにして得られた粉末にベヒクルを添加するこ
とで、上記粉末をスラリーあるいはペーストとすること
ができる。ベヒクルとしては、ペーストに対する熱処理
条件などにより異なるが、例えば合成樹脂類をアルコー
ル、テレピン油、エステル類などに溶解した揮発性フェ
ス、ワセリンなどが用いられる。また、上記ベヒクルの
他にアセトン、ベンゼン、アルコール類などの有機溶媒
も粘度調整用として添加できる。
As a film forming method for forming such a film body B, a method that can form a film body with a uniform thickness and that can orient the film body in a specific direction is used, and specifically, a method such as a doctor blade method is used. Application methods are used. During film formation, the oxide superconductor or its precursor is processed into powder, slurry, paste, etc., depending on the type of film formation method, film formation conditions, and the like. To make powder,
Usually, a powder method is used, but it is not limited to this method. For example, coprecipitation is performed by coprecipitating each element constituting the oxide superconductor as an oxalate and drying the precipitate to form a powder. Laws can also be used. In addition, constituent elements of oxide superconductors such as alkoxide compounds, oxyketone compounds, cyclopentadienyl compounds, acetylacetone compounds, etc. are mixed in a predetermined ratio to form a mixed solution, and water is added to this mixed solution for hydrolysis. A sol-gel method may be applied in which the substance is made into a sol, the sol-like substance is heated to gel, the gel is further heated to form a solid phase, and the solid phase is pulverized using a ball mill or the like to obtain a powder. Furthermore, by adding a vehicle to the powder thus obtained, the powder can be made into a slurry or paste. The vehicle may vary depending on the heat treatment conditions for the paste, etc., but for example, volatile fest prepared by dissolving synthetic resins in alcohol, turpentine oil, esters, etc., vaseline, etc. are used. In addition to the above vehicles, organic solvents such as acetone, benzene, and alcohols can also be added for viscosity adjustment.

次いで、このような成膜工程により形成された膜体Bl
に対して熱処理を施す。この熱処理は、温度800〜1
000℃、1時間〜数100時間の加熱後に、結晶変態
温度400〜600°Cまで徐々に冷却する条件で行な
われる。そして、この熱処理時の雰囲気は、通常は酸素
雰囲気とされるが、必要に応じて上記酸素雰囲気に、S
、Se等の周期律表第v+b族元素のガスおよびF、C
(2,Br等の周期律表第■b族元素のガスを含めるこ
ともできる。これらの元素は、膜体B、に生成された酸
化物系超電導体の構成元素の一部に導入され超電導特性
の向上に寄与するものとなる。そして、このような雰囲
気中での熱処理により、膜体Bl中の各構成元素どうし
が互いに十分に反応せしめられるとともに、膜体B、の
表面からその内部に酸素元素あるいは酸素元素および上
記S、Se等の周期律表第v+b族元素やF、CQ、B
r等の周期律表第■b族元素が効率よく拡散される。し
たがって、膜体B、全全体るいは膜体B、の少なくとも
表層部分には、良好な超電導特性を示す酸化物系超電導
体が生成される。
Next, the film body Bl formed by such a film forming process is
Heat treatment is applied to. This heat treatment is performed at a temperature of 800 to 1
After heating at 000°C for 1 to several 100 hours, the process is performed under conditions of gradual cooling to a crystal transformation temperature of 400 to 600°C. The atmosphere during this heat treatment is normally an oxygen atmosphere, but if necessary, S
, Se, and other gases of Group V+B elements of the periodic table, F, and C.
(It is also possible to include gases of Group B elements of the periodic table, such as 2, Br. By heat treatment in such an atmosphere, each constituent element in the film body B is made to sufficiently react with each other, and at the same time, the elements from the surface of the film body B to the inside of the film body B are Oxygen element or oxygen element and elements of Group V+B of the periodic table such as S and Se, F, CQ, and B
Elements of group 1b of the periodic table, such as r, are efficiently diffused. Therefore, in the entire film body B or at least in the surface layer portion of the film body B, an oxide-based superconductor exhibiting good superconducting properties is generated.

次に、このような超電導特性を示す膜体B1を形成する
工程と同様の工程である成膜工程と熱処理工程からなる
一連の工程を必要回数(例えばn回、nは自然数)繰り
返して膜体B、上に第2層目の膜体B2.第3層目の膜
体B3・・・膜体Bnを順次積層する。ここで、第2層
目の膜体B2を前述の塗−8= 布法により形成する際に、その塗布方向を第1層目の膜
体B1の塗布方向と交差する方向とする。
Next, a series of steps consisting of a film formation step and a heat treatment step, which are the same steps as those for forming the film body B1 exhibiting such superconducting properties, is repeated a necessary number of times (for example, n times, n is a natural number) to form the film body. B, second layer film body B2. The third layer film body B3...membrane body Bn are sequentially laminated. Here, when forming the second layer film body B2 by the above-mentioned coating method, the coating direction is set to be a direction intersecting the coating direction of the first layer film body B1.

同様に、第3層目の膜体B3における塗布方向を第2層
目の膜体B2の塗布方向に交差させる。以下、同様に膜
体ごとにその塗布方向を変えながら、基体A上に膜体B
 、、B 、・・・Bnからなる酸化物系超電導膜Bを
製造する。ここで、上記一連の工程における繰り返し数
は、得られる酸化物系超電導膜の用途やそれに必要な膜
厚などに応じて適宜法められる。
Similarly, the coating direction of the third layer film body B3 is made to intersect with the coating direction of the second layer film body B2. Thereafter, in the same way, film B is applied onto substrate A while changing the coating direction for each film.
,,B,... An oxide-based superconducting film B made of Bn is manufactured. Here, the number of repetitions in the series of steps described above is determined as appropriate depending on the intended use of the obtained oxide-based superconducting film, the necessary film thickness, and the like.

そして、このようにして得られた酸化物系超電導膜Bは
、それぞれ酸素雰囲気中での熱処理により良好な超電導
特性を示すようになった膜体B1゜B2・・・Bnを順
次積層した多層構造体であり、また隣接する膜体どうし
が互いに強固に接合された膜厚の厚い酸化物系超電導体
であるから、高い臨界温度や臨界電流密度などの超電導
特性に加えて、例えば厚さ方向に直交する方向に流せる
臨界電流(Tc)の容量が大きく、十分に実用に供し得
るものとなる。
The thus obtained oxide-based superconducting film B has a multilayer structure in which film bodies B1, B2,...Bn are successively laminated, each of which exhibits good superconducting properties by heat treatment in an oxygen atmosphere. Since it is a thick oxide-based superconductor with adjacent film bodies firmly bonded to each other, in addition to superconducting properties such as high critical temperature and critical current density, for example, The capacity of the critical current (Tc) that can be passed in the orthogonal direction is large, making it sufficiently usable for practical use.

また、この酸化物系超電導膜Bにあっては、その構成単
位の各膜体B 、、B 2・・・Bnがそれぞれ異なる
配向性を有しているので、全体として配向性が弱いかあ
るいは無配向性を示すことから、この酸化物系超電導膜
Bを例えば磁気シールドに使用した場合、磁気シールド
効果の高い磁気シールド材とすることができる。
In addition, in this oxide-based superconducting film B, each of the film bodies B, B2...Bn of its constituent units has a different orientation, so the orientation as a whole is weak or Since it exhibits non-orientation, when this oxide-based superconducting film B is used, for example, as a magnetic shield, it can be used as a magnetic shielding material with a high magnetic shielding effect.

さらに、この酸化物系超電導膜Bにあっては、第1層目
の膜体B、が基体Aの結晶構造に基づいて形成されたも
のであり、第2層目以降の膜体B2、B3・・・Bnが
それぞれ良好な超電導特性を示す膜体B 、、B 2・
・・Bn−+の結晶構造に基づいて形成されたものであ
るので、良好な超電導特性を示す第1層目の膜体B、に
も増して第2層目以降の膜体B 2 、 B 3・・・
Bnの超電導特性も優れたものとなる。ところで、一般
に導体を流れる電流は、導体の内部よりはその表層部側
に流れ易い性質を有している。このため、基体A側の膜
体より基体Aから離れた表層部側の膜体の方が若干良好
な超電導特性を示す酸化物系超電導膜Bにあっては、そ
の表層側に臨界電流を効率よく大量に流すことが可能で
ある。
Furthermore, in this oxide-based superconducting film B, the first layer film body B is formed based on the crystal structure of the substrate A, and the second and subsequent layers film bodies B2 and B3 are formed based on the crystal structure of the substrate A. . . . Film bodies B, , B 2 and Bn exhibiting good superconducting properties, respectively.
Since it is formed based on the crystal structure of . 3...
Bn also has excellent superconducting properties. Incidentally, in general, current flowing through a conductor has a property that it tends to flow more easily to the surface layer side of the conductor than to the inside of the conductor. For this reason, in oxide superconducting film B, which exhibits slightly better superconducting properties in the film body on the surface layer side away from substrate A than in the film body on the surface layer side, the critical current is efficiently transferred to the surface layer side. It is possible to flow in large quantities.

このような製造方法によれば、成膜工程と熱処理からな
る一連の工程を2回以上繰り返して膜体B 、、B 、
・・・Bnを順次積層するとともに、膜体ごとに塗布方
向を変えるようにしたので、良好な超電導特性を示す膜
体B 、、B 2・・・Bnからなる多層構造体であり
、隣接する膜体どうしが互いに強固に接合された膜厚の
厚いIc値の大きい酸化物系超電導膜Bを製造できる。
According to such a manufacturing method, a series of steps consisting of a film formation step and a heat treatment is repeated two or more times to form film bodies B, B, B,
... Bn is sequentially laminated and the coating direction is changed for each film body, so that the film body B , , B 2 ... has a multilayer structure consisting of Bn, which exhibits good superconducting properties, and the adjacent It is possible to produce a thick oxide superconducting film B with a large Ic value in which the film bodies are firmly bonded to each other.

また、この製造方法では、上記一連の工程を必要回数繰
り返すようにしたので、得られる酸化物系超電導膜Bの
膜厚を容易に制御できることから、要求される種々の特
性などに対応した酸化物系超電導膜Bを自在に製造でき
る。さらに、この製造方法では、酸化物系超電導膜Bの
形成基盤である基体Aの形状を適宜選択することで酸化
物系超電導膜Bを種々の超電導製品に適用することがで
きる。例えば、基体Aを板状のものとした場合には、ジ
ョセフソン素子、超電導記憶素子等の超電導デバイスや
超電導磁気シールド材などの超電導製品とすることがで
き、また基体Aを線状のものとした場合には、超電導マ
グネット用コイルなどの超電導線材とすることができる
In addition, in this manufacturing method, the series of steps described above is repeated as many times as necessary, so the thickness of the resulting oxide-based superconducting film B can be easily controlled. The system superconducting film B can be manufactured freely. Further, in this manufacturing method, the oxide superconducting film B can be applied to various superconducting products by appropriately selecting the shape of the base A, which is the base on which the oxide superconducting film B is formed. For example, if the substrate A is plate-shaped, it can be used as a superconducting device such as a Josephson element or a superconducting memory element, or a superconducting product such as a superconducting magnetic shield material, or if the substrate A is linear. In this case, it can be used as a superconducting wire such as a coil for a superconducting magnet.

〔実施例〕〔Example〕

Y2O3粉末とBaO粉末とCuO粉末とからなる混合
粉末を調製し、次いで混合粉末をワセリン中に分散して
ペーストを得た。次に、このペーストをチタン酸ストロ
ンチウムからなる基板上にドクターブレード法により特
定方向に沿って塗布して膜厚約1μ肩の第1層目の膜体
を形成し、次いてこの膜体に対し900℃、24時間加
熱したのち、400℃程度まで徐冷する熱処理を施した
。この熱処理により、上記膜体に酸化物系超電導体を生
成させた。次いで、この膜体について、その臨界電流密
度(Jc)を液体窒素温度(77K)で測定したところ
、90A/Qx″であり、臨界電流(Ic)は20mA
であった。
A mixed powder consisting of Y2O3 powder, BaO powder, and CuO powder was prepared, and then the mixed powder was dispersed in vaseline to obtain a paste. Next, this paste is applied along a specific direction onto a substrate made of strontium titanate using a doctor blade method to form a first layer film with a thickness of about 1 μm, and then this film is coated on a substrate made of strontium titanate. After heating at 900°C for 24 hours, heat treatment was performed by slowly cooling to about 400°C. This heat treatment produced an oxide superconductor in the film body. Next, when the critical current density (Jc) of this film body was measured at liquid nitrogen temperature (77K), it was 90A/Qx'', and the critical current (Ic) was 20mA.
Met.

次に、このようにして得た第1層目の膜体上に塗布方向
を膜体ごとに変えながら同様の操作を繰り返して、9層
の膜体を形成した。そして、これら10層の膜体からな
る膜厚10μMの酸化物系超電導膜について、77にで
のJc値を調べたところ、500 A / cri2で
あり、酸化物系超電導膜全体のTc値は1.1Aであっ
た。また、この酸化物系超電導膜を磁界内に配置してそ
のシールド効果を調べたところ、十分に実用に供し得る
程度の磁気シールド性を示すことが確認できた。
Next, the same operation was repeated on the first layer film thus obtained, changing the coating direction for each film, to form nine layers of film. When the Jc value at 77 was investigated for the oxide superconducting film with a thickness of 10 μM consisting of these 10 layers, it was found to be 500 A/cri2, and the Tc value of the entire oxide superconducting film was 1. It was .1A. Furthermore, when this oxide-based superconducting film was placed in a magnetic field and its shielding effect was investigated, it was confirmed that it exhibited magnetic shielding properties sufficient for practical use.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の製造方法によれば、良
好な超電導特性を示す複数の膜体からなる多層構造体で
あり、隣接する膜体どうしが互いに強固に接合された膜
厚の厚いIc値の大きい酸化物系超電導膜を製造できる
とともに、膜体ごとに配向性が異なることから全体とし
て配向性が弱いかあるいは無配向となるので、磁気シー
ルドなどに最適な酸化物系超電導膜を製造できる。
As explained above, according to the manufacturing method of the present invention, a multilayer structure consisting of a plurality of film bodies exhibiting good superconducting properties is produced, and a thick Ic film in which adjacent film bodies are firmly bonded to each other is produced. In addition to being able to produce oxide-based superconducting films with large values, since the orientation differs for each film, the overall orientation is weak or non-oriented, making it ideal for magnetic shielding, etc. can.

また、この製造方法では、上記一連の工程を必要回数繰
り返すようにしたので、膜厚を容易に制御できることか
ら、要求される種々の特性などに対応した酸化物系超電
導膜を自在に製造できる。
In addition, in this manufacturing method, the series of steps described above are repeated as many times as necessary, so the film thickness can be easily controlled, so oxide-based superconducting films that meet various required characteristics can be freely manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法によって製造された酸化物系
超電導膜の一例を示す概略断面図である。 A・・・基体、BI・・・Bn・・・膜体、B・酸化物
系超電導膜。
FIG. 1 is a schematic cross-sectional view showing an example of an oxide-based superconducting film manufactured by the manufacturing method of the present invention. A: Substrate, BI: Bn: Film body, B: Oxide-based superconducting film.

Claims (1)

【特許請求の範囲】[Claims] 基体上に酸化物超電導体あるいは酸化物超電導体の前駆
体からなる膜体を塗布法により形成する成膜工程と、該
膜体を加熱する熱処理工程とからなる一連の工程を2回
以上繰り返して膜体を順次積層するとともに、前記成膜
工程での塗布方向を膜体ごとに変えることを特徴とする
酸化物系超電導膜の製造方法。
A series of steps consisting of a film formation step of forming a film made of an oxide superconductor or a precursor of an oxide superconductor on a substrate by a coating method, and a heat treatment step of heating the film is repeated two or more times. A method for manufacturing an oxide-based superconducting film, comprising sequentially stacking film bodies and changing the coating direction in the film forming step for each film body.
JP62309999A 1987-12-08 1987-12-08 Manufacture of oxide system superconductive film Pending JPH01151110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62309999A JPH01151110A (en) 1987-12-08 1987-12-08 Manufacture of oxide system superconductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62309999A JPH01151110A (en) 1987-12-08 1987-12-08 Manufacture of oxide system superconductive film

Publications (1)

Publication Number Publication Date
JPH01151110A true JPH01151110A (en) 1989-06-13

Family

ID=17999925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62309999A Pending JPH01151110A (en) 1987-12-08 1987-12-08 Manufacture of oxide system superconductive film

Country Status (1)

Country Link
JP (1) JPH01151110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174567A (en) * 2011-02-23 2012-09-10 Sumitomo Electric Ind Ltd Oxide superconductive wire material and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174567A (en) * 2011-02-23 2012-09-10 Sumitomo Electric Ind Ltd Oxide superconductive wire material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2004501493A (en) Structure for supercritical current superconducting tape
US6121205A (en) Bulk superconductor and process of preparing same
DE68928155T2 (en) Oxide superconductor and method for its production
JP2939544B1 (en) Mg-doped low-anisotropic high-temperature superconductor and method for producing the same
JPH01151110A (en) Manufacture of oxide system superconductive film
EP0290271B1 (en) Superconducting circuit board and process of manufacturing it
JP2529276B2 (en) Method for manufacturing multi-layer thin film superconductor
JPH01151111A (en) Manufacture of oxide system superconductive film
JP3099891B2 (en) Superconducting material
JPH04132611A (en) Superconductor
JPH0737443A (en) Bismuth-containing oxide superconductive wire and preparation of wire thereof
JP2577061B2 (en) Method for producing composite oxide superconductor thin film
JP2645730B2 (en) Superconducting thin film
JPH0244057A (en) Ductile superconductive material
JPH03105807A (en) Laminate membrane of oxide superconductor and oxide magnetic substance
JP3257569B2 (en) Method for producing Tl-based oxide superconductor
JP2532986B2 (en) Oxide superconducting wire and coil using the same
JPH08212846A (en) Oxide superconductive wire rod, its manufacture and superconductive coil using it
JP2590370B2 (en) Superconducting material and manufacturing method thereof
JPH04324209A (en) Oxide superconductive wire and its manufacture
JP2971504B2 (en) Method for producing Bi-based oxide superconductor
JP2634186B2 (en) Method for producing oxide-based superconducting material
JPH04224114A (en) Production of thick film of oxide superconductor
JP2654555B2 (en) Superconducting device manufacturing method
JPH0453817B2 (en)