JPH01278416A - Production of precursor substance for oxide superconductor - Google Patents

Production of precursor substance for oxide superconductor

Info

Publication number
JPH01278416A
JPH01278416A JP63108057A JP10805788A JPH01278416A JP H01278416 A JPH01278416 A JP H01278416A JP 63108057 A JP63108057 A JP 63108057A JP 10805788 A JP10805788 A JP 10805788A JP H01278416 A JPH01278416 A JP H01278416A
Authority
JP
Japan
Prior art keywords
flame
precursor
gas
oxide superconductor
atomized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63108057A
Other languages
Japanese (ja)
Other versions
JP2635677B2 (en
Inventor
Makoto Furuguchi
古口 誠
Yoshikazu Matsuda
松田 美一
Eiji Kinoshita
栄司 木下
Kazuto Hirabayashi
平林 和人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63108057A priority Critical patent/JP2635677B2/en
Publication of JPH01278416A publication Critical patent/JPH01278416A/en
Application granted granted Critical
Publication of JP2635677B2 publication Critical patent/JP2635677B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the Tc and Jc of a superconductor obtained from a precursor substance by restricting the feeding ratio of hydrogen gas to oxygen gas for flame-generation in the production of a precursor of a Y-Ba-Cu-O oxide superconductor using a spray thermal reaction process. CONSTITUTION:Compounds each containing the elements such as Y, Ba, Cu, etc., are weighed at ratios of Y:Ba:Cu=1:2:3 and dissolved in a solvent. The solution is atomized and introduced into a flame. The atomized mist is heated with the flame to form a precursor substance of an oxide superconductor expressed by the chemical formula Y1Ba2Cu3Ox. The feeding ratio of the hydrogen gas to the oxygen gas in the generation of the flame for heating the mist is maintained to 2.5-3.5 volume of oxygen gas based on 1 volume of hydrogen gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Y−Ba−Cu−0系酸化物超電導体前駆物
質の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a Y-Ba-Cu-0 based oxide superconductor precursor.

〔従来の技術とその課題〕[Conventional technology and its issues]

近年、Y + B a z Cu s O?−δ(δL
:t0.2〜0.31等の希土類元素、アルカリ土金属
、銅及び酸素からなる酸化物超電導体が見出されている
。これらの酸化物超電導体は、液体Nt温度以上で超電
導となるため従来の液体He温度で超電導を示す金属超
電導体に較べて格段に経済的であり、各分野での利用が
検討されている。
In recent years, Y + B az Cu s O? −δ(δL
:An oxide superconductor consisting of rare earth elements, alkaline earth metals, copper, and oxygen with a t of 0.2 to 0.31 has been discovered. These oxide superconductors are much more economical than conventional metal superconductors that exhibit superconductivity at liquid He temperatures because they become superconducting above the liquid Nt temperature, and their use in various fields is being considered.

ところで上記の酸化物超電導体は脆いため金属材料のよ
うに塑性加工ができず、これらを線材等に加工するには
、主に粉末冶金法が用いられ、例えばy、o、、3aC
Oz、CuOの原料粉末を仮焼成し、これを粉砕分級し
て仮焼粉となし、この粉末を基体上に被覆成形したり、
又はAg管等に充填して伸延加工し、次いでこれをOt
含有雰囲気中で加熱焼結して酸化物超電導成形体とする
方法がとられている。
By the way, the above-mentioned oxide superconductors are brittle and cannot be plastically worked like metal materials, and powder metallurgy is mainly used to process them into wire rods, etc. For example, y, o, 3aC
Raw material powder of Oz and CuO is calcined, and this is pulverized and classified to form calcined powder, and this powder is coated and molded onto a substrate.
Alternatively, it is filled into an Ag pipe, etc. and stretched, and then this is Ot.
A method of forming an oxide superconducting molded body by heating and sintering in a containing atmosphere is used.

しかしながら上記の仮焼粉製造において、仮焼成体を粉
砕分級するのに長時間を要し、又得られる仮焼粉は粒径
にバラツキが大きく、更にはボールミル等の粉砕機から
不純物が混入する等の種々の問題があった。
However, in the production of the above calcined powder, it takes a long time to crush and classify the calcined body, and the resulting calcined powder has large variations in particle size, and furthermore, impurities are mixed in from the crusher such as a ball mill. There were various problems such as.

このようなことから、酸化物超電導体の原料物質を溶媒
に溶かしこの溶液を霧状化して火炎中に供給し加熱反応
せしめて酸化物超電導体の前駆物質を製造する噴霧加熱
反応法が提案されている。
For this reason, a spray heating reaction method has been proposed in which a raw material for an oxide superconductor is dissolved in a solvent, the solution is atomized, and the atomized solution is supplied into a flame for a heating reaction to produce a precursor for an oxide superconductor. ing.

この方法は、反応時間が非常に短く且つ容器や治具との
接触が殆どないため純度の高い前駆物質が得られる等の
利点がある。
This method has the advantage that a highly pure precursor can be obtained because the reaction time is very short and there is almost no contact with containers or jigs.

ところでY−Ba−Cu−0系の場合、上記噴霧加熱反
応法においてY、Ba、Cuの各元素は霧状体を構成す
る個々の液滴内でそれぞれ1;2:3の原子比で溶解し
ており、上記のYSBa、Cuの元素は火炎により加熱
され液滴内もしくは雰囲気中の0□をとり込んで反応し
てY、Ba、CUバhの化学式で示される酸化物超電導
体前駆物質となるものである。
By the way, in the case of the Y-Ba-Cu-0 system, in the above-mentioned spray heating reaction method, each element of Y, Ba, and Cu is dissolved in an atomic ratio of 1:2:3 in each droplet constituting the atomized body. The above elements YSBa and Cu are heated by a flame and react with 0□ in the droplet or in the atmosphere to form oxide superconductor precursors represented by the chemical formulas Y, Ba, and CUBah. This is the result.

上記酸化物超電導体前駆物質は、酸素含有雰囲気中で所
定の加熱処理を施され、Y+BazCu*0、−δ(δ
=0.2〜0.3)の化学式で示される酸化物超電導体
となるものであるが、構成元素のY、Ba、Cuの原子
比がそれぞれI:2:3の比率の時に超電導特性が最も
よく発現されるものである。
The oxide superconductor precursor material is subjected to a prescribed heat treatment in an oxygen-containing atmosphere, and Y+BazCu*0, -δ(δ
= 0.2~0.3), and superconducting properties are obtained when the atomic ratio of the constituent elements Y, Ba, and Cu is I:2:3, respectively. It is the one most commonly expressed.

しかるに噴霧加熱反応法により生成する酸化物超電導体
前駆物質は往々にしてY等の希土類元素が欠乏もしくは
過剰な複合酸化物となり、このような前駆物質を酸素含
有雰囲気中で加熱処理しても高い超電導特性が得られな
いという問題があった。
However, the oxide superconductor precursor produced by the spray heating reaction method often becomes a composite oxide lacking or in excess of rare earth elements such as Y, and even if such a precursor is heat-treated in an oxygen-containing atmosphere, the There was a problem that superconducting properties could not be obtained.

〔課題を解決するための手段及び作用〕本発明はかかる
状況に鑑み鋭意研究を行った結果、噴霧加熱反応方法に
よるY−Ba−Cu−0系酸化物超電導体前駆物質の製
造において火炎を発生するH2ガスと0.ガスの供給比
率により、生成する前駆物質中のYの量が大きく影響さ
れることを突きとめこの点について更に研究を行った結
果、本発明方法を達成し得たものである。
[Means and effects for solving the problem] The present invention has been made as a result of intensive research in view of the above circumstances, and has been developed to produce a flame during the production of a Y-Ba-Cu-0 based oxide superconductor precursor by a spray heating reaction method. H2 gas and 0. It was found that the amount of Y in the produced precursor is greatly influenced by the gas supply ratio, and as a result of further research on this point, the method of the present invention was achieved.

即ち本発明はY、Ba及びCu等の元素を各々含有する
化合物をY:Ba:Cuが11:3の割合で秤量し、そ
れぞれ溶媒に溶解し、この溶液を霧状化して火炎中に供
給し、この霧状体を上記火炎により加熱してY+Bax
CusC)+の化学式で示される酸化物超電導体の前駆
物質を製造する方法において、霧状体の加熱の為の火炎
発生用の水素ガスと酸素ガスの供給比率を水素ガス1容
量に対し酸素ガス2.5〜3.5容量とすることを特徴
とする酸化物超電導体前駆物質の製造方法である。
That is, the present invention involves weighing compounds each containing elements such as Y, Ba, and Cu at a ratio of Y:Ba:Cu of 11:3, dissolving each in a solvent, atomizing this solution, and supplying it to a flame. Then, this atomized material is heated by the above flame to produce Y+Bax
In a method for producing a precursor of an oxide superconductor represented by the chemical formula CusC)+, the supply ratio of hydrogen gas and oxygen gas for generating a flame for heating the atomized body is set to 1 volume of hydrogen gas to 1 volume of oxygen gas. This is a method for producing an oxide superconductor precursor characterized by having a capacity of 2.5 to 3.5.

本発明においてY 1 B a z Cu z Oq−
δの化学式で示される酸化物超電導体の構成元素を各々
含有する化合物としては、例えばY、Ba、Cuのそれ
ぞれ酢酸塩、硝酸塩、ハロゲン化物或いは有機金属化合
物等である。
In the present invention, Y 1 B az Cu z Oq-
Compounds containing each of the constituent elements of the oxide superconductor represented by the chemical formula δ include, for example, acetates, nitrates, halides, or organometallic compounds of Y, Ba, and Cu, respectively.

本発明において上記化合物を霧状化する方法としては、
例えば上記化合物をそれぞれ水等の溶媒に溶解し、これ
を超音波ネプライザ等により霧状化する方法が用いられ
ている。
In the present invention, the method for atomizing the above compound is as follows:
For example, a method is used in which each of the above-mentioned compounds is dissolved in a solvent such as water and atomized using an ultrasonic nebulizer or the like.

上記の霧状体を火炎に連続供給する方法としては、これ
を空気、0□、N2、Ar等のキャリアガスにのせて搬
送するのが供給量のコントロールが容易にできて好まし
いものである。
As a method for continuously supplying the above-mentioned atomized material to the flame, it is preferable to convey the atomized material in a carrier gas such as air, 0□, N2, Ar, etc., since the amount of the atomized material to be supplied can be easily controlled.

本発明において火炎の燃料にはH2ガスが又支燃ガスに
は0.ガスが用いられ、両者の供給量をOx/Hzの容
量比で2.5〜3.5に限定した理由は、上記範囲外で
は生成する前駆物質中のY量が所定量含有されなくなる
為である。即ち第2図に示したように前駆物質中に含有
されるY、Ba、Cu原子のうちBa、Cuの原子比は
、O,/H。
In the present invention, the flame fuel is H2 gas, and the combustion supporting gas is 0. The reason why gas is used and the supply amount of both is limited to 2.5 to 3.5 in terms of Ox/Hz capacity ratio is that outside the above range, the generated precursor will not contain the specified amount of Y. be. That is, as shown in FIG. 2, among the Y, Ba, and Cu atoms contained in the precursor, the atomic ratio of Ba and Cu is O, /H.

の容量比によって全く変化しないが、Yの原子比は大き
く変化しており、O! / H!が2.5〜3.5の範
囲内においてYの原子比は0.9〜1.1とほぼ1に近
い値となるものである。
It does not change at all depending on the capacitance ratio of O!, but the atomic ratio of Y changes greatly, and O! /H! is within the range of 2.5 to 3.5, the atomic ratio of Y is 0.9 to 1.1, which is a value close to 1.

上記においてYの原子比がOx/Hzの容量比によって
大きく変化する理由は明確には把握していないが、火炎
温度や火炎中の過剰酸素量が前駆物質中への供給量に影
響する為と考えられる。
The reason why the atomic ratio of Y changes greatly depending on the Ox/Hz capacity ratio in the above is not clearly understood, but it may be because the flame temperature and the amount of excess oxygen in the flame affect the amount supplied to the precursor. Conceivable.

本発明において火炎により加熱されて生成するY−Ba
−Cu−0系超電導体前駆物質は、Y18a、Cu5O
工の組成からなる複合酸化物でこの複合酸化物は、酸素
含有雰囲気中で850〜t、ooo”cに加熱しこれを
所定速度で徐冷することによりY−Ba−Cu−0系超
電導体となすものである。
Y-Ba produced by heating with flame in the present invention
-Cu-0 based superconductor precursor is Y18a, Cu5O
This composite oxide has a composition of This is what is done.

本発明において火炎温度は、N2ガス及びOzガスの供
給量により設定されるものであるが、原料である霧状体
の供給量によって変動するので常時計測して制御するこ
とが好ましい。
In the present invention, the flame temperature is set by the supply amount of N2 gas and Oz gas, but it fluctuates depending on the supply amount of the atomized material, which is the raw material, so it is preferable to constantly measure and control it.

〔実施例] 以下に本発明を実施例により詳細に説明する。〔Example] The present invention will be explained in detail below using examples.

実施例1 第1図は本発明方法を実施するのに用いた噴霧加熱反応
装置の一例を示す説明図である。
Example 1 FIG. 1 is an explanatory diagram showing an example of a spray heating reaction apparatus used to carry out the method of the present invention.

噴霧加熱反応装置は原料化合物が溶解した溶液1を霧状
化する超音波ネプライザ2、上記原料霧状体3をバーナ
4に搬送する為のキャリアガスパイプ5及びバーナ4に
より加熱され反応した酸化物超電導体の前駆物質6を付
着さセる厚さ0.5 mmのYSZ(Y安定化ジルコニ
ア)型基体7から構成されている。
The spray heating reaction device includes an ultrasonic nebulizer 2 that atomizes a solution 1 in which a raw material compound is dissolved, a carrier gas pipe 5 that conveys the raw material atomized body 3 to a burner 4, and an oxide superconductor heated and reacted by the burner 4. It consists of a 0.5 mm thick YSZ (Y-stabilized zirconia) type substrate 7 on which a body precursor 6 is deposited.

本実施例においてはY−Ba−Cu−0系超電導体の構
成元素を含有する化合物としてY (CH3COO)s
 ・4 HzOlBa (CH,C00)z・Ht。
In this example, Y (CH3COO)s is used as a compound containing the constituent elements of the Y-Ba-Cu-0 superconductor.
・4 HzOlBa (CH,C00)z・Ht.

及びCu (CHlCOO)z・H2Oを用い、各々の
化合物をY:Ba:Cuがモル比で1:2:3になるよ
うに秤量し、これを水に’f 1 B a z Cu 
sの組成で0.04モル/lの濃度で溶解し、この溶液
1を超音波ネプライザ2内の容器に入れ、これに超音波
振動を付与して溶液1を霧状に浮遊せしめ、この原料霧
状体3をキャリアガスバイブ5にN2ガスを0.617
s+inの流量で流してバーナ4に搬送した。
and Cu (CHlCOO)z・H2O, each compound was weighed so that the molar ratio of Y:Ba:Cu was 1:2:3, and this was added to water as 'f 1 Ba z Cu
s at a concentration of 0.04 mol/l, this solution 1 is placed in a container in an ultrasonic nebulizer 2, and ultrasonic vibration is applied to it to suspend the solution 1 in the form of a mist. Transfer the mist 3 to the carrier gas vibe 5 with 0.617 N2 gas.
It was conveyed to the burner 4 by flowing at a flow rate of s+in.

このバーナ4は4重管構造からなり中心管の第1ノズル
から原料の霧状体5を含むNZガス、その外周の第2ノ
ズルから燃料となるHtガス、更にその外周の第3ノズ
ルからバーナ先端を火炎熱から保護するためのシール用
A「ガス、最外層の第4ノズルから支燃用の0.ガスを
噴出させるようにしたもので、上記第2ノズルから噴出
するN2ガスと第4ノズルから噴出する支燃用Otガス
により火炎9を発生せしめ、この火炎9中で上記原料霧
状体3を加熱してY−Ba−Cu−0系超電導体前駆物
質を0.15 g /ll1inの速度で生成せしめ、
生成したY−Ba−Cu−0系超電導体前駆物質6をバ
ーナ4の前方に配置した矢印方向に移動する基体7上に
0.1m厚さの膜体8として付着させた。
This burner 4 has a quadruple pipe structure, and the NZ gas containing the raw material atomized material 5 flows from the first nozzle in the center pipe, the Ht gas serving as fuel flows from the second nozzle on the outer periphery, and the burner flows from the third nozzle on the outer periphery. A "gas" for sealing to protect the tip from flame heat, is designed to eject combustion supporting gas from the fourth nozzle in the outermost layer, and N2 gas ejected from the second nozzle and the fourth A flame 9 is generated by combustion-supporting Ot gas ejected from a nozzle, and the raw material atomized material 3 is heated in the flame 9 to produce a Y-Ba-Cu-0 superconductor precursor at 0.15 g/ll1in. generated at a speed of
The produced Y-Ba-Cu-0 based superconductor precursor 6 was deposited as a film 8 having a thickness of 0.1 m on a substrate 7 disposed in front of the burner 4 and moving in the direction of the arrow.

上記において、火炎9を発生するN2ガス及び02ガス
は供給比を種々変えてY−Ba−Cu−0系超電導体の
前駆物質6を生成した。
In the above, the N2 gas and O2 gas that generate the flame 9 were supplied at various supply ratios to produce the Y-Ba-Cu-0 based superconductor precursor 6.

斯くの如くして得た各々のY−Ba−Cu−0系超電導
体の前駆物質を酸素気流中で950 ’C2OH加熱し
たのち950°Cから2°C/minの速度で徐冷して
超電導体となし、Y量、T、及びJcを測定した。
Each of the Y-Ba-Cu-0 superconductor precursors thus obtained was heated with 950'C2OH in an oxygen stream and then slowly cooled from 950°C at a rate of 2°C/min to form superconductors. Body weight, Y amount, T, and Jc were measured.

結果は主な製造条件を併記して第1表に示した。The results are shown in Table 1 along with the main manufacturing conditions.

第1表より明らかなように本発明方法によるもの(1〜
3)は、Yの原子比が0.95〜1.05の範囲内にあ
ってTc、Jcとも高い値を示した。
As is clear from Table 1, the method of the present invention (1 to
In case 3), the atomic ratio of Y was within the range of 0.95 to 1.05, and both Tc and Jc showed high values.

これに対し比較方法によるもの(4,5)はYの原子比
が1.0から大きくずれてTc、Jcが低い値となった
On the other hand, in the comparison method (4, 5), the Y atomic ratio significantly deviated from 1.0, resulting in low Tc and Jc values.

上記実施例では基体上に付着したY−Ba−Cu−0系
超電導体前駆物質をそのまま加熱処理して超電導体とな
したが、付着体を基体から掻き落してこれを粉砕分級し
圧粉成形して加熱処理を施しても同様の効果が得られる
In the above example, the Y-Ba-Cu-0 superconductor precursor adhered to the substrate was heat-treated as it was to form a superconductor, but the adhered material was scraped off from the substrate, crushed and classified, and compacted. A similar effect can be obtained even if heat treatment is performed.

〔効果〕〔effect〕

以上述べたように本発明方法によれば、Yが所定量含有
されたY+Batcusoxの化学式で示されるY−B
a−Cu−0系超電導体の前駆物質が容易に生成され、
これを酸素含有雰囲気中で所定の加熱処理を施して得ら
れるY−Ba−Cu−0系超電導体は、TCSJc等の
特性に優れていて、工業上顕著な効果を奏する。
As described above, according to the method of the present invention, Y-B represented by the chemical formula of Y+Batcusox containing a predetermined amount of Y
Precursors of a-Cu-0-based superconductors are easily produced,
The Y-Ba-Cu-0 superconductor obtained by subjecting this to a predetermined heat treatment in an oxygen-containing atmosphere has excellent properties such as TCSJc, and has a remarkable effect industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するのに用いる噴霧加熱反応
装置の1例を示す説明図、第2図は火炎のOx/Hz容
量比と前駆物質中のY、Ba、CUの原子比の関係を示
す図である。 1・・・t′jI液、 3・・・原料の霧状体、 6・
・・Y−Ba−Cu−0系超電導体前駆物質。
Figure 1 is an explanatory diagram showing an example of a spray heating reactor used to carry out the method of the present invention, and Figure 2 is an illustration of the Ox/Hz capacity ratio of the flame and the atomic ratio of Y, Ba, and CU in the precursor. It is a figure showing a relationship. 1...t'jI liquid, 3... Raw material mist, 6.
...Y-Ba-Cu-0 based superconductor precursor.

Claims (1)

【特許請求の範囲】[Claims] Y、Ba及びCu等の元素を各々含有する化合物をY:
Ba:Cuが1:2:3の割合で秤量し、それぞれ溶媒
に溶解し、この溶液を霧状化して火炎中に供給し、この
霧状体を上記火炎により加熱してY_1Ba_2Cu_
3O_xの化学式で示される酸化物超電導体の前駆物質
を製造する方法において、霧状体の加熱の為の火炎発生
用の水素ガスと酸素ガスの供給比率を水素ガス1容量に
対し酸素ガス2.5〜3.5容量とすることを特徴とす
る酸化物超電導体前駆物質の製造方法。
A compound containing each of elements such as Y, Ba, and Cu is Y:
Ba:Cu was weighed in a ratio of 1:2:3 and dissolved in a solvent, this solution was atomized and supplied into a flame, and this atomized body was heated by the flame to produce Y_1Ba_2Cu_
In a method for manufacturing a precursor of an oxide superconductor represented by the chemical formula 3O_x, the supply ratio of hydrogen gas and oxygen gas for generating a flame for heating the atomized body is 1 volume of hydrogen gas to 2.0 volume of oxygen gas. A method for producing an oxide superconductor precursor characterized by having a capacity of 5 to 3.5.
JP63108057A 1988-04-30 1988-04-30 Method for producing oxide superconductor precursor Expired - Lifetime JP2635677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63108057A JP2635677B2 (en) 1988-04-30 1988-04-30 Method for producing oxide superconductor precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63108057A JP2635677B2 (en) 1988-04-30 1988-04-30 Method for producing oxide superconductor precursor

Publications (2)

Publication Number Publication Date
JPH01278416A true JPH01278416A (en) 1989-11-08
JP2635677B2 JP2635677B2 (en) 1997-07-30

Family

ID=14474819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63108057A Expired - Lifetime JP2635677B2 (en) 1988-04-30 1988-04-30 Method for producing oxide superconductor precursor

Country Status (1)

Country Link
JP (1) JP2635677B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0681989A1 (en) * 1994-05-13 1995-11-15 MERCK PATENT GmbH Process for the preparation of multi-element metal oxide powders

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0681989A1 (en) * 1994-05-13 1995-11-15 MERCK PATENT GmbH Process for the preparation of multi-element metal oxide powders
US5814585A (en) * 1994-05-13 1998-09-29 Merck Patent Gesellschaft Mit Beschrankter Haftung Bi(Pb)SrCaCuO superconductors
KR100371114B1 (en) * 1994-05-13 2003-03-26 메르크 파텐트 게엠베하 Method for preparing multielement metal oxide powder

Also Published As

Publication number Publication date
JP2635677B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
Hou et al. Processing and applications of aerosol‐assisted chemical vapor deposition
US5034372A (en) Plasma based method for production of superconductive oxide layers
CN88103399A (en) Form the method and apparatus of superconducting thin film
WO1991007236A1 (en) Method and apparatus for the rapid deposition by chemical vapor deposition with low vapor pressure reactants
EP0326944B1 (en) Superconductive powder and method of making superconductive powder
JPH01278416A (en) Production of precursor substance for oxide superconductor
US5273957A (en) Thermally sprayed lead-containing thick layers
Sin et al. Thick films of (Hg, Re)-1223 by aerosol deposition at high temperature
US5077267A (en) Process for making composite high temperature superconductor copper wires
JPH03109207A (en) Production of oxide superconducting powder occluding oxygen or gaseous ozone
JPH01224208A (en) Method for synthesizing oxide superconductor precursor
JPS63289722A (en) Manufacture of superconductor
JPH02291611A (en) Manufacture of oxide superconducting film
JPH02208208A (en) Production of oxide superconductor precursor film
JP2573650B2 (en) Superconductor manufacturing method
JP3342785B2 (en) Apparatus and method for producing oxide superconducting conductor
JPH0489378A (en) Production of oxide superconductor by chemical vapor deposition method of organic metal
JPH01320223A (en) Synthesizing method for oxide superconductor
JPH01278402A (en) Synthesis of precursor substance for oxide superconductor
JP2615079B2 (en) Superconducting film manufacturing method
JPH01203258A (en) Production of oxide superconducting sintered body
JPH0251403A (en) Process for forming film of precursor for oxide superconductor on carrier surface
JPH01192709A (en) Production of superconductin oxide ceramic powder and sintered form therefrom
JPH01294525A (en) Formation of thin film of oxide superconductor
JPH0891846A (en) Production of multiple oxide having large specific surface area