JPS63310707A - Production of oxide superconducting powder - Google Patents

Production of oxide superconducting powder

Info

Publication number
JPS63310707A
JPS63310707A JP62146485A JP14648587A JPS63310707A JP S63310707 A JPS63310707 A JP S63310707A JP 62146485 A JP62146485 A JP 62146485A JP 14648587 A JP14648587 A JP 14648587A JP S63310707 A JPS63310707 A JP S63310707A
Authority
JP
Japan
Prior art keywords
superconductor
solution
soln
atomized
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62146485A
Other languages
Japanese (ja)
Inventor
Takao Shioda
塩田 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62146485A priority Critical patent/JPS63310707A/en
Publication of JPS63310707A publication Critical patent/JPS63310707A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Abstract

PURPOSE:To obtain a uniform superconducting powder having high purity and a compsn. coincident with a stoichiometric compsn. by heating a soln. of compds. of elements constituting an oxide superconductor in a solvent and allowing the compd. to react by melting in atomized condition. CONSTITUTION:A soln. L of compds. of elements constituting a superconductor dissolved in a solvent such as ethanol, ether, etc. is charged to a vessel 2. Inert gas such as Ar, etc. is blown into an atomizing pipe 1 from an end of the pipe 1, and the soln. L is discharged in atomized condition and ejected from a tip end of the pipe 1. The atomized soln. is heated at 800-1,100 deg.C by the hot flame generated before the pipe 1, and the powder of an oxide superconductor is formed by allowing the elements contained in the mist for constituting the superconductor to cause a reaction. Suitable soln. L is a soln. contg. a compd. constituted of an element A, element B, Cu, and O, which constitutes an A-B-Cu- O type superconductor (wherein A is Y, Sc, Ce, etc.; B is Ba, Sr, Mg, etc.).

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は超電導線材や超電導コイルの製造等に用いられ
る超電導粉末の製造方法に関するもので、化学量論的組
成に合致するとともに品質の均一な超電導粉末を製造す
る方法に関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a method for producing superconducting powder used in the production of superconducting wires and superconducting coils. The present invention relates to a method of manufacturing superconducting powder.

「従来の技術」 従来、超電導体を製造するための方法として以下に記載
する方法が実施されている。
"Prior Art" Conventionally, the method described below has been implemented as a method for manufacturing a superconductor.

1つの方法は、超電導体の構成元素を含む酢酸溶液ない
しは硝酸溶液から硝酸塩にして沈澱物を得、この沈澱物
を乾燥して超電導粉末の前駆体を得る共沈法である。
One method is a coprecipitation method in which a precipitate is obtained by converting an acetic acid solution or a nitric acid solution containing constituent elements of a superconductor into nitrates, and then drying this precipitate to obtain a precursor of a superconducting powder.

また、他の1つの方法は、超電導体を構成する元素の炭
酸塩や酸化物などの化合物の粉末を複数種類混合し、加
熱して各元素を反応させ、超電導粉末を得る粉末混合法
である。
Another method is a powder mixing method in which multiple types of compound powders such as carbonates and oxides of the elements constituting the superconductor are mixed and heated to react with each element to obtain superconducting powder. .

更に他の1つの方法は、CVD法(化学気相成長法)や
M B E法(分子線エピタキシャル法)、あるいは、
MOCVD法(MetaiOrganic CV D法
)などの薄膜形成法により所要の基材の表面に薄膜状の
超電導体を形成する方法である。
Still another method is the CVD method (chemical vapor deposition method), the MBE method (molecular beam epitaxial method), or
This is a method of forming a thin film superconductor on the surface of a desired base material by a thin film forming method such as MOCVD (Metai Organic CVD).

「発明が解決しようとする問題点」 ところが、前記共沈法で得られた超電導粉末の前駆体は
化学量論的組成から外れた組成となり易い傾向があり、
目的の組成の完全な超電導粉末を得ることができない問
題があった。また、前記粉采混合法においては、各種の
粉末を完全に均一に混合することが困難であり、混合作
業中に空気中の水分が混入する関係から、熱処理後に得
られた超電導粉末は部分的に組成比の異なる超電導粉末
を含んでいることがあり、均一性に欠ける問題があった
。更に、前記薄膜形成法においては、膜形成に長い時間
を要するために、超電導コイルや超電導線材等の長尺物
の大1生産には不向きな問題がある。
"Problems to be Solved by the Invention" However, the superconducting powder precursor obtained by the coprecipitation method tends to have a composition that deviates from the stoichiometric composition.
There was a problem in that it was not possible to obtain a perfect superconducting powder with the desired composition. In addition, in the powder mixing method, it is difficult to mix various powders completely uniformly, and because moisture in the air gets mixed in during the mixing process, the superconducting powder obtained after heat treatment is partially may contain superconducting powders with different composition ratios, resulting in a problem of lack of uniformity. Furthermore, the thin film forming method has the problem that it takes a long time to form the film, making it unsuitable for large-scale production of long products such as superconducting coils and superconducting wires.

本発明は、前記問題に鑑みてなされたもので、化学債論
的組成に合致した組成であって、均一で純度が高い超電
導粉末を製造する方法の提供を目的とする。
The present invention was made in view of the above problem, and an object of the present invention is to provide a method for producing a superconducting powder that has a composition that conforms to chemical bond theory, is uniform, and has high purity.

「問題点を解決するための手段」 本発明は、前記問題点を解決するために、酸化物超電導
体を構成する各元素の化合物を溶媒に溶解して溶液を得
るとともに、この溶液を霧状化した状態で加熱溶融反応
さけるものである。また、加熱溶融反応させる際に、霧
状とした溶液をキャリアガスとともに加熱溶融反応部に
送入することが好ましい。
"Means for Solving the Problems" In order to solve the above problems, the present invention dissolves compounds of each element constituting an oxide superconductor in a solvent to obtain a solution, and also forms a mist of this solution. This is to avoid heating and melting reactions in the oxidized state. Further, when performing the heat melting reaction, it is preferable to feed the atomized solution together with a carrier gas into the heat melting reaction section.

「作用」 超電導体を構成する元素を含む溶液を霧状として加熱反
応させることにより超電導体を得る。ここで溶液を霧状
の微細状態として加へ溶融反応させるために均一に反応
が進行し、組成の均一な超電導体が生成する。
"Operation" A superconductor is obtained by atomizing a solution containing the elements constituting the superconductor and causing a heating reaction. Here, the solution is turned into a fine atomized state and melted into a fine state, so that the reaction proceeds uniformly and a superconductor with a uniform composition is produced.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

第1図は本発明を実施するために用いる装置の一例を示
すもので、この装置は、噴霧管1の一部に噴霧管Iの周
壁を貫通させて容器2を設け、容器2の底部に形成した
透孔3を噴霧管lの内部に位置させた構成である。そし
て、噴霧管lの一端からArなどのガスを送入すること
により、容器2に収納された液体りを容器の透孔3から
霧状化して吹き出させ、噴霧管lの他端から吹き出すこ
とができるようになっている。
FIG. 1 shows an example of a device used to carry out the present invention. This device includes a container 2 provided in a part of a spray tube 1 by penetrating the peripheral wall of the spray tube I, and a container 2 at the bottom of the container 2. This is a configuration in which the formed through hole 3 is located inside the spray tube l. Then, by introducing a gas such as Ar from one end of the spray pipe l, the liquid stored in the container 2 is atomized and blown out from the through hole 3 of the container, and then blown out from the other end of the spray pipe l. is now possible.

前記構成の装置を用いて超電導体を製造するには、容器
2に超電導体を構成する元素を含む溶液りを収納する。
To manufacture a superconductor using the apparatus having the above configuration, a solution containing elements constituting the superconductor is placed in the container 2.

ここで前記溶液とは、A −B −Cu−0(ただしA
は、Y、Sc、La、Ce、Ndなどの周期律表ll1
a族元素を示し、BはBa、Sr、Mg、Caなどの周
期律表Ua族元素を示す)系の超電導体を構成するへ元
素とB元素と銅と酸素の化合物を溶解した溶液である。
Here, the above-mentioned solution refers to A-B-Cu-0 (however, A
is the periodic table 11 of Y, Sc, La, Ce, Nd, etc.
This is a solution in which a compound of element B, element B, copper, and oxygen, which constitutes a superconductor of the system (indicates a group a element, and B represents an element of group Ua of the periodic table such as Ba, Sr, Mg, and Ca), is dissolved. .

この溶液は、へ元素とB元素と銅を溶解した硝酸水溶液
などであり、これら元素の硝酸塩を具体的に例示するな
らばY (N O3)3. E r(N O3)!、 
S r(N Os)t、B a(N O3)!、 Cu
(N 03)tなどである。また、前記溶液として、エ
タノール、エーテル、アセトンなどに前記元素を溶解し
た溶液を用いることもできる。
This solution is a nitric acid aqueous solution in which element He, element B, and copper are dissolved, and specific examples of nitrates of these elements include Y (N O3) 3. E r(N O3)! ,
S r(NOs)t, B a(N O3)! , Cu
(N 03)t, etc. Further, as the solution, a solution in which the element is dissolved in ethanol, ether, acetone, etc. can also be used.

前記へ元素とB元素と銅と酸素を所定の成分比となるよ
うに溶解した溶液りを第1図に示す容器2に収納し、噴
霧管lの一端からArなどの不活性ガスを吹き込むなら
ば、容器2の底部から溶液を霧状として排出することが
でき、霧状の溶液は噴霧管lの先端から排出される。
If a solution containing the above elements B, B, copper, and oxygen dissolved in a predetermined composition ratio is stored in the container 2 shown in Fig. 1, and an inert gas such as Ar is blown into it from one end of the spray tube l. For example, the solution can be discharged as a mist from the bottom of the container 2, and the mist solution can be discharged from the tip of the spray tube l.

このように排出された霧状の溶液を噴霧管lの先方に発
生させた加熱炎で800〜1100°Cに加熱し、霧に
含まれる超電導体構成元素を反応させて酸化物系超電導
粉末を生成させる。ここで霧状化された溶液は、極めて
微細な霧状状態で加熱溶融されるために、十分に加熱溶
融されて成分元素どうしが反応し、高純度の超電導体が
効率良く生成される。
The mist-like solution discharged in this way is heated to 800-1100°C with a heating flame generated at the tip of the spray tube l, and the superconductor constituent elements contained in the mist are reacted to form oxide-based superconducting powder. Generate. Since the atomized solution is heated and melted in an extremely fine mist state, it is sufficiently heated and melted so that the component elements react with each other, and a highly pure superconductor is efficiently produced.

以上の操作によって生成された超電導粉末は、極めて微
細な霧状の溶液を加熱して生成され、十分な量の酸素の
もとて完全に反応するために、臨界電流が高く優れた超
電導粉末となる。また、噴霧管lにキャリアガスを連続
的に送入するならば所定量の溶液りを連続的に霧状にす
ることができるために超電導粉末の連続製造も容易に実
施することができる。更に、キャリアガスの流量を定量
的に調節するならば、所定量の溶液りを霧状化して所定
量の超電導粉末を製造することができる。
The superconducting powder produced by the above operations is produced by heating an extremely fine mist solution, and in order to completely react in the presence of a sufficient amount of oxygen, it is an excellent superconducting powder with a high critical current. Become. Furthermore, if carrier gas is continuously fed into the spray pipe 1, a predetermined amount of the solution can be continuously atomized, so that continuous production of superconducting powder can be easily carried out. Furthermore, if the flow rate of the carrier gas is quantitatively adjusted, a predetermined amount of superconducting powder can be produced by atomizing a predetermined amount of solution.

なお、霧状化した溶液を加熱溶融反応させる手段は前記
火炎を用いた方法以外の加熱方法でも良い。
Note that the means for heating and melting the atomized solution may be any heating method other than the method using the flame described above.

即ち、例えば金属管の内部に前記のように霧状化した溶
液を噴霧しつつ金属管を加熱して反応させることら可能
である。
That is, for example, it is possible to react by heating the metal tube while spraying the atomized solution as described above inside the metal tube.

このように製造された超電導粉末を用いて超電導線を製
造するには、超電導粉末、ありは、これをプレス成形し
rコものを金属管に充填して縮径加工を施し、800〜
1100℃テI 〜l OO時間程度加熱することによ
り製造できる。
In order to manufacture a superconducting wire using the superconducting powder manufactured in this way, the superconducting powder is press-molded and filled into a metal tube, and the diameter is reduced.
It can be produced by heating at 1100°C for about 1 to 10 hours.

第2図は、前記溶液りを霧状化して噴霧する装置の他の
例を示すもので、この噴霧装置10は、駆動装置11と
、駆動装置11上に設置された容器12と、容器12の
内部に設置された超音波発振機13を具備して構成され
、容器12に収納された液体を超音波発振機13により
霧状にして容器12の外方に噴出できるようになってい
る。
FIG. 2 shows another example of an apparatus for atomizing and spraying the liquid solution. The liquid contained in the container 12 can be atomized by the ultrasonic oscillator 13 and sprayed to the outside of the container 12.

第2図に示す装置を用いることによっても溶液を霧状化
することができ、霧状にした溶液を加熱溶融反応させる
ことによって超電導粉末を製造することができる。
A solution can also be atomized by using the apparatus shown in FIG. 2, and a superconducting powder can be produced by heating and melting the atomized solution.

「実施例1」 1モルのY (N O3)3と2.5モルのS r(N
 O3)!と4モルのCu(N 03)2を10kgの
純水に溶解して溶液を作成する。更に、この溶液の温度
を5゜°Cに加熱して超音波噴霧装置により霧状化する
“Example 1” 1 mol of Y(N O3)3 and 2.5 mol of S r(N
O3)! A solution is prepared by dissolving 4 moles of Cu(N 03)2 in 10 kg of pure water. Furthermore, this solution is heated to 5°C and atomized using an ultrasonic atomizer.

この霧状化した溶液をArガスのキャリアガスと混合し
1、co+ot炎中に送入して酸化反応させ、塊を得る
。この塊は多孔質の塊であるために、周辺部を除去して
直径2On+m1長さ30n+mの円柱状の塊を得た。
This atomized solution is mixed with a carrier gas of Ar gas, and then introduced into a CO+OT flame for oxidation reaction to obtain a lump. Since this mass was a porous mass, the peripheral portion was removed to obtain a cylindrical mass with a diameter of 2On+m and a length of 30n+m.

この円柱状の塊の組成はYSrtCusOxであり、こ
の塊をtooo℃程度の温度で焼成して超電導体を得た
。この超電導体の臨界温度Tcは90Kを示した。
The composition of this cylindrical lump was YSrtCusOx, and the superconductor was obtained by firing this lump at a temperature of about too much°C. The critical temperature Tc of this superconductor was 90K.

「実施例2」 1 モル(7) Y (N O3)3と、2 モル(D
 S r(N O3)tと、3モルのCu(NO3)t
を10kgの純水に溶解し、温度を60℃に加熱した状
態で超音波噴霧器によって霧状化する。また、内径20
mm、外径30 mm、長さ1000mmの鋼管を6 
Orpmで回転させる。そして、Arのキャリアガスを
用いて前記霧状化した溶液を鋼管の内部に、流量をI 
Q/cmに設定した酸素ガスとともに送入した。この鋼
管をニクロム線からなる加熱体で1100℃に加熱した
ところY +S rxc u30 xの組成の超電導体
が約550g鋼管の内部に生成された。この超電導体を
鋼管とともに圧延し、1000℃程度で焼成して得られ
た超電導線は、臨界温度Tcが92Kを示した。
"Example 2" 1 mol (7) Y (N O3)3 and 2 mol (D
S r(N O3)t and 3 moles of Cu(NO3)t
was dissolved in 10 kg of pure water and atomized using an ultrasonic atomizer at a temperature of 60°C. Also, the inner diameter is 20
6 mm, outer diameter 30 mm, length 1000 mm steel pipe
Rotate with Orpm. Then, the atomized solution was introduced into the steel pipe using a carrier gas of Ar, and the flow rate was set to I.
It was delivered together with oxygen gas set at Q/cm. When this steel tube was heated to 1100° C. with a heating element made of nichrome wire, approximately 550 g of superconductor having a composition of Y + S rxc u30 x was generated inside the steel tube. A superconducting wire obtained by rolling this superconductor together with a steel pipe and firing at about 1000°C exhibited a critical temperature Tc of 92K.

「発明の効果」 以上説明したように本発明は、超電導体を構成する元素
の化合物を溶媒に溶解して得た溶液を用い、この溶液を
霧状化して加熱溶融反応させるために、溶液の霧状粒の
1つ1つを十分に加熱して反応させることができ、液体
の総てを効率良く反応させて均一で高純度の超電導体を
製造できる効果がある。また、前記溶液を連続的に霧状
化して加熱溶融することにより超電導粉末を連続製造す
ることができる効果がある。
"Effects of the Invention" As explained above, the present invention uses a solution obtained by dissolving a compound of elements constituting a superconductor in a solvent, atomizes the solution, and causes a heating melting reaction. Each of the atomized particles can be sufficiently heated and reacted, and all of the liquid can be reacted efficiently to produce a uniform and highly pure superconductor. Further, by continuously atomizing the solution and heating and melting it, there is an effect that superconducting powder can be continuously manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に使用する装置の一例を示す構成
図、第2図は本発明の実施に使用する装置の他の例を示
す略図である。 L・・・・溶液、    l・・・・噴霧管、2・・・
・・・容器、   10・・・・・・噴霧装置。
FIG. 1 is a block diagram showing one example of an apparatus used to carry out the present invention, and FIG. 2 is a schematic diagram showing another example of the apparatus used to carry out the present invention. L...Solution, L...Spray pipe, 2...
... Container, 10 ... Spray device.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化物超電導体を構成する各元素の化合物を溶媒
に溶解して溶液を得るとともに、この溶液を霧状化した
状態で加熱溶融反応させることを特徴とする酸化物超電
導粉末の製造方法。
(1) A method for producing oxide superconducting powder, which comprises dissolving a compound of each element constituting the oxide superconductor in a solvent to obtain a solution, and subjecting the solution to a heat-melting reaction in an atomized state. .
(2)加熱溶融反応させる際に、霧状にした溶液をキャ
リアガスにより定量的に加熱溶融反応部に送入すること
を特徴とする特許請求の範囲第1項記載の酸化物超電導
粉末の製造方法。
(2) Production of the oxide superconducting powder according to claim 1, characterized in that during the heating and melting reaction, the atomized solution is quantitatively fed into the heating and melting reaction section using a carrier gas. Method.
JP62146485A 1987-06-12 1987-06-12 Production of oxide superconducting powder Pending JPS63310707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62146485A JPS63310707A (en) 1987-06-12 1987-06-12 Production of oxide superconducting powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62146485A JPS63310707A (en) 1987-06-12 1987-06-12 Production of oxide superconducting powder

Publications (1)

Publication Number Publication Date
JPS63310707A true JPS63310707A (en) 1988-12-19

Family

ID=15408701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62146485A Pending JPS63310707A (en) 1987-06-12 1987-06-12 Production of oxide superconducting powder

Country Status (1)

Country Link
JP (1) JPS63310707A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645946A (en) * 1987-06-29 1989-01-10 Nihon Cement Production of ceramic superconductor
JPS6424016A (en) * 1987-07-17 1989-01-26 Nippon Telegraph & Telephone Process and device for producing superconductor
JPH02501477A (en) * 1987-10-05 1990-05-24 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for producing metal oxide powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645946A (en) * 1987-06-29 1989-01-10 Nihon Cement Production of ceramic superconductor
JPS6424016A (en) * 1987-07-17 1989-01-26 Nippon Telegraph & Telephone Process and device for producing superconductor
JP2622116B2 (en) * 1987-07-17 1997-06-18 日本電信電話株式会社 Superconductor manufacturing method
JPH02501477A (en) * 1987-10-05 1990-05-24 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for producing metal oxide powder

Similar Documents

Publication Publication Date Title
US5034372A (en) Plasma based method for production of superconductive oxide layers
CN88103399A (en) Form the method and apparatus of superconducting thin film
JPH05330827A (en) Perovskite wherein tantalum or niobium is base material and preparation thereof
KR950031997A (en) Method for producing multielement metal oxide powder
JPS6168311A (en) Process and apparatus for preparing aluminum nitride powder
JP2794299B2 (en) Method for producing metal oxide powder
JPS63310707A (en) Production of oxide superconducting powder
Sproson et al. Ceramic Powder Synthesis by Thermal Reaction of Atomized Solutions.(Retroactive Coverage)
CN1074469C (en) Atomizing thermolysis process for preparing film
JP2671384B2 (en) Metal compound forming equipment
JPH1088354A (en) Raw material solution evaporation system for cvd
JPH02208208A (en) Production of oxide superconductor precursor film
JPH0297406A (en) Synthesizing method for precursor for oxide superconductor
JP2635677B2 (en) Method for producing oxide superconductor precursor
JP2856859B2 (en) Method for producing oxide superconductor by metal organic chemical vapor deposition
JPH01175123A (en) Manufacture of precursor for manufacturing oxide superconductor
JPH0477302A (en) Production of superconducting layer
JPH11323558A (en) Liquid raw material supply device for cvd
JPH06206796A (en) Generator of raw material gas for cvd
JPH025314A (en) Manufacture of oxide superconductive wire rod
JPH0227619A (en) Manufacture of composite superconducting copper wire
CN103460306B (en) The manufacture method of banding oxide superconducting wire rod
JPS63310720A (en) Production of superconducting powder
JPH01321031A (en) Manufacture of oxide superconducting wire
JP3939486B2 (en) Liquid material supply device for CVD