JPH01176606A - Manufacture of oxide superconductive fiber - Google Patents

Manufacture of oxide superconductive fiber

Info

Publication number
JPH01176606A
JPH01176606A JP62335822A JP33582287A JPH01176606A JP H01176606 A JPH01176606 A JP H01176606A JP 62335822 A JP62335822 A JP 62335822A JP 33582287 A JP33582287 A JP 33582287A JP H01176606 A JPH01176606 A JP H01176606A
Authority
JP
Japan
Prior art keywords
oxide
producing
oxide superconducting
superconducting fiber
fiber according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62335822A
Other languages
Japanese (ja)
Inventor
Kyoko Goto
後藤 共子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP62335822A priority Critical patent/JPH01176606A/en
Publication of JPH01176606A publication Critical patent/JPH01176606A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Fibers (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make it possible to obtain a superfine oxide superconductive fiber easily by using a solution including a high polymer compound in which an oxide superconductor or a substance to be an oxide superconductor by heat- treatment is scattered or solved as a spinning material solution, spinning in a dry type spinning to obtain a precursor fiber of a superconductive fiber, and then applying a heat treatment. CONSTITUTION:An oxide superconductor or a substance to be an oxide superconductor by heat-treating is scattered or solved in a solution including a high polymer compound to produce a spinning material solution, which is dry-spun into a precursor fiber of a superconductive fiber, and after that, a heat treatment is applied. The oxide superconductor or the substance to be an oxide superconductor by heat-treating to be used is preferably used as a powder, especially a powder less than 15mum, preferably less than 1mum, and more preferably as a micropowder less than 0.5mum. In such a way, a superfine wire material of an oxide superconductor can be obtained.

Description

【発明の詳細な説明】 A、産業上の利用分野 −本発明は、超電導マグネットや超電導送電線等に利用
しうる線材化された酸化物超′WL導体の製法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Application Field - The present invention relates to a method for producing an oxide super-WL conductor made into a wire that can be used for superconducting magnets, superconducting power transmission lines, etc.

旦−亘」L二重」L 従来、超電導体としてはNb3GeあるいはNb3Sn
等の金属間化合物が知られている。しかしこれらの臨界
温度(Tc)は最高でも23.3K (Nb5Ge)と
著しく低く、これらの材料を使用する場合には工業的生
産が困難で、経済性に劣る液体ヘリウムによる冷却が必
要であるため、これらの材料を広範な工業的用途に利用
する」二で著しい制約となっていた。
Nb3Ge or Nb3Sn has traditionally been used as a superconductor.
Intermetallic compounds such as However, the critical temperature (Tc) of these materials is extremely low, at most 23.3K (Nb5Ge), and when these materials are used, industrial production is difficult and cooling with liquid helium, which is less economical, is required. This has been a significant constraint on the use of these materials for a wide range of industrial applications.

最近酸化物超電導体が極めて高い臨界温度を有すること
が見出だされ、この分野に於ける研究が活発に実施され
る様になった。臨界温度が高い材料(以下、高温超電導
材料と略記する)としては、40に級の超電導体(La
+−zsrr)zcuoa [Chem、Lett、 
Recently, it has been discovered that oxide superconductors have extremely high critical temperatures, and research in this field has become active. Materials with high critical temperatures (hereinafter abbreviated as high-temperature superconducting materials) include superconductors of grade 40 (La
+-zsrr)zcuoa [Chem, Lett,
.

429(19B?)コ、90に級超電導体としてはBa
2Y+Cu307−、 [Phys、Rev、Lett
、、58(1987)405]が既に見出たされ、また
Y以外でもLu、 Yb、 Tm、、 Er等でも90
に級と見られる超電導現象が既に観察されている。
429 (19B?) Co, 90 class superconductor is Ba
2Y+Cu307-, [Phys, Rev, Lett
, 58 (1987) 405] has already been found, and 90
Superconducting phenomena of the highest order have already been observed.

90に級高温超電導材料の出現により液体窒素(77K
)を用いることが可能となり、冷却における工業的問題
点は大巾に改善される見通しが得られつつある。
With the advent of 90-grade high-temperature superconducting materials, liquid nitrogen (77K
), and there are prospects that industrial problems in cooling will be greatly improved.

Uが 決しようとする。題1、 高温超電導の応用はジョセフソン素子に代表されるよう
なエレクトロニクス分野への応用と、超電導発電機、磁
気浮上列車、超電導送電線に代表されるような電気機器
分野への応用に大別される。
U tries to decide. Problem 1: Applications of high-temperature superconductivity can be broadly divided into applications in the electronics field, as typified by Josephson devices, and applications in the electrical equipment field, as typified by superconducting generators, magnetic levitation trains, and superconducting power transmission lines. be done.

エレクトロニクス分野への応用ら非常に重要な課題であ
るが、産業界、社会に与えるインパクトの大きさを考え
た場合、電気機器への高温超電導の応用こそが重要であ
る。
The application of high-temperature superconductivity to the electronics field is a very important issue, but when considering the magnitude of the impact it will have on industry and society, the application of high-temperature superconductivity to electrical equipment is important.

高温超電導の電気機器への応用の要素技術となるのは超
電導マグネット技術である。超電導マグネットを利用し
たものとしてはM HD発電、磁気浮上列車、高エネル
ギー粒子加速装置、超電導発電機、超電導変圧器、NM
R−CTなどが挙げられる。高温超電導体をマグネット
の分野に使用できれば超電導マグネット応用機器の経済
性が格段に向上する。また経済性が格段に向上すること
により新しい応用分野、あるいは超電導送電線への応用
が開けることが期待される。
Superconducting magnet technology is an elemental technology for the application of high-temperature superconductivity to electrical equipment. Things that use superconducting magnets include MHD power generation, magnetic levitation trains, high-energy particle accelerators, superconducting generators, superconducting transformers, and NM.
Examples include R-CT. If high-temperature superconductors can be used in the field of magnets, the economic efficiency of superconducting magnet application equipment will be greatly improved. It is also expected that the dramatic improvement in economic efficiency will open up new application fields or applications to superconducting power transmission lines.

高温超電導体をマグネットに使用する為には、マグネッ
トに巻ける様な線材であることが必要である。また超電
導マグネットにおいて実用上置も大きな間層はマグネッ
トの安定化である。
In order to use a high-temperature superconductor in a magnet, it must be a wire that can be wrapped around the magnet. Furthermore, in superconducting magnets, the interlayer that is of great practical importance is the stabilization of the magnet.

従来のNb1GeあるいはNb*Sn等の様な金属間化
合物超電導体においては、例えばCu5n合金棒と、N
bあるいはNb合金棒を密に束ねて熱処理によりNb5
Sn化合物層を生じさせた後、引き延ばし加工による線
材化を何度も繰り返すという極めて煩瑣な手段により超
電導体の線材化を図っている。
In conventional intermetallic compound superconductors such as Nb1Ge or Nb*Sn, for example, Cu5n alloy rod and Nb
b or Nb alloy rods are tightly bundled and heat treated to form Nb5
After forming a Sn compound layer, the superconductor is made into a wire by a very complicated method of repeating the drawing process many times to make the wire into a wire.

しかしながら高温超電導体、すなわち酸化物超電導体は
セラミックスであるため、従来の超電導体に比べ著しく
線材化が困難であるという問題点があった。
However, since high-temperature superconductors, ie, oxide superconductors, are made of ceramics, they have the problem of being significantly more difficult to form into wires than conventional superconductors.

このような問題点を解決するため銀合金インゴットに穴
をあけ、酸化物超電導体粉末あるいは加熱処理によって
酸化物超電導体になり得る物質の粉末を詰めて線材とし
たのち熱処理する方法がすでに提案されている。
In order to solve these problems, a method has already been proposed in which a hole is made in a silver alloy ingot and the material is filled with oxide superconductor powder or powder of a substance that can be made into an oxide superconductor through heat treatment to form a wire and then heat treated. ing.

しかしながら高温超電導体すなわち酸化物超電導体を銀
等の金属中空管に詰めて線材化する場合には、(1)直
径100μm〜200μ−以下の極細線材とすることが
極めて困難である、(2)高温超電導体すなわち酸化物
超電導体が断線することなく、かつ全線域にわたって電
導性が均一である状態にすることは困難である等の極め
て大きな問題があった。
However, when high-temperature superconductors, that is, oxide superconductors, are packed into hollow tubes made of metal such as silver and made into wires, (1) it is extremely difficult to make ultrafine wires with a diameter of 100 μm to 200 μm or less; (2) ) There were extremely serious problems such as the difficulty of maintaining a high temperature superconductor, that is, an oxide superconductor, without disconnection and with uniform conductivity over the entire line area.

すなわち、安定化超電導線材の作製は高温超電導材料を
実用化するための最も大きな課題であり、このための最
もffi要な間厘として高温超電導体すなわち酸化物超
電導体の極細線材の作製が強く要求されているというの
が現状である。
In other words, the production of stabilized superconducting wires is the most important issue for the practical application of high-temperature superconducting materials, and the production of ultrafine wires of high-temperature superconductors, that is, oxide superconductors, is strongly required as the most necessary step for this purpose. The current situation is that

D、cx”するlの− 本発明者らは上述の現状に鑑み、鋭意検討した結果、酸
化物超電導体あるいは加熱処理によって酸化物超電導体
になり得る物質を高分子化合物を含む溶液中に分散ある
いは溶解して紡糸原液を調製し、この紡糸原液を乾式紡
糸して超電導繊維の前駆体繊維とした後、加熱処理する
ことにより、酸化物超電導繊維が得られることを見出し
、本発明を完成するに到った。
D, cx" - In view of the above-mentioned current situation, the present inventors have conducted intensive studies and have discovered that an oxide superconductor or a substance that can become an oxide superconductor through heat treatment is dispersed in a solution containing a polymer compound. Alternatively, the inventors discovered that oxide superconducting fibers can be obtained by dissolving the solution to prepare a spinning solution, dry-spinning this spinning solution to obtain precursor fibers for superconducting fibers, and then heat-treating the fibers, thereby completing the present invention. reached.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で用いられる酸化物超電導体は、熱処理によって
セラミックス系焼結体を形成するものであって、ある温
度以下で超電導現象を示すものならば特に限定されない
が、なかでも銅酸化物を含むものが好ましい。
The oxide superconductor used in the present invention is one that forms a ceramic sintered body through heat treatment, and is not particularly limited as long as it exhibits a superconducting phenomenon below a certain temperature, but it is particularly one that contains copper oxide. is preferred.

具体的には(La、 Ba)*CuO4や一数式LnB
a*Cu50?−,(但し、LnはY、 Lu、 Yb
、 Tm、 Er、 Ho、 Dy。
Specifically, (La, Ba)*CuO4 and the formula LnB
a*Cu50? −, (However, Ln is Y, Lu, Yb
, Tm, Er, Ho, Dy.

Gd、 Eu、 S+*のすくなくとも1種、χは0<
χ≦0.5を表わす。)で表わされるものが挙げられる
。上記Ln、 Ba、 Cu、 Oはそれぞれその一部
がF等によって置換されていても良い。
At least one of Gd, Eu, S+*, χ is 0<
Represents χ≦0.5. ). Part of each of the above Ln, Ba, Cu, and O may be substituted with F or the like.

また加熱処理することによって酸化物超電導体になり得
る物質としては、上記酸化物超電導体を形成するそれぞ
れの金属の酸化物、硝酸塩または炭酸塩等からなるもの
が挙げられる。
Examples of substances that can be turned into oxide superconductors by heat treatment include those made of oxides, nitrates, carbonates, etc. of the respective metals forming the oxide superconductors.

具体的には (a) Lnの酸化物、硝酸塩または炭酸塩、(但しL
nはY、  Lu、  Yb、  Tm、  Er、 
 Ito、  Dy、 Gd、  Eu。
Specifically, (a) an oxide, nitrate or carbonate of Ln (however, Ln
n is Y, Lu, Yb, Tm, Er,
Ito, Dy, Gd, Eu.

Ssのすくなくとも1種) (b) Baの酸化物、硝酸塩または炭酸塩、及び (c) Cuの酸化物、硝酸塩または炭酸塩からなるも
のが挙げられる。上記(b)としてはBaの酢酸塩また
はフッ化物であっても良い。また上記(c)としてはC
uのグルコン酸塩またはフッ化物であっても良い。
At least one type of Ss) (b) Ba oxide, nitrate or carbonate; and (c) Cu oxide, nitrate or carbonate. The above (b) may be Ba acetate or fluoride. Also, for (c) above, C
It may be gluconate or fluoride of u.

より具体的には、上記(a)として、YtOs。More specifically, as the above (a), YtOs.

Y(NOs)s等が、また上記(b)としてBaC0*
 。
Y(NOs)s etc., and BaC0* as above (b)
.

B11(NOs)*、 Ba1t等が、上記(c)とし
てCub。
B11(NOs)*, Balt, etc. are Cub as above (c).

Cu(No;)t、 CuFt・2HtO等が挙げられ
る。
Examples include Cu(No;)t, CuFt.2HtO, and the like.

これらの各成分を、酸化物超電導体の組成比となる様に
混合したものを高分子化合物を含む溶液中に分散あるい
は溶解して紡糸原液を調整すれば良いが、とりわけ、高
分子化合物を含む溶液中に分散あるいは溶解するに先た
ち、該混合物を、温度900℃〜1100℃の条件下で
1時間〜5時間、仮り焼きしたものを用いると、より優
れた効果が得られる。
A spinning stock solution may be prepared by dispersing or dissolving each of these components in a solution containing a polymer compound in a composition ratio of the oxide superconductor. Better effects can be obtained by calcining the mixture at a temperature of 900° C. to 1100° C. for 1 hour to 5 hours before dispersing or dissolving it in the solution.

本発明で用いられる酸化物超電導体あるいは加熱処理に
よって酸化物超電導体となりうる物質は粉末として使用
することが好ましく、特に15μm以下、好ましくは1
μ−以下、更に好ましくは0.5μm以下の微粉末とし
て用いることが好ましい。
The oxide superconductor used in the present invention or the substance that can become an oxide superconductor by heat treatment is preferably used as a powder, particularly 15 μm or less, preferably 1 μm or less.
It is preferable to use it as a fine powder with a particle diameter of μ- or less, more preferably 0.5 μm or less.

本発明で用いられる高分子化合物としては、ポリアクリ
ロニトリル、ポリエチレン、ポリプロピレン、ポリアミ
ド、ポリエステル等や、ポリビニルアルコール系重合体
(以下ポリビニルアルコールをPVAと略ス己すること
がある)、メチルセルロ−ス ノエチルメチルセルロース等のセルロース誘導体、ポリ
ビニルピロリドン、ポリアクリルアミド、ポリエチレン
グリコール等が挙げられるが、中でもPVA系重合体が
最ら好ましく用いられる。
Examples of the polymer compounds used in the present invention include polyacrylonitrile, polyethylene, polypropylene, polyamide, polyester, etc., polyvinyl alcohol polymer (hereinafter, polyvinyl alcohol may be abbreviated as PVA), methylcellulose-snoethyl methyl cellulose, etc. Among them, PVA-based polymers are most preferably used.

PVA系重合体のけん化度、重合度としては通常けん化
度として70〜100モル%、好ましくは85〜100
モル%、最ら好ましくは95〜100モル%、重合度と
して500〜20000、好ましくは1000〜150
00の範囲から選ばれる。
The degree of saponification and degree of polymerization of the PVA polymer is usually 70 to 100 mol%, preferably 85 to 100.
mol%, most preferably 95-100 mol%, degree of polymerization 500-20000, preferably 1000-150
Selected from the range 00.

そして本発明におけるポリビニルアルコール系重合体に
は通常の未変性ポリビニルアルコール以外にも、いわゆ
る変性ポリビニルアルコールも含まれる。変性ポリビニ
ルアルコールとしては、酢酸ビニル及びこれと共重合可
能なコモノマーとの共重合体のケン化物がまずあげられ
る。コモノマーとしては酢酸ビニル以外のビニルエステ
ル(たとえばプロピオン酸ビニル、ステアリン酸ビニル
、安息香酸ビニル、飽和分岐脂肪酸ビニルなど)、アク
リル酸、メタクリル酸、クロトン酸などの不飽和モノカ
ルボン酸又はこれらのアルキルエステル、マレイン酸、
無水マレイン酸、フマール酸、イタコン酸などの不飽和
多価カルボン酸或いはこれらの部分エステル又は完全エ
ステル、アクリロニトリル、メタクリロニトリル、アク
リルアミド、メタクリルアミド、オレフィンスルホン酸
(たとえばエチレンスルホン酸、アリルスルホン酸、メ
タアリルスルホン酸など)或いはその塩、エチレン、プ
ロピレン、ブテン、α−オクテン、α−ドデセン、α−
オクタデセンなどのα−オレフィン、ビニルエーテル、
含シランモノマーなどがあげられる。共重合体中に占め
るこれらコモノマーの割合は20モル%未満、好ましく
は10モル5未満である。
The polyvinyl alcohol polymer in the present invention includes not only ordinary unmodified polyvinyl alcohol but also so-called modified polyvinyl alcohol. Examples of the modified polyvinyl alcohol include saponified copolymers of vinyl acetate and a comonomer copolymerizable with vinyl acetate. Comonomers include vinyl esters other than vinyl acetate (for example, vinyl propionate, vinyl stearate, vinyl benzoate, vinyl saturated branched fatty acids, etc.), unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, or alkyl esters thereof. , maleic acid,
Unsaturated polycarboxylic acids such as maleic anhydride, fumaric acid, itaconic acid, or their partial or complete esters, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, olefin sulfonic acids (e.g. ethylene sulfonic acid, allyl sulfonic acid, (methallylsulfonic acid, etc.) or its salts, ethylene, propylene, butene, α-octene, α-dodecene, α-
α-olefins such as octadecene, vinyl ethers,
Examples include silane-containing monomers. The proportion of these comonomers in the copolymer is less than 20 mol %, preferably less than 10 mol 5 .

変性ポリビニルアルコールの他の群は、酢酸ビニルのホ
モポリマー又は前記のコポリマーのケン化物の後変性物
である。後変性の例としてはアセタール化、ウレタン化
、リン酸エステル化、硫酸エステル化、スルボン酸エス
テル化などがあげられる。
Another group of modified polyvinyl alcohols are post-modifications of vinyl acetate homopolymers or saponified products of the aforementioned copolymers. Examples of post-modification include acetalization, urethanization, phosphoric acid esterification, sulfuric acid esterification, and sulfonic acid esterification.

本発明において用いられる紡糸原液は、酸化物超電導体
(好まし・(は粉末形状のもの)あるいは加熱処理する
ことによって酸化物超電導体になりうる物質(好ましく
は粉末形状のもの)を上記の高分子化合物を含む溶液中
に分散あるいは溶解することによって調製しうる。
The spinning dope used in the present invention contains an oxide superconductor (preferably in powder form) or a substance that can become an oxide superconductor by heat treatment (preferably in powder form). It can be prepared by dispersing or dissolving the molecular compound in a solution.

本発明の、高分子化合物を含む溶液中の溶剤としては、
使用ケる高分子化合物を溶解することのでごろ水あるい
は水以外の溶剤を意味する。
The solvent in the solution containing the polymer compound of the present invention includes:
It means water or a solvent other than water that can dissolve the polymeric compound that is used.

水以外の溶剤として1」、アルコール類、ケトン類、エ
ーテル類、方香族類、アミド類、アミン類、スルホン類
等がとくに制限なく用いられる。またこれらに適宜の割
合で水を含む混合溶剤も含まれる。
As solvents other than water, alcohols, ketones, ethers, aromatics, amides, amines, sulfones, etc. can be used without particular limitation. These also include mixed solvents containing water in an appropriate proportion.

土だ本発明では高分子化合物としてとりわけポリビニル
アルコール系重合体が好適に用いられるが、この場合に
は、水、ジメチルスルホキザイド、グリセリン、エチ1
ツノグリコール、ジエチレンゲリコール、N−メチルピ
ロリドン、ジメチルホルムアミド等の溶剤が単独または
混合溶剤として有利に利用される。
In the present invention, polyvinyl alcohol-based polymers are preferably used as the polymer compound, but in this case, water, dimethyl sulfoxide, glycerin, ethyl
Solvents such as hornoglycol, diethylene gelicol, N-methylpyrrolidone, and dimethylformamide are advantageously used alone or as a mixed solvent.

本発明で言うところの乾式紡糸とは、紡糸原液をダイを
通して、あるいはグイフリーで空気中または気体中に押
し出す、あるいは引き出す方法を包含するものであり、
種々の条件にはいっさい制限されない。
Dry spinning as referred to in the present invention includes a method of extruding or drawing out the spinning stock solution through a die or into the air or gas using a guifree device.
It is not limited to various conditions at all.

紡糸ドラフトはO.1〜2,0が良く、好ましくは0、
8〜1.2が良い。
The spinning draft is O. 1 to 2,0 is good, preferably 0,
8 to 1.2 is good.

上記前駆体繊維は次いで加熱処理される。らちろん加熱
処理に先たち、適宜、延伸することは何らさしつかえな
い。加熱処理条件としては、例えば酸素の存在下、95
0°C − LIGQoCのfA度において数分〜数時
間、好ましくは数分〜数十分間焼成した後、徐冷する方
法が挙げられる。
The precursor fibers are then heat treated. Of course, there is no problem in stretching the film as appropriate prior to heat treatment. The heat treatment conditions include, for example, 95% in the presence of oxygen.
An example is a method of firing at fA degree of 0° C.-LIGQoC for several minutes to several hours, preferably several minutes to several tens of minutes, and then slowly cooling.

本発明の製法により得られる酸化物超電導繊維はその直
径において何等の制限を受けるものではないが、実用性
に鑑み、その直径を1000μm以下とするのが普通で
ある。好ましい直径は500μm以下、更に好ましい直
径は200μm以下、とりわけ好ましい直径は100μ
m以下である。下限については何等の制限を設けるしの
でないが、通常14m以上である。
Although the diameter of the oxide superconducting fiber obtained by the production method of the present invention is not limited in any way, in view of practicality, the diameter is usually 1000 μm or less. A preferred diameter is 500 μm or less, a more preferred diameter is 200 μm or less, and an especially preferred diameter is 100 μm.
m or less. Although there is no restriction on the lower limit, it is usually 14 m or more.

紡糸原液中の上記酸化物超電導体あるいは加熱処理する
ことによって酸化物超電導体になりうる物質と高分子化
合物との重量比は前者に対して後者が15重量%以下、
3重量%以上、好ましくは10重!n%以下、3重量%
以上となるようにずろことが好ましい。
The weight ratio of the above-mentioned oxide superconductor or a substance that can become an oxide superconductor by heat treatment and the polymer compound in the spinning stock solution is 15% by weight or less of the latter to the former,
3% by weight or more, preferably 10% by weight! n% or less, 3% by weight
It is preferable that the values are staggered so that the above values are met.

また、上記紡糸原液を調製するに際して、上記酸化物超
電導体あるいは加熱処理することによって酸化物超電導
体になり得ろ物質の分散剤を併用することはさしつかえ
ない。この場合の分散剤としてはアニオン性乳化剤、ノ
ニオン性乳化剤、カチオン性乳化剤が使用できる。例え
ばポリオキンエチレン(10)オクチルフェニルエーテ
ル、ソジウムドデノルサルフエート等が使用しうる。更
にポリアクリル酸やその塩、ポリスチレン、無水マレイ
ン酸の共重合体の中和物、無水マレイン酸−イツブテン
共重合体の中和物等のポリマー系分散安定剤も使用でき
る。
Further, when preparing the above-mentioned spinning dope, it is permissible to use a dispersant of the above-mentioned oxide superconductor or a substance that can become an oxide superconductor by heat treatment. As the dispersant in this case, anionic emulsifiers, nonionic emulsifiers, and cationic emulsifiers can be used. For example, polyoxene ethylene (10) octylphenyl ether, sodium dodenol sulfate, etc. can be used. Furthermore, polymer-based dispersion stabilizers such as polyacrylic acid and its salts, polystyrene, neutralized products of copolymers of maleic anhydride, and neutralized products of maleic anhydride-ibutene copolymers can also be used.

上記紡糸原液中の総固形分濃度は特に限定はないが、通
常約20〜70重量%の範囲から選択することが多い。
The total solid content concentration in the above-mentioned spinning dope is not particularly limited, but is usually selected from a range of about 20 to 70% by weight.

上記紡糸原液は乾式紡糸後、乾燥することにより、連続
前駆体繊維を得ることができる。
Continuous precursor fibers can be obtained by drying the above-mentioned spinning dope after dry spinning.

本発明の製法によれば、上記の任意の直径をイイし、気
孔率IO容積%以下、引張強度IMPa以上であって、
臨界温度(Tc)が80に以−1−の酸化物超電導繊維
を得ることができる。
According to the manufacturing method of the present invention, the above-mentioned arbitrary diameter is suitable, the porosity is IO volume % or less, the tensile strength is IMPa or more,
Oxide superconducting fibers having a critical temperature (Tc) of 80 or less can be obtained.

96作 及び、明の効果 本発明の酸化物高温超電導繊維は高い強度と良好な柔軟
性を有し、超電導マグネット及び超電導送電線の超電導
繊維として極めて有効に用いられる。本発明の酸化物高
温超電導繊維は単独で用いても良いが、−本一本の繊維
の回りを銅やアルミニウム等の金属で包み込み安定化超
電導線として用いるのが良い。安定化超電導線を作製す
る場合には、該高温超電導繊((シの直径が2001以
下、好ましくけ100μm以下の物を用いることで冷却
効果が上りかつ超電導線の柔軟性ら向上することとなる
The oxide high temperature superconducting fiber of the present invention has high strength and good flexibility, and is extremely effectively used as a superconducting fiber for superconducting magnets and superconducting power transmission lines. Although the oxide high-temperature superconducting fiber of the present invention may be used alone, it is preferable to wrap a single fiber with a metal such as copper or aluminum and use it as a stabilized superconducting wire. When producing a stabilized superconducting wire, the use of high-temperature superconducting fibers with a diameter of 200 mm or less, preferably 100 μm or less increases the cooling effect and improves the flexibility of the superconducting wire. .

本発明の酸化物高温超電導線を用いる具体的な用途とし
ては、M HD発電、磁気浮上列車、超電導発電機、N
MR−CT、高エネルギー加速装置再挙げることができ
る。
Specific applications of the oxide high temperature superconducting wire of the present invention include MHD power generation, magnetic levitation trains, superconducting generators, N
MR-CT, a high-energy accelerator, can be mentioned again.

以下に実施例1こより本発明をより具体的に説明4−る
The present invention will be explained more specifically from Example 1 below.

ハ11定法; 超電導繊維の臨界温度(Tc)及び電流密度(Jc)は
、標準的な四端子法で超電導繊維の電気抵抗を測定する
ことで求めた。この端子は直径70μmの白金線であり
、試料の接着には銀製の導電性接着剤を用いた。試料温
度は、(クロメル−金+0.007%鉄)熱電対を用い
て測定した。
The critical temperature (Tc) and current density (Jc) of the superconducting fiber were determined by measuring the electrical resistance of the superconducting fiber using the standard four-terminal method. This terminal was a platinum wire with a diameter of 70 μm, and a silver conductive adhesive was used to adhere the sample. Sample temperature was measured using a (chromel-gold + 0.007% iron) thermocouple.

超電導繊維の引張り強さ及び伸度は、インストロン型引
張り試験機にて室温で、チャック間距離5mm、引張り
速度0.033m/秒により測定した。
The tensile strength and elongation of the superconducting fibers were measured using an Instron type tensile testing machine at room temperature, with a chuck distance of 5 mm, and a tensile speed of 0.033 m/sec.

粉;ン、5の糸考l; 参考例1 YtOs 20g、 BaC0* 89.9gおよびC
uO43,3gをよく混合したのち、950°Cで5時
間仮焼きした後、粉砕し、846メツシユのフィルター
を通すことにより、直径15μM以下の仮焼き粉末を得
た。
Powder; 5 yarn considerations; Reference example 1 YtOs 20g, BaC0* 89.9g and C
After thoroughly mixing 3.3 g of uO, the mixture was calcined at 950°C for 5 hours, pulverized, and passed through an 846 mesh filter to obtain calcined powder with a diameter of 15 μM or less.

参考例2 Y(No、)3・6+1.Olog、 Ba(NO3)
213.6gおよびCu(NOa)t・3tlt013
.9gをそれぞれ蒸留水に溶解し、混合してから全体で
300 m Qの水溶液とした。これを直径0.3mm
の成鳥、1)1を取付けに注射器に入れ、0.7モル/
QのKtCO3水溶液300m0.中に噴射させて共沈
物の微粉を得た。この時、系のpiが7〜8となるよう
にKoji水溶液を適宜加えた。得られた粉末を濾過後
、水で3回洗浄し、アルコール洗浄した後、45℃で乾
燥した。続いて850℃で2時間仮焼きを行ない、0.
2μn以下の微粉末を得た。
Reference example 2 Y(No,)3・6+1. Olog, Ba(NO3)
213.6g and Cu(NOa)t・3tlt013
.. 9 g of each were dissolved in distilled water and mixed to give a total of 300 mQ aqueous solution. This is 0.3mm in diameter
adult bird, 1) Put 1 into a syringe and add 0.7 mol/
Q KtCO3 aqueous solution 300m0. A fine powder of coprecipitate was obtained by injecting it into the solution. At this time, a Koji aqueous solution was appropriately added so that the pi of the system was 7 to 8. The obtained powder was filtered, washed three times with water, washed with alcohol, and then dried at 45°C. Subsequently, calcination was performed at 850°C for 2 hours, resulting in a temperature of 0.
A fine powder of 2 μm or less was obtained.

実施例1 Y(NO3)+・611,05g、 Ba(NO3)2
6.8g。
Example 1 Y(NO3)+・611.05g, Ba(NO3)2
6.8g.

Cu(Not)t・3)1tO9,5gを、別に調整し
た5%のポリビニルアルコール(以下PVAと記す)(
重合度1700、けん化度98.5モル%)水溶液60
gにドデシル硫酸ナトリウムO,l1gおよび40gの
蒸留水を加えた水溶液に添加し、溶解させた。これに参
考例1で調整した仮焼き粉末7.4gを撹拌下に徐々に
加え分散させた。続いてこの分散液をホットプレート上
で撹拌しながら全重量が60gになるまで濃縮し、これ
を紡糸原液とした。
Cu (Not) t・3) 1 tO 9.5 g was mixed with separately prepared 5% polyvinyl alcohol (hereinafter referred to as PVA) (
Polymerization degree 1700, saponification degree 98.5 mol%) aqueous solution 60
1 g of sodium dodecyl sulfate and 40 g of distilled water were added to the solution. To this, 7.4 g of the calcined powder prepared in Reference Example 1 was gradually added and dispersed while stirring. Subsequently, this dispersion was concentrated while stirring on a hot plate until the total weight became 60 g, and this was used as a spinning dope.

続いて紡糸原液を50℃に保持しながら上方へ糸状ドー
プをひき上げ、テフロンシートをはりつけたドラムに巻
取って風乾した。次にこの繊維を酸素流下980℃で5
分保持し、100℃/時口の速度で室温まで冷却し、直
径801Zmの酸化物超電導繊維を得た。
Subsequently, while maintaining the spinning dope at 50° C., the filamentous dope was pulled upward, wound onto a drum covered with a Teflon sheet, and air-dried. Next, this fiber was heated at 980°C under oxygen flow for 5 minutes.
The mixture was held for 10 minutes and cooled to room temperature at a rate of 100° C./hour to obtain an oxide superconducting fiber with a diameter of 801 Zm.

この繊維の臨界温度(Tc)は82にであり、77Kに
おける臨界電流(Jc) 0.4A/ca”であった。
The critical temperature (Tc) of this fiber was 82 and the critical current (Jc) at 77K was 0.4 A/ca''.

また引張り強度が1.2MPaで切断伸度は2.6%で
あった。
Further, the tensile strength was 1.2 MPa and the elongation at break was 2.6%.

実施例2 参考例2の共沈法により調整した平均粒径0.2μm以
下の粉末Logを蒸留水15g中に分散させた(これを
A液とする)。別に調整した5%のPVA(重合度33
00、けん化度98.7モル%)水溶液logに蒸留水
5g1ポリオキシエチレン(10)オクチルフェニルエ
ーテル0.06gとドデシル硫酸ナトリウム0.06g
を加え混合した(これをB液とする)。続いてB液中に
A液を加え、よく撹拌しながらホットプレート上で全量
を25gまで濃縮し原液とした。
Example 2 Powder Log having an average particle diameter of 0.2 μm or less prepared by the coprecipitation method of Reference Example 2 was dispersed in 15 g of distilled water (this was referred to as liquid A). Separately prepared 5% PVA (polymerization degree 33
00, saponification degree 98.7 mol%) aqueous solution log 5 g of distilled water 1 polyoxyethylene (10) octylphenyl ether 0.06 g and sodium dodecyl sulfate 0.06 g
were added and mixed (this is referred to as Solution B). Subsequently, Solution A was added to Solution B, and the total amount was concentrated to 25 g on a hot plate while stirring well to obtain a stock solution.

次にこの原液を80℃に保持し、70℃の空気流中へ乾
式紡糸してフィラメント化し巻き取った。続いて980
℃の炉中に入れ5分保持し、100℃/IIの速度で酸
素ガス流下室温まで冷却し、直径90μmの酸化物超電
導繊維を得た。
Next, this stock solution was maintained at 80° C. and dry-spun into a 70° C. air stream to form a filament, which was then wound up. followed by 980
The fibers were placed in a furnace at .degree. C. and held for 5 minutes, and cooled to room temperature under a flow of oxygen gas at a rate of 100.degree. C./II to obtain oxide superconducting fibers with a diameter of 90 .mu.m.

この繊維のTcは8Hであり、?7にでのJcは20^
/cs’であった。また引張り強度が15MPaで、切
断伸度が3.1%であった。
The Tc of this fiber is 8H, and ? Jc at 7 is 20^
/cs'. Further, the tensile strength was 15 MPa, and the elongation at break was 3.1%.

特許出願人 株式会社 り ラ しPatent applicant RiRashi Co., Ltd.

Claims (16)

【特許請求の範囲】[Claims] (1)酸化物超電導体あるいは加熱処理することによつ
て酸化物超電導体になり得る物質を高分子化合物を含む
溶液中に分散あるいは溶解して紡糸原液を調製し、この
紡糸原液を乾式紡糸して超電導繊維の前駆体繊維とした
後、加熱処理することを特徴とする酸化物超電導繊維の
製法。
(1) A spinning stock solution is prepared by dispersing or dissolving an oxide superconductor or a substance that can become an oxide superconductor through heat treatment in a solution containing a polymer compound, and this spinning stock solution is dry-spun. A method for producing an oxide superconducting fiber, which comprises preparing a precursor fiber for a superconducting fiber and then heat-treating the precursor fiber.
(2)酸化物超電導体あるいは加熱処理することによつ
て酸化物超電導体になり得る物質がCuを含むものであ
る特許請求の範囲第1項記載の酸化物超電導繊維の製法
(2) The method for producing an oxide superconducting fiber according to claim 1, wherein the oxide superconductor or the substance that can become an oxide superconductor by heat treatment contains Cu.
(3)酸化物超電導体が一般式LnBa_2Cu_3O
_7_−_x(但し、LnはY,Lu,Yb,Tm,E
r,Ho,Dy,Gd,Eu,Smのすくなくとも1種
、xは0<x≦0.5を表わす。)で表わされるもので
ある特許請求の範囲第2項記載の酸化物超電導繊維の製
法。
(3) The oxide superconductor has the general formula LnBa_2Cu_3O
_7_-_x (However, Ln is Y, Lu, Yb, Tm, E
At least one of r, Ho, Dy, Gd, Eu, and Sm, and x represents 0<x≦0.5. ) The method for producing an oxide superconducting fiber according to claim 2, which is represented by:
(4)酸化物超電導体がYBa_2Cu_3O_7_−
_x(但し0<x≦0.5)である特許請求の範囲第3
項記載の酸化物超電導繊維の製法。
(4) The oxide superconductor is YBa_2Cu_3O_7_-
Claim 3 where __x (0<x≦0.5)
A method for producing an oxide superconducting fiber as described in Section 1.
(5)加熱処理することによつて酸化物超電導体になり
得る物質が、 (a)Lnの酸化物、硝酸塩または炭酸塩、(但しLn
はY,Lu,Yb,Tm,Er,Ho,Dy,Gd,E
u,Smのすくなくとも1種) (b)Baの酸化物、硝酸塩、炭酸塩、酢酸塩またはフ
ッ化物、 及び (c)Cuの酸化物、硝酸塩、炭酸塩、グルコン酸塩ま
たはフッ化物からなるものである特許 請求の範囲第2項記載の酸化物超電導繊維 の製法。
(5) Substances that can become oxide superconductors by heat treatment include (a) Ln oxide, nitrate or carbonate (however, Ln
are Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, E
u, Sm) (b) Ba oxide, nitrate, carbonate, acetate, or fluoride; and (c) Cu oxide, nitrate, carbonate, gluconate, or fluoride. A method for producing an oxide superconducting fiber according to claim 2.
(6)LnがYである特許請求の範囲第5項記載の酸化
物超電導繊維の製法。
(6) The method for producing an oxide superconducting fiber according to claim 5, wherein Ln is Y.
(7)高分子化合物がポリビニルアルコール系重合体で
ある特許請求の範囲第1項記載の酸化物超電導繊維の製
法。
(7) The method for producing an oxide superconducting fiber according to claim 1, wherein the polymer compound is a polyvinyl alcohol polymer.
(8)酸化物超電導繊維の直径が実質的に1000μm
以下である特許請求の範囲第1項記載の酸化物超電導繊
維の製法。
(8) The diameter of the oxide superconducting fiber is substantially 1000 μm
A method for producing an oxide superconducting fiber according to claim 1, which is as follows.
(9)酸化物超電導繊維の直径が実質的に500μm以
下である特許請求の範囲第8項記載の酸化物超電導繊維
の製法。
(9) The method for producing an oxide superconducting fiber according to claim 8, wherein the diameter of the oxide superconducting fiber is substantially 500 μm or less.
(10)酸化物超電導繊維の直径が実質的に200μm
以下である特許請求の範囲第9項記載の酸化物超電導繊
維の製法。
(10) The diameter of the oxide superconducting fiber is substantially 200 μm
A method for producing an oxide superconducting fiber according to claim 9, which is as follows.
(11)酸化物超電導繊維の直径が実質的に100μm
以下である特許請求の範囲第10項記載の酸化物超電導
繊維の製法。
(11) The diameter of the oxide superconducting fiber is substantially 100 μm
A method for producing an oxide superconducting fiber according to claim 10, which is as follows.
(12)酸化物超電導繊維の直径が実質的に10μm以
下である特許請求の範囲第11項記載の酸化物超電導繊
維の製法。
(12) The method for producing an oxide superconducting fiber according to claim 11, wherein the diameter of the oxide superconducting fiber is substantially 10 μm or less.
(13)酸化物超電導体あるいは加熱処理することによ
つて酸化物超電導体になり得る物質が、粉末形状のもの
である特許請求の範囲第1項記載の酸化物超電導繊維の
製法。
(13) The method for producing an oxide superconducting fiber according to claim 1, wherein the oxide superconductor or the substance that can become an oxide superconductor by heat treatment is in powder form.
(14)粉末が実質的に平均粒径15μm以下のもので
ある特許請求の範囲第13項記載の酸化物超電導繊維の
製法。
(14) The method for producing an oxide superconducting fiber according to claim 13, wherein the powder has a substantially average particle size of 15 μm or less.
(15)粉末が実質的に平均粒径1μm以下のものであ
る特許請求の範囲第14項記載の酸化物超電導繊維の製
法。
(15) The method for producing an oxide superconducting fiber according to claim 14, wherein the powder has a substantially average particle size of 1 μm or less.
(16)粉末が実質的に平均粒径0.5μm以下のもの
である特許請求の範囲第15項記載の酸化物超電導繊維
の製法。
(16) The method for producing an oxide superconducting fiber according to claim 15, wherein the powder has a substantially average particle size of 0.5 μm or less.
JP62335822A 1987-12-29 1987-12-29 Manufacture of oxide superconductive fiber Pending JPH01176606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62335822A JPH01176606A (en) 1987-12-29 1987-12-29 Manufacture of oxide superconductive fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62335822A JPH01176606A (en) 1987-12-29 1987-12-29 Manufacture of oxide superconductive fiber

Publications (1)

Publication Number Publication Date
JPH01176606A true JPH01176606A (en) 1989-07-13

Family

ID=18292795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335822A Pending JPH01176606A (en) 1987-12-29 1987-12-29 Manufacture of oxide superconductive fiber

Country Status (1)

Country Link
JP (1) JPH01176606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248696B1 (en) 1994-07-15 2001-06-19 Basf Corporation 7-forming, superconducting filaments through bicomponent dry spinning
US6344167B1 (en) 1994-02-18 2002-02-05 Basf Corporation Process for the production of superconductor containing filaments

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344167B1 (en) 1994-02-18 2002-02-05 Basf Corporation Process for the production of superconductor containing filaments
US6248696B1 (en) 1994-07-15 2001-06-19 Basf Corporation 7-forming, superconducting filaments through bicomponent dry spinning

Similar Documents

Publication Publication Date Title
Cena et al. BSCCO superconductor micro/nanofibers produced by solution blow-spinning technique
Cui et al. Fabrication of YBa2Cu3O7− δ superconducting nanofibres by electrospinning
JPH01176606A (en) Manufacture of oxide superconductive fiber
JPH01122522A (en) Manufacture of oxide superconducting fiber
JPH01122521A (en) Manufacture of oxide superconducting fiber
JPH01176605A (en) Manufacture of oxide superconductive fiber
JPH0214817A (en) Superconductive shaping material
JPH01122511A (en) Oxide ceramic superconducting fiber
JP3731919B2 (en) Method for dry spinning fibers containing potentially superconducting materials
JPH01122512A (en) Oxide superconducting fiber
Tomita et al. Solution spinning of a high-oxide superconductor: the effect of poly (vinyl alcohol) spinning medium on the critical current density of melt-processed superconducting filaments
US5413753A (en) Method for dispersion spinning of sheathed rod-in-tube superconducting composites
JPH02259115A (en) Preparation of high density superconductive fiber
JP2593874B2 (en) Manufacturing method of superconducting ceramic wire
Goto et al. Critical current density of the Y-Ba-Cu-O superconducting filament produced by suspension spinning method
Goto et al. Texture formation on the melt-growth process of solution-spun Y1Ba2Cu3Ox filament
JPS63277554A (en) Oxide superconductive ceramic linear sintered material and production thereof
EP0638054B1 (en) Method for dispersion spinning of sheathed rod-in-tube superconducting composites
Goto et al. Preparation of long Y123 superconducting filament by solution spinning
JPH04228423A (en) Solution for manufacture of superconducting filament and coat and its application
Goto et al. Fabrication of multi-filamentary Y123 superconductor
Tomita et al. Solution spinning of high-oxide superconductors: part VII. The effect of polyvinyl alcohol spinning medium on the sintering of superconducting filaments
Goto et al. Partial melting of solution-spun (Y, Ho) 1Ba2Cu3Ox filament
Tomita et al. Solution spinning of high-Tc oxide superconducting filament: Part VIII The effect of degree of saponification of poly (vinyl alcohol) on the critical current density of YBa2Cu3Ox superconducting filament
EP0867042A1 (en) Method for producing and/or treating refractory filaments, especially superconductive filaments