JPH01122512A - Oxide superconducting fiber - Google Patents

Oxide superconducting fiber

Info

Publication number
JPH01122512A
JPH01122512A JP62280671A JP28067187A JPH01122512A JP H01122512 A JPH01122512 A JP H01122512A JP 62280671 A JP62280671 A JP 62280671A JP 28067187 A JP28067187 A JP 28067187A JP H01122512 A JPH01122512 A JP H01122512A
Authority
JP
Japan
Prior art keywords
fiber
superconducting
oxide
oxide superconducting
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62280671A
Other languages
Japanese (ja)
Inventor
Kyoko Goto
後藤 共子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP62280671A priority Critical patent/JPH01122512A/en
Publication of JPH01122512A publication Critical patent/JPH01122512A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Fibers (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an excellent oxide superconductor with the fiber strength of 1MPa or above and the ductility of 0.5% or above by using the fiber spinning technique and the ceramic molding technique. CONSTITUTION:A material containing (La, Ba)2cCuO4 or expressed by a general formula LnBa2Cu3O7-x (where Ln is one kind of Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Eu, Sm and 0<x<=0.5) or containing Y2O3, Y(NO3)2 or the like, BaCO3, Ba(NO3)2 or the like, CuO, Cu(NO3)2 by heat treatment is pulverized to the grain size of 0.2mum or below, it is dispersed in a polymer binder of polyvinyl alcohol copolymer or the like into fibers and baked to remove the binder, and fibers with the fiber strength of 1MPa or above, preferably 5MPa or above, the ductility of 0.5% or above, preferably 2.5% or above, and the porosity of 10vol.% or below are obtained. Oxide superconducting fibers with the critical temperature of 80K or above and the critical current of 10A/cm<2> or above in the nonmagnetic field are obtained according to this constitution.

Description

【発明の詳細な説明】 A、産 上の1  里 本発明は超電導マグネットや超電導送電線に使用可能な
酸化物超電導繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to oxide superconducting fibers that can be used in superconducting magnets and superconducting power transmission lines.

B、従来の技術 従来、超電導体の最高の臨界温度はNb3Geの23.
3Kが最高であった。実用材料としてはNb3Snの1
7Kが最高であった。従来の材料を使用する場合液体ヘ
リウムによる冷却を必要とした。
B. Prior art Conventionally, the highest critical temperature of a superconductor is Nb3Ge at 23.
3K was the best. As a practical material, Nb3Sn1
7K was the best. Using conventional materials required cooling with liquid helium.

最近酸化物超電導体が極めて高い臨界温度を有すること
が見出され、この分野における研究が活発に実施される
ようになった。臨界温度が高い材料としては40に級超
電導体(La+−zsrz)2clJOt [Chem
Recently, it has been discovered that oxide superconductors have extremely high critical temperatures, and research in this field has become active. As a material with a high critical temperature, 40 class superconductor (La+-zsrz)2clJOt [Chem
.

Lett、429(1987)] 、90に級超電導体
としてBa2YCu3O?−−[Phys、Rev、L
ett、58(1987)405]がすでに見出されて
いる。90に級高温超電導材料の出現により液体窒素(
77K)を用いることが可能となった。
Lett, 429 (1987)], Ba2YCu3O as a class 90 superconductor? --[Phys, Rev, L
ett, 58 (1987) 405] has already been found. With the advent of high-temperature superconducting materials in the 1990s, liquid nitrogen (
77K).

またY以外でもLu、 Yb、 Tm、 Er等でも9
0に級と見られる超電導現象がすでに観察されている。
In addition to Y, Lu, Yb, Tm, Er, etc. also have 9
Superconductivity phenomena that appear to be on the order of zero have already been observed.

 高温超電導の応用はジョセフソン素子に代表されるよ
うなエレクトロニクス分野への応用と超電導発電機、磁
気浮上列車、超電導送電線に代表されるような電気機器
分野への応用に大別される。エレクトロニクス分野への
応用も非常に重要な課題であり、特に高温超電導体の応
用はエレクトロニクス分野への応用から始まるであろう
。しかし産業界、社会に与えるインパクトの大きさを考
えた場合、電気機器への高温超電導の応用こそが重要で
ある。
Applications of high-temperature superconductivity can be broadly divided into electronics applications, such as Josephson devices, and electrical equipment applications, such as superconducting generators, magnetic levitation trains, and superconducting power transmission lines. Application to the electronics field is also a very important issue, and the application of high-temperature superconductors in particular will begin with application to the electronics field. However, when considering the magnitude of the impact it will have on industry and society, the application of high-temperature superconductivity to electrical equipment is important.

高温超電導の電気機器への応用の要素技術となるのは超
電導マグネット技術である。超電導マグネットを利用し
たものとしてはMHD発電、磁気浮上列車、高エネルギ
ー粒子加速装置、超電導発電機、超電導変圧器、NMR
−、CTなどが挙げられる。高温超電導体をマグネット
の分野に使用できれば超電導マグネット応用機器の経済
性が格段に向上する。また経済性が格段に向上すること
により新しい応用分野、あるいは超電導送電線への応用
が開けることが期待される。
Superconducting magnet technology is an elemental technology for the application of high-temperature superconductivity to electrical equipment. Things that use superconducting magnets include MHD power generation, magnetic levitation trains, high-energy particle accelerators, superconducting generators, superconducting transformers, and NMR.
-, CT, etc. If high-temperature superconductors can be used in the field of magnets, the economic efficiency of superconducting magnet application equipment will be greatly improved. It is also expected that the drastic improvement in economic efficiency will open up new fields of application or application to superconducting power transmission lines.

しかして、該超電導体がマグネットに使用されるために
は必要条件としてマグネットに巻けるような線材である
ことが要求される。従来の液体ヘリウム温度で使用され
ている超電導材料(金属または金属間化合物)について
は種々の線材化およびケーブル化技術が確立されている
が、最近の高温超電導体は酸化物セラミックスであり、
従来の超電導材料の線材化技術は適用できない。
However, in order for the superconductor to be used in a magnet, it is required that the superconductor be a wire that can be wound around the magnet. Although various wire and cable technologies have been established for superconducting materials (metals or intermetallic compounds) used at conventional liquid helium temperatures, recent high-temperature superconductors are oxide ceramics,
Conventional technology for making wires from superconducting materials cannot be applied.

ところで線材内での超電導状態の本質的安定化を達成す
る為には、該繊維は細い方が有利であるが、かかる細線
化を図ると、不可避的に強伸度が低下せざるを得ない。
By the way, in order to achieve essential stabilization of the superconducting state within the wire, it is advantageous for the fiber to be thinner, but if such a wire is made thinner, the strength and elongation inevitably decrease. .

例えば臨界温度の低い従来の超電導材料では直流用マグ
ネットとしての使用の為には通常、約20μm程度以下
で使用されており、また交流用マクネットとしての使用
の為には、ヒステリシス損失を小さくする為に、通常0
.6μm程度で使用されているが、本発明の酸化物高温
超電導体は臨界温度が高い分、太い径のフィラメントで
の使用が可能となる。しかしこれも200μm程度が上
限であり、より好ましくは] 0011m以下のフィラ
メントとすることが望まれているが、かかる細線化を図
る場合、どうしても強伸度が低下するという問題がさけ
られない。
For example, conventional superconducting materials with low critical temperatures are usually used at a thickness of about 20 μm or less for use as DC magnets, and for use as AC magnets, hysteresis loss must be reduced. Therefore, usually 0
.. Although the oxide high-temperature superconductor of the present invention has a high critical temperature, it can be used in filaments with a diameter of about 6 μm. However, the upper limit of this is also about 200 μm, and more preferably a filament of 0.0011 m or less is desired, but when such thinning is attempted, the problem of a decrease in strength and elongation cannot be avoided.

=3− 従来、かかる酸化物高温超電導体を線材化する方法とし
ては、銀合金インボッ):に穴をあけ、セラミックス粉
を詰めて線材としたのち熱処理する方法がすでに提案さ
れている。
=3- Conventionally, as a method of making wire rods from such oxide high-temperature superconductors, a method has already been proposed in which holes are made in a silver alloy ingot, filled with ceramic powder to make wire rods, and then heat treated.

しかし高温超電導体を銀等の金属中空管に詰めて線材化
する場合には(1)直径100μm〜200μm以下の
極細線材とすることが極めて困難である、(2)高温超
電導体が断線することなく、かつ全線域にわたって電導
性が均一である状態にすることは困難である、以上2点
の極めて大きな問題があり、強伸度に優れた酸化物超電
導繊維は成功裡に得られていなかった。
However, when high-temperature superconductors are packed into hollow tubes made of metal such as silver and made into wires, (1) it is extremely difficult to make ultra-fine wires with a diameter of 100 μm to 200 μm or less, and (2) the high-temperature superconductors may break. It is difficult to achieve a state in which conductivity is uniform over the entire wire range without causing any damage.As a result of these two extremely major problems, oxide superconducting fibers with excellent strength and elongation have not been successfully obtained. Ta.

C0発明が解決しようとする問題1、 本発明はかかる状況下、強伸度に優れた酸化物高温超電
導体の極細繊維を提供せんとするものである。
Problem 1 to be Solved by the C0 Invention Under such circumstances, the present invention aims to provide ultrafine fibers of oxide high temperature superconductors having excellent strength and elongation.

D9問題点を解決する為の手段 本発明者らは上記目的に鑑みて鋭意検討し、繊維紡糸技
術とセラミックス成形技術を融合使用することにより、
酸化物超電導体の細線化を試みた結果、繊維強度が1.
 M P a以上、繊維伸度が0.5%以上である、強
伸度に優れた酸化物超電導繊維が得られ本発明を完成す
るに到った。以下、本発明の詳細な説明する。
Means for Solving Problem D9 The inventors of the present invention made extensive studies in view of the above objectives, and by combining fiber spinning technology and ceramic molding technology,
As a result of attempts to thin the oxide superconductor, the fiber strength was 1.
The present invention has been completed by obtaining an oxide superconducting fiber with excellent strength and elongation, which has an M P a or more and a fiber elongation of 0.5% or more. The present invention will be explained in detail below.

本発明の酸化物超電導体繊維は、繊維強度が]、 M 
P a以」二、繊維伸度が0.5%以上であることが必
須である。本発明の数値の範囲外では実用性に乏しい。
The oxide superconductor fiber of the present invention has a fiber strength of] M
Second, it is essential that the fiber elongation is 0.5% or more. If the value is outside the range of the present invention, it is not practical.

より好ましい繊維強度は5MPa以上である。より好ま
しい繊維伸度は2.5%以」二である。また臨界温度(
Tc)が35に以」二、好適には80に以1であるもの
がより好ましい。また磁場のない状態において臨界電流
(Jc)がIA/cm2以」二、より好適にはIOA/
cm’以上であるものがより好ましい。また気孔率が1
0容量%以下、好適には5容量%以下であるものがより
好ましい。
A more preferable fiber strength is 5 MPa or more. A more preferable fiber elongation is 2.5% or more. Also, the critical temperature (
It is more preferable that Tc) is 35 or less, preferably 80 or less. In addition, in the absence of a magnetic field, the critical current (Jc) is more than IA/cm2, more preferably IOA/cm2 or more.
More preferably, it is cm' or more. Also, the porosity is 1
More preferably, it is 0% by volume or less, preferably 5% by volume or less.

本発明の酸化物超電導繊維はその直径において何等の制
限を受けるものではないが、実用性に鑑み、その直径を
1000μm以下とするのが普通である。
The diameter of the oxide superconducting fiber of the present invention is not limited in any way, but in view of practicality, the diameter is usually 1000 μm or less.

好ましい直径は500μm以下、更に好ましい直径は2
00μm以下、とりわ()好ましい直径は10011m
以下である。下限については何等の制限を設(ジるもの
ではないが、通常1μm以上である。
The preferred diameter is 500 μm or less, and the more preferred diameter is 2
00μm or less, the preferred diameter of Toriwa () is 10011m
It is as follows. Although there is no limit to the lower limit, it is usually 1 μm or more.

本発明の酸化物超電導繊維の最大の特徴は、上記の様に
極めて細い繊維であるにもかかわらず、優れた強伸度を
有する点に存するが、本発明の繊維はおどろくべき事に
、かかる極めて細い繊維であるにもかかわらず、強伸度
物性に極めて優れるゆえに、なんらの強度支持体を要さ
ないものであり、この様になんらの支持体を有さない単
独繊維状物質として、充分取り扱いに耐えるものであり
、実用性に極めて優れるのである。もちろん、支持体を
併用することを妨げるものではない。
The greatest feature of the oxide superconducting fiber of the present invention is that it has excellent strength and elongation even though it is an extremely thin fiber as described above, but surprisingly, the fiber of the present invention has such Although it is an extremely thin fiber, it has excellent strength and elongation properties, so it does not require any strength support, and as such, it can be used as a single fibrous material without any support. It is durable and has excellent practicality. Of course, this does not preclude the use of a support in combination.

本発明の酸化物超電導繊維は、その製造方法については
何等の制限もないが、製造方法の例としては、酸化物超
電導体の粉末あるいは加熱処理することによって酸化物
超電導体になり得る物質の粉末を、ポリマーバインダー
中に分散後、繊維紡糸技術により繊維化し、焼成を行な
うことによりポリマーバインダーを除去し得られる。こ
の場合製造方法として粉末の分散媒の種類により、水溶
液分散法、有機溶剤分散法、ポリマー融液分散法等が、
また紡糸方法の種類により、湿式紡糸法、乾湿式紡糸法
、乾式紡糸法、溶融紡糸法等が、種々の組合せで採用し
得る。
The oxide superconducting fiber of the present invention is not limited in any way to its manufacturing method, but examples of the manufacturing method include powder of an oxide superconductor or powder of a substance that can become an oxide superconductor by heat treatment. After dispersing in a polymer binder, it is made into fibers by fiber spinning technology, and the polymer binder is removed by firing. In this case, the manufacturing method may be an aqueous solution dispersion method, an organic solvent dispersion method, a polymer melt dispersion method, etc., depending on the type of powder dispersion medium.
Depending on the type of spinning method, wet spinning, dry-wet spinning, dry spinning, melt spinning, etc. can be employed in various combinations.

」1記の酸化物超電導体としては、熱処理によってセラ
ミックス系焼結体を形成するものであって、ある温度以
下で超電導現象を示すものならば特に限定されないが、
なかでも銅酸化物を含むものが好ましい。
The oxide superconductor mentioned in item 1 is not particularly limited as long as it forms a ceramic sintered body through heat treatment and exhibits a superconducting phenomenon below a certain temperature.
Among these, those containing copper oxide are preferred.

具体的には(La、 Ba)、Cu14や一般式LnB
a、Cu307−、 (但し、LnはY、 1.、u、
 Yb、 Tm、 Er、 Ho、 Dy。
Specifically, (La, Ba), Cu14 and general formula LnB
a, Cu307-, (However, Ln is Y, 1., u,
Yb, Tm, Er, Ho, Dy.

Gd、 Eu、Smのすくなくとも1種、χは0〈χ≦
0.5を表わす。)で表わされるものが挙げられる。」
−記Ln、 Ba、 Cu、 0はそれぞれその一部が
F等によって置換されていても良い。
At least one of Gd, Eu, and Sm, χ is 0〈χ≦
Represents 0.5. ). ”
- Part of each of Ln, Ba, Cu, and 0 may be replaced by F or the like.

また」1記の加熱処理することによって酸化物超電導体
になり得る物質としては、上記酸化物超電導体を形成す
るそれぞれの金属の酸化物、硝酸塩または炭酸塩等から
なるものが挙げられる。
Further, examples of the substance that can be turned into an oxide superconductor by heat treatment described in item 1 include those made of oxides, nitrates, carbonates, etc. of the respective metals forming the oxide superconductor.

具体的には (a) Lnの酸化物、硝酸塩または炭酸塩、(但しL
nはY、  Lu、  Yb、  Tm、  Er、 
 Ho、  Dy、  Cd、  Eu。
Specifically, (a) an oxide, nitrate or carbonate of Ln (however, Ln
n is Y, Lu, Yb, Tm, Er,
Ho, Dy, Cd, Eu.

Smのすくなくとも1種) (b) Baの酸化物、硝酸塩または炭酸塩、及び (c) Cuの酸化物、硝酸塩または炭酸塩からなるも
のが挙げられる。上記(b)としてはBaの酢酸塩また
はフッ化物であっても良い。また」1記(c)としては
Cuのグルコン酸塩またはフッ化物であっても良い。
At least one type of Sm) (b) Ba oxide, nitrate or carbonate; and (c) Cu oxide, nitrate or carbonate. The above (b) may be Ba acetate or fluoride. In addition, Cu gluconate or fluoride may be used as 1.(c).

より具体的には、上記(a)として、y2o3゜Y(N
o3) 2等が、また」1記(b)としてBaCO3゜
Ba(NO3)2. BaF2等が、上記(C)として
Cub。
More specifically, as (a) above, y2o3°Y(N
o3) 2, etc., as well as "1.(b)" BaCO3°Ba(NO3)2. BaF2 etc. are Cub as the above (C).

CI(NOs)t、 CuF2・2H70等が挙げられ
る。
Examples include CI(NOs)t, CuF2.2H70, and the like.

これらの各成分を、酸化物超電導体の組成比となる様に
混合して用いれば良いが、該混合物をあらかじめ温度8
00°C〜1000℃の条件下で、1時間〜5時間、仮
焼きしたものを用いるとより効果が大きい。
Each of these components may be mixed and used in such a manner that the composition ratio of the oxide superconductor is obtained.
The effect will be greater if the material is calcined for 1 hour to 5 hours at a temperature of 00°C to 1000°C.

本発明の酸化物超電導繊維の性能を向」二するうえで該
繊維の気孔率を小さくすることは極めて重要である。気
孔率を低下させることによって酸化物超電導繊維の性能
を大幅に向」ニさせるこ々ができる。酸化物超電導繊維
の気孔率を低下させるには粒径の細い前駆体を用いる必
要があった。
In order to improve the performance of the oxide superconducting fiber of the present invention, it is extremely important to reduce the porosity of the fiber. By reducing the porosity, the performance of oxide superconducting fibers can be significantly improved. In order to reduce the porosity of oxide superconducting fibers, it was necessary to use a precursor with a small particle size.

かかる意味において、上記の酸化物超電導体の粉末、あ
るいは加熱処理することによって酸化物超電導体になり
得る物質の粉末上しては、平均粒径15μm以下、好ま
しくは1μm以下、更に好ましくは0.5μm以下、と
りわけ好ましくは0.2μm以下のものを用いるのが、
得られる繊維の気孔率を小さくし得、ひいては、強伸度
物性およびJcを大きくし得る点から望ましい。
In this sense, the powder of the above-mentioned oxide superconductor, or the powder of a substance that can be turned into an oxide superconductor by heat treatment, has an average particle size of 15 μm or less, preferably 1 μm or less, and more preferably 0.5 μm or less. 5 μm or less, particularly preferably 0.2 μm or less, is used.
This is desirable because the porosity of the resulting fibers can be reduced and, in turn, the strength and elongation properties and Jc can be increased.

また上記の、バインダーとして使用するポリマーとして
は、水あるいは有機溶媒に可溶であるか、または熱可塑
性のものであり、上述の無機粉末を凝集させることなく
分散保持する性質を有し、かつ紡糸により繊維化できる
すべてのポリマーを挙げることができる。
In addition, the polymer used as the binder is one that is soluble in water or an organic solvent, or is thermoplastic, has the property of dispersing and holding the above-mentioned inorganic powder without agglomerating it, and is suitable for spinning. Mention may be made of all polymers that can be made into fibers.

具体的には、ポリビニルアルコール系共重合体、ヒドロ
キシプロピルセルロース、ヒドロキシエチルセルロース
、メチルセルロース、ポリエステル、ポリアミド、ポリ
エチレン、ポリプロピレン、ポリスチレン、ポリアクリ
ル酸エステル、ポリメタクリル酸エステル、ポリビニル
ピロリドン等を挙げることができる。また、無機粉末の
分散保持を目的に種々の分散剤を併用することも可能で
ある。
Specific examples include polyvinyl alcohol copolymers, hydroxypropylcellulose, hydroxyethylcellulose, methylcellulose, polyester, polyamide, polyethylene, polypropylene, polystyrene, polyacrylic ester, polymethacrylic ester, polyvinylpyrrolidone, and the like. It is also possible to use various dispersants in combination for the purpose of maintaining the dispersion of the inorganic powder.

紡糸後の繊維の焼成方法としては例えば酸素の存在下、
9506C〜1000°Cの温度において数分〜数時間
、好ましくは数分〜数十分間焼成した後、徐冷する方法
が挙げられる。
As a method for firing the fiber after spinning, for example, in the presence of oxygen,
An example is a method of firing at a temperature of 9506C to 1000C for several minutes to several hours, preferably several minutes to several tens of minutes, followed by slow cooling.

E 作用及び発明の′効果 本発明の酸化物超電導繊維は優れた強伸度と良好な柔軟
性を有し、超電導マグネットあるいは超電導送電線用の
超電導繊維として極めて好適に用いられる。該繊維は単
独で用いても良いが、−本一本の繊維のまわりを銅・ア
ルミニウム等の金属で包み込み安定化超電導線材として
用いるのが良い。
E. Effects and Effects of the Invention The oxide superconducting fiber of the present invention has excellent strength and elongation and good flexibility, and is extremely suitably used as a superconducting fiber for superconducting magnets or superconducting transmission lines. Although the fibers may be used alone, it is preferable to wrap each fiber with a metal such as copper or aluminum and use it as a stabilized superconducting wire.

本発明の酸化物超電導繊維を用いる具体的な用途として
はM HD発電、磁気浮」二列車、超電導発電機、NM
R−CT、高エネルギー加速装置等を挙げることができ
る。
Specific applications of the oxide superconducting fiber of the present invention include MHD power generation, magnetic floating train, superconducting generator, NM
Examples include R-CT, high energy accelerator, and the like.

以下実施例により本発明をより具体的に説明する。EXAMPLES The present invention will be explained in more detail with reference to Examples below.

測定法: 超電導繊維の臨界温度(Tc)及び電流密度(Jc)は
、標準的な四端子法で超電導繊維の電気抵抗を測定する
ことで求めた。この端子は直径70μmの白金線であり
、試料の接着には銀製の導電性接着剤を用いた。試料温
度は、(クロメル−金+0007%鉄)熱電対を用いて
測定した。
Measurement method: The critical temperature (Tc) and current density (Jc) of the superconducting fiber were determined by measuring the electrical resistance of the superconducting fiber using a standard four-probe method. This terminal was a platinum wire with a diameter of 70 μm, and a silver conductive adhesive was used to adhere the sample. Sample temperature was measured using a (chromel-gold+0007% iron) thermocouple.

超電導繊維の引張り強さ及び伸度は、インストロン型引
張り試験機にて室温で、チャック間距離5mm、引張り
速度0.033m/秒により測定した。
The tensile strength and elongation of the superconducting fibers were measured using an Instron type tensile testing machine at room temperature, with a chuck distance of 5 mm, and a tensile speed of 0.033 m/sec.

Y2O320g、 BaCO369,9gおよびCu0
113.3gをよく混合したのち、950℃で5時間仮
焼きした後、粉砕し、846メツシユのフィルターを通
すことにより、直径15μm以下の仮焼き粉末を得た。
Y2O320g, BaCO369.9g and Cu0
After thoroughly mixing 113.3 g of the mixture, it was calcined at 950° C. for 5 hours, then ground and passed through an 846 mesh filter to obtain calcined powder with a diameter of 15 μm or less.

参考例2 Y20320g、 BaCO369,9gおよびCuO
43,3gをよく混合したのち、950℃で5時間保持
したのち、酸素ガス流下に100℃/時間の速度で室温
まで冷却し、単一の斜方晶形のYBa、Cu307− 
、の酸化物超電導体を得た。これを粉砕し、846メツ
シコ、のフィルターを通ずことにより、直径151m以
下の酸化物超電導体粉末を得た。参考例3 Y(NOs)3’6Hz010g、 Ba(NO3)2
13.6gおよびCu(NO3)2−3H2018,9
gをそれぞれ蒸留水に溶解し、混合してから全体で30
0m(2の水溶液とした。こり。
Reference example 2 Y20320g, BaCO369.9g and CuO
After thoroughly mixing 43.3 g of YBa, Cu307-
, an oxide superconductor was obtained. This was pulverized and passed through a 846 Metsushiko filter to obtain oxide superconductor powder with a diameter of 151 m or less. Reference example 3 Y(NOs)3'6Hz010g, Ba(NO3)2
13.6g and Cu(NO3)2-3H2018,9
Dissolve each g in distilled water, mix, and then add a total of 30
0m (as an aqueous solution of 2. Stiff.

を直径0 、8mmの注射針を取付けた注射器に入イt
10.7モル/Qのに2Go、水溶液300mQ中に噴
射させて共沈物の微粉を得た。この時、系のpH力(7
〜8となるようにKOI(水溶液を適宜加えた。得られ
た粉末を濾過後、水で3回洗浄し、アルコール洗浄した
後、45℃で乾燥した。続いて850°Cで2時間仮焼
きを1子ない、粒径が0.2μm以下の微粉末を得た。
into a syringe fitted with a 0.8mm diameter needle.
A fine coprecipitate was obtained by injecting 10.7 mol/Q of 2Go into 300 mQ of an aqueous solution. At this time, the pH power of the system (7
KOI (an aqueous solution was added as appropriate) so that the KOI was ~8. The obtained powder was filtered, washed three times with water, washed with alcohol, and then dried at 45°C. Subsequently, it was calcined at 850°C for 2 hours. A fine powder with a particle size of 0.2 μm or less was obtained.

=13− 12一 実施例1 参考例Iて調整した15μm以下の粉末10gを蒸留水
15g中に分散させた。(これをA液とする)別に調整
した5%のポリビニルアルコール(以下PVAと記す)
(重合度1700、けん化度98.5モル%)水溶液1
5gにポリオキシエチレン(10)オクチルフェニルエ
ーテル004gとドデシル硫酸ナトリウム0.04gを
加え混合した。(これをB液とする)続いてBtL中に
A液を加え、よく撹拌しながらホットプレート上で全量
を30gまで濃縮し原液とした。
=13-12 - Example 1 10 g of the powder of 15 μm or less prepared in Reference Example I was dispersed in 15 g of distilled water. (This is called liquid A) Separately prepared 5% polyvinyl alcohol (hereinafter referred to as PVA)
(Polymerization degree 1700, saponification degree 98.5 mol%) Aqueous solution 1
004 g of polyoxyethylene (10) octylphenyl ether and 0.04 g of sodium dodecyl sulfate were added to 5 g and mixed. (This will be referred to as Solution B.) Subsequently, Solution A was added to BtL, and the total amount was concentrated to 30 g on a hot plate while stirring well to obtain a stock solution.

次に20g/ρのNa0)1と400g/12のNa2
SO4を含む水溶液を40℃に保温したものを凝固液と
し、湿式紡糸してフィラメント化し巻き取った。その後
100g/θのH、S O、と300g/12のNa、
SOtを含む水溶液中で中和後、水洗してボビンに巻き
取った。このフィラメントを50℃の乾燥機で乾燥した
のち、980℃の炉中に入れ5分保持し、100°C/
時局の速度で酸素ガス流下室温まで冷却し、直径100
μmの酸化物超電導繊維を得た。
Next, 20g/ρ of Na0)1 and 400g/12 of Na2
An aqueous solution containing SO4 kept at 40°C was used as a coagulation liquid, which was wet-spun into filaments and wound up. Then 100g/θ of H, SO, and 300g/12 of Na,
After neutralization in an aqueous solution containing SOt, it was washed with water and wound up on a bobbin. After drying this filament in a dryer at 50°C, it was placed in a 980°C oven for 5 minutes, and then heated to 100°C/
Cooled to room temperature under oxygen gas flow at the current speed,
A μm oxide superconducting fiber was obtained.

この繊維の臨界温度(Tc)は83にであり、77Kに
おける臨界電流(Jc ) I 、 OA/cm”′!
:あった。また引張り強度が2.5MPaで切断伸度が
3.0%であった。
The critical temperature (Tc) of this fiber is 83 and the critical current (Jc) I, OA/cm'' at 77K!
:there were. Further, the tensile strength was 2.5 MPa and the elongation at break was 3.0%.

実施例2 参考例2で調整した酸化物超電導体粉末を用い、PVA
として重合度2400、けん化度98.5モル%のもの
を用いる以外は実施例Iと同様にして、直径100μm
の酸化物超電導繊維を得た。
Example 2 Using the oxide superconductor powder prepared in Reference Example 2, PVA
A diameter of 100 μm was prepared in the same manner as in Example I except that a polymer with a degree of polymerization of 2400 and a degree of saponification of 98.5 mol% was used.
oxide superconducting fibers were obtained.

この繊維のTcは81にであり、77KにおけるJc 
O,4A/cm2であった。また引張り強度がl 、 
0MPaで、切断伸度が0.5%であった。
The Tc of this fiber is 81 and the Jc at 77K.
It was 0.4A/cm2. Also, the tensile strength is l,
At 0 MPa, the elongation at break was 0.5%.

実施例3 参考例3の共沈法により調整した平均粒径0,2μm以
下の粉末1.0gを゛蒸留水15g中に分散させた。
Example 3 1.0 g of powder having an average particle size of 0.2 μm or less prepared by the coprecipitation method of Reference Example 3 was dispersed in 15 g of distilled water.

(これをC液とする)別に調整した5%のPVA(重合
度3300、けん化度987モル%)水溶液10gに蒸
留水5g、ポリオキシエチレン(10)オクチルフェニ
ルエーテル0.06gとドデシル硫酸ナトリウム006
gを加え混合した。(これをD液とする)続いてD液中
にC液を加えよく撹拌しながらホットプレート上で全量
を35gまで濃縮し原液とした。
(This will be referred to as Solution C) 10 g of a separately prepared 5% PVA (polymerization degree 3300, saponification degree 987 mol%) aqueous solution, 5 g of distilled water, 0.06 g of polyoxyethylene (10) octylphenyl ether, and 0.06 g of sodium dodecyl sulfate.
g and mixed. (This will be referred to as Solution D.) Subsequently, Solution C was added to Solution D, and the total amount was concentrated to 35 g on a hot plate while stirring well to obtain a stock solution.

次に20g/ρのN a OHと400g#!のNa、
SOtを含む水溶液を40℃に保温したものを凝固液と
し、湿式紡糸してフィラメント化し巻き取った。その後
100g/(!のH3SO,と300g/ρのNa2S
O4を含む水溶液中で中和後、水洗してボビンに巻き取
った。このフィラメントを50℃の乾燥機で乾燥したの
ち、980℃の炉中に入れ5分保持し、100℃/時門
の速度で酸素ガス流下室温まで冷却し、直径80μmの
酸化物超電導繊維を得た。
Next, 20g/ρ of N a OH and 400g#! Na,
An aqueous solution containing SOt kept at 40° C. was used as a coagulation liquid, which was wet-spun into filaments and wound up. Then 100g/(! of H3SO, and 300g/ρ of Na2S
After neutralization in an aqueous solution containing O4, it was washed with water and wound up on a bobbin. After drying this filament in a dryer at 50°C, it was placed in a furnace at 980°C and held for 5 minutes, and then cooled to room temperature under a flow of oxygen gas at a rate of 100°C/hour to obtain an oxide superconducting fiber with a diameter of 80 μm. Ta.

この繊維のTcは84にであり、77にでのJcは1[
14A/cm2であった。また引張り強度が20MPa
で、切断伸度が26%であった。
The Tc of this fiber is 84 and the Jc at 77 is 1 [
It was 14A/cm2. Also, the tensile strength is 20MPa.
The elongation at break was 26%.

特許出願人 株式会社 り ラ しPatent applicant RiRashi Co., Ltd.

Claims (1)

【特許請求の範囲】 (1)繊維強度が1MPa以上、繊維伸度が0.5%以
上、であることを特徴とする酸化物超電導繊維。 (2)繊維強度が5MPa以上である特許請求の範囲第
1項に記載の酸化物超電導繊維。(3)繊維伸度が2.
5%以上である特許請求の範囲第1項に記載の酸化物超
電導繊維。(4)臨界温度が80K以上である特許請求
の範囲第1項に記載の酸化物超電導繊維。 (5)臨界電流が磁場のない状態において 10A/cm^2以上である特許請求の範囲第1項に記
載の酸化物超電導繊維。 (6)気孔率が10容量%以下である特許請求の範囲第
1項に記載の酸化物超電導繊維。
[Scope of Claims] (1) An oxide superconducting fiber characterized by having a fiber strength of 1 MPa or more and a fiber elongation of 0.5% or more. (2) The oxide superconducting fiber according to claim 1, which has a fiber strength of 5 MPa or more. (3) Fiber elongation is 2.
The oxide superconducting fiber according to claim 1, which has a content of 5% or more. (4) The oxide superconducting fiber according to claim 1, which has a critical temperature of 80K or higher. (5) The oxide superconducting fiber according to claim 1, wherein the critical current is 10 A/cm^2 or more in the absence of a magnetic field. (6) The oxide superconducting fiber according to claim 1, which has a porosity of 10% by volume or less.
JP62280671A 1987-11-05 1987-11-05 Oxide superconducting fiber Pending JPH01122512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62280671A JPH01122512A (en) 1987-11-05 1987-11-05 Oxide superconducting fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62280671A JPH01122512A (en) 1987-11-05 1987-11-05 Oxide superconducting fiber

Publications (1)

Publication Number Publication Date
JPH01122512A true JPH01122512A (en) 1989-05-15

Family

ID=17628307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62280671A Pending JPH01122512A (en) 1987-11-05 1987-11-05 Oxide superconducting fiber

Country Status (1)

Country Link
JP (1) JPH01122512A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248696B1 (en) 1994-07-15 2001-06-19 Basf Corporation 7-forming, superconducting filaments through bicomponent dry spinning
US6344167B1 (en) 1994-02-18 2002-02-05 Basf Corporation Process for the production of superconductor containing filaments

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344167B1 (en) 1994-02-18 2002-02-05 Basf Corporation Process for the production of superconductor containing filaments
US6248696B1 (en) 1994-07-15 2001-06-19 Basf Corporation 7-forming, superconducting filaments through bicomponent dry spinning

Similar Documents

Publication Publication Date Title
US5627140A (en) Enhanced flux pinning in superconductors by embedding carbon nanotubes with BSCCO materials
US5508253A (en) REBa2 Cu3 O7-y type oxide superconductive material having high critical current density and process for preparation thereof
JPH02164760A (en) Production of thread or band like ceramics high
Xie et al. Progress of superconducting nanofibers via electrospinning
JPH01122512A (en) Oxide superconducting fiber
JPH01122511A (en) Oxide ceramic superconducting fiber
JPH02289459A (en) Preparation of slender body consisting of needle-like crystal group in longer direction of superconductive ceramic material
JPH02259115A (en) Preparation of high density superconductive fiber
JP3731919B2 (en) Method for dry spinning fibers containing potentially superconducting materials
US5023230A (en) Oxide superconductors encased in pan-derived carbon matrix
JPH01176606A (en) Manufacture of oxide superconductive fiber
JPH01122522A (en) Manufacture of oxide superconducting fiber
JPH07509686A (en) Superconducting oxides by coprecipitation at constant pH
JPH01122521A (en) Manufacture of oxide superconducting fiber
JP2593874B2 (en) Manufacturing method of superconducting ceramic wire
JPH01138132A (en) Meltable superconductor and its production
Chien Polymer precursor synthesis of high T c superconductors
JPS63256564A (en) Superconductive ceramic of scalelike oxide and its production
JPH01176605A (en) Manufacture of oxide superconductive fiber
JPS63307150A (en) Oxide cremics based superconductor and production thereof
IL85461A (en) Malleable superconductor composite containing silver or silver-like materials
JPH0365511A (en) Manufacture of superconductive fiber
CN117700225A (en) Y (Y) a Gd 2-a Ba 4 CuNbO y Nano powder and method for improving performance of single domain gadolinium barium copper oxygen superconducting block by using nano powder
JP2709380B2 (en) How to make a superconducting magnet
Vo et al. Isothermal melt processed Bi-2212/Ag tapes containing MgO and Al2O3 additions