JPH01122522A - Manufacture of oxide superconducting fiber - Google Patents

Manufacture of oxide superconducting fiber

Info

Publication number
JPH01122522A
JPH01122522A JP62280673A JP28067387A JPH01122522A JP H01122522 A JPH01122522 A JP H01122522A JP 62280673 A JP62280673 A JP 62280673A JP 28067387 A JP28067387 A JP 28067387A JP H01122522 A JPH01122522 A JP H01122522A
Authority
JP
Japan
Prior art keywords
oxide
oxide superconducting
producing
fiber according
superconducting fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62280673A
Other languages
Japanese (ja)
Inventor
Kyoko Goto
後藤 共子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP62280673A priority Critical patent/JPH01122522A/en
Publication of JPH01122522A publication Critical patent/JPH01122522A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Fibers (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain high strength and good flexibility by dispersing a material capable of serving as an oxide superconductor in an aqueous solution containing a water soluble polymer, wet-spinning this spinning raw liquid in an organic solvent which is a nonsolvent for the water soluble polymer, then heat-treating it. CONSTITUTION:A material containing Cu as an oxide superconductor or a material capable of serving as an oxide superconductor by heat treatment is dispersed or solved in an aqueous solution containing a water soluble polymer made of a polyvinyl alcohol polymer to produce a spinning raw liquid. This spinning raw liquid is wet-spun in an organic solvent made of methanol which is compatible with water and a nonsolvent for the water soluble polymer to form precursor fibers of superconducting fibers, then the precursor fibers are heat-treated. Oxide superconducting fibers with high strength and good flexibility are thereby obtained.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、超電導マグネットや超電導送電線等に利用し
うる線材化された酸化物超電導体の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for manufacturing an oxide superconductor made into a wire that can be used for superconducting magnets, superconducting power transmission lines, and the like.

月−jD仁9」(迷− 従来、超電導体としてはNb3GeあるいはNb3Sn
等=3− の金属間化合物が知られている。しかしこれらの臨界温
度(Tc)は最高でも23.3K (Nb5Ge)と著
しく低く、これらの材料を使用する場合には工業的生産
が困難で、経済性に劣る液体ヘリウムによる冷却が必要
であるため、これらの材料を広範な工業的用途に利用す
る上で著しい制約となっていた。
Moon-jD Jin 9'' (Mission) Conventionally, Nb3Ge or Nb3Sn was used as a superconductor.
etc. = 3- intermetallic compounds are known. However, the critical temperature (Tc) of these materials is extremely low, at most 23.3K (Nb5Ge), and when these materials are used, industrial production is difficult and requires cooling with liquid helium, which is less economical. This has been a significant constraint on the use of these materials for a wide range of industrial applications.

最近酸化物超電導体が極めて高い臨界温度を有すること
が見出だされ、この分野に於ける研究が活発に実施され
る様になった。臨界温度が高い材料(以下、高温超電導
材料と略記する)としては、40に級の超電導体(La
+−zSrz)、cuo4[Chem、l、ett、 
Recently, it has been discovered that oxide superconductors have extremely high critical temperatures, and research in this field has become active. Materials with high critical temperatures (hereinafter abbreviated as high-temperature superconducting materials) include superconductors of grade 40 (La
+-zSrz), cuo4[Chem, l, ett,
.

429(1987)] 、90に超超電導体としてはB
a2Y+CL13O、−、 [Phys、Rev、l、
ett、、58(1,987)405]が既に見出ださ
れ、またY以外でもLu、 Yb、 Tm、 Er等で
も90に級と見られる超電導現象が既に観察されている
429 (1987)], B as a superconductor in 90
a2Y+CL13O,-, [Phys, Rev, l,
ett, 58 (1,987) 405], and in addition to Y, superconducting phenomena of magnitude 90 have already been observed in Lu, Yb, Tm, Er, etc.

90に級高温超電導材料の出現により液体窒素(77K
)を用いることが可能となり、冷却における工業的問題
点は大巾に改善される見通しが得られつつある。
With the advent of 90-grade high-temperature superconducting materials, liquid nitrogen (77K
), and there are prospects that industrial problems in cooling will be greatly improved.

C6明が解決しようとする問題点 高温超電導の応用はジョセフソン素子に代表されるよう
なエレクトロニクス分野への応用と、超電導発電機、磁
気浮上列車、超電導送電線に代表されるような電気機器
分野への応用に大別される。
Problems that C6 Ming aims to solve Applications of high-temperature superconductivity include applications in the electronics field, as typified by Josephson devices, and electrical equipment fields, as typified by superconducting generators, magnetic levitation trains, and superconducting power transmission lines. It is broadly divided into applications.

エレクトロニクス分野への応用も非常に重要な課題であ
るが、産業界、社会に与えるインパクトの大きさを考え
た場合、電気機器への高温超電導の応用こそが重要であ
る。
Application to the electronics field is also a very important issue, but when considering the magnitude of the impact it will have on industry and society, it is the application of high temperature superconductivity to electrical equipment that is important.

高温超電導の電気機器への応用の要素技術となるのは超
電導マグネット技術である。超電導マグネットを利用し
たものとしてはM HD発電、磁気浮」二列車、高エネ
ルギー粒子加速装置、超電導発電機、超電導変圧器、N
MR−CTなどが挙げられる。高温超電導体をマグネッ
トの分野に使用できれば超電導マグネット応用機器の経
済性が格段に向上する。また経済性が格段に向上するこ
とにより新しい応用分野、あるいは超電導送電線への応
用が開けることが期待される。
Superconducting magnet technology is an elemental technology for the application of high-temperature superconductivity to electrical equipment. Things that use superconducting magnets include MHD power generation, magnetic floating trains, high-energy particle accelerators, superconducting generators, superconducting transformers, and N.
Examples include MR-CT. If high-temperature superconductors can be used in the field of magnets, the economic efficiency of superconducting magnet application equipment will be greatly improved. It is also expected that the drastic improvement in economic efficiency will open up new fields of application or application to superconducting power transmission lines.

高温超電導体をマグネットに使用する為には、マグネッ
トに巻ける様な線材であることが必要である。また超電
導マグネットにおいて実用上置も大きな問題はマグネッ
トの安定化である。
In order to use a high-temperature superconductor in a magnet, it must be a wire that can be wrapped around the magnet. Furthermore, a major problem in practical use of superconducting magnets is stabilization of the magnet.

従来のNb5GeあるいはNb3Sn等の様な金属間化
合物超電導体?こおいては、例えばCu5n合金棒と、
Nbあるいは+lb合金棒を密に束ねて熱処理によりN
b3Sn化合物層を生じさせた後、引き延ばし加工によ
る線材化を何度も繰り返すという極めて煩瑣な手段によ
り超電導体の線材化を図っている。
Intermetallic superconductors like conventional Nb5Ge or Nb3Sn? Here, for example, a Cu5n alloy rod,
Nb or +lb alloy rods are tightly bundled and heat treated to reduce Nb or +lb alloy rods.
After forming a b3Sn compound layer, the superconductor is made into a wire by an extremely complicated method of repeating the drawing process many times to make the wire into a wire.

しかしながら高温超電導体、すなわち酸化物超電導体は
セラミックスであるため、従来の超電導体に比べ著しく
線材化が困難であるという問題点があった。
However, since high-temperature superconductors, ie, oxide superconductors, are made of ceramics, they have the problem of being significantly more difficult to form into wires than conventional superconductors.

このような問題点を解決するため銀合金インゴットに穴
をあけ、酸化物超電導体粉末あるいは加熱処理によって
酸化物超電導体になり得る物質の粉末を詰めて線材とし
たのち熱処理する方法がすでに提案されている。
In order to solve these problems, a method has already been proposed in which a hole is made in a silver alloy ingot and the material is filled with oxide superconductor powder or powder of a substance that can be made into an oxide superconductor through heat treatment to form a wire and then heat treated. ing.

しかしながら高温超電導体すなわち酸化物超電導体を銀
等の金属中空管に詰めて線材化する場合には、(1)直
径100μm〜200μm以下の極細線材とすることか
極めて困難である、(2)高温超電導体すなイつち酸化
物超電導体が断線することなく、かつ全線域にわたって
電導性が均一である状態にすることは困難である等の極
めて大きな問題があった。
However, when a high-temperature superconductor, that is, an oxide superconductor, is packed into a hollow metal tube made of silver or the like and made into a wire, (1) it is extremely difficult to make an ultra-fine wire with a diameter of 100 μm to 200 μm or less; (2) There have been extremely serious problems, such as the difficulty of maintaining a high temperature superconductor, that is, an oxide superconductor, without disconnection and with uniform conductivity over the entire line area.

すなイつち、安定化超電導線材の作製は高温超電導材料
を実用化するための最も大きな課題であり、このための
最も重要な問題として高温超電導体すなわち酸化物超電
導体の極細線材の作製が強く要求されているというのが
現状である。
In other words, the production of stabilized superconducting wires is the most important issue for the practical application of high-temperature superconducting materials, and the most important issue for this purpose is the production of ultrafine wires of high-temperature superconductors, that is, oxide superconductors. The current situation is that there is a strong demand for this.

D1問題点を 決する為の手 本発明者らは上述の現状に鑑み、鋭意検討した結果、酸
化物超電導体あるいは加熱処理によって酸化物超電導体
になり得る物質を水溶性ポリマーを含む水溶液中に分散
あるいは溶解して紡糸原液を調製し、この紡糸原液を水
と相溶性で水溶性ポリマーの非溶媒である有機溶媒中で
湿式紡糸して超電導繊維の前駆体繊維とした後、加熱処
理することにより、酸化物超電導繊維が得られることを
見出し、本発明を完成するに到った。
Steps for resolving problem D1 In view of the above-mentioned current situation, the inventors of the present invention have conducted intensive studies and have discovered that an oxide superconductor or a substance that can become an oxide superconductor through heat treatment is dispersed in an aqueous solution containing a water-soluble polymer. Alternatively, by dissolving and preparing a spinning stock solution, wet-spinning this spinning stock solution in an organic solvent that is compatible with water and a non-solvent for the water-soluble polymer to obtain precursor fibers of superconducting fibers, and then heat-treating the solution. They discovered that oxide superconducting fibers can be obtained and completed the present invention.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で用いられる酸化物超電導体は、熱処理によって
セラミックス系焼結体を形成するものであって、ある温
度以下で超電導現象を示すものならば特に限定されない
が、なかでも銅酸化物を含−むものが好ましい。
The oxide superconductor used in the present invention is not particularly limited as long as it forms a ceramic sintered body through heat treatment and exhibits a superconducting phenomenon below a certain temperature. Preferably.

具体的には(La、 Ba)、Cub4や一般式LnB
a2Cu3O7□(但し、LnはY、 Lu、 Yb、
 Tm、 Er、 Ho、 Dy。
Specifically, (La, Ba), Cub4 and general formula LnB
a2Cu3O7□ (However, Ln is Y, Lu, Yb,
Tm, Er, Ho, Dy.

Gd、 Eu、 Smのすくなくとも1種、χは0<x
≦05を表わす。)で表わされるものが挙げられる。上
記Ln、 Ba、 Cu、 Oはそれぞれその一部がF
等によって置換されていても良い。
At least one of Gd, Eu, and Sm, χ is 0<x
≦05. ). Part of each of the above Ln, Ba, Cu, and O is F.
etc. may be replaced.

また加熱処理することによって酸化物超電導体になり得
る物質としては、」1記酸化物超電導体を形成するそれ
ぞれの金属の酸化物、硝酸塩または炭酸塩等からなるも
のが挙げられる。
Examples of substances that can be turned into oxide superconductors by heat treatment include those consisting of oxides, nitrates, carbonates, etc. of the respective metals forming the oxide superconductor described in 1.

具体的には (a) Lnの酸化物、硝酸塩または炭酸塩、(但しL
nはY、  Lu、  Yb、  Tm、  Er、 
 Ho、  Dy、Gd、  Eu。
Specifically, (a) an oxide, nitrate or carbonate of Ln (however, Ln
n is Y, Lu, Yb, Tm, Er,
Ho, Dy, Gd, Eu.

Smのすくなくとも1種) (b) Baの酸化物、硝酸塩または炭酸塩、及び (c) Cuの酸化物、硝酸塩または炭酸塩からなるも
のが挙げられる。上記(b)としてはBaの酢酸塩また
はフッ化物であっても良い。また上記(c)としてはC
uのグルコン酸塩またはフッ化物であっても良い。
At least one type of Sm) (b) Ba oxide, nitrate or carbonate; and (c) Cu oxide, nitrate or carbonate. The above (b) may be Ba acetate or fluoride. Also, for (c) above, C
It may be gluconate or fluoride of u.

より具体的には、」1記(a)として、y2o、 。More specifically, as in Section 1 (a), y2o.

Y(No3)2等が、また上記(b)としてBaCO3
゜Ba(NO3)2. BaFt等が、上記(c)とし
てCub。
Y(No3)2 etc., and as above (b) BaCO3
゜Ba(NO3)2. BaFt etc. are Cub as the above (c).

Cu(NO3)2. CuF2・2H3O等が挙げられ
る。
Cu(NO3)2. Examples include CuF2.2H3O.

これらの各成分を、酸化物超電導体の組成比となる様に
混合したものを水溶性ポリマーを含む水溶液中に分散あ
るいは溶解して紡糸原液を調整すれば良いが、とりわけ
、水溶性ポリマーを含む水溶液中に分散あるいは溶解す
るに先たち、該混合物を、温度800℃〜100(1℃
の条件下で1時間〜5時間、仮り焼きしたものを用いる
と、より優れた効果が得られる。
A spinning stock solution may be prepared by dispersing or dissolving each of these components in an aqueous solution containing a water-soluble polymer. Before dispersing or dissolving the mixture in an aqueous solution, the mixture is heated at a temperature of 800°C to 100°C (1°C
A more excellent effect can be obtained by using a material calcined for 1 to 5 hours under these conditions.

本発明で用いられる酸化物超電導体あるいは加熱処理に
よって酸化物超電導体となりうる物質は粉末として使用
することが好ましく、特に]、 51i m以下、好ま
しくは1μm以下、更に好ましくiJ:0.5μm以下
の微粉末として用いることが好ましい。
The oxide superconductor used in the present invention or the substance that can become an oxide superconductor by heat treatment is preferably used in the form of a powder, and particularly has an iJ of 51 m or less, preferably 1 μm or less, and more preferably iJ: 0.5 μm or less. It is preferable to use it as a fine powder.

本発明で用いられる水溶性ポリマーとしてはポリビニル
アルコール系重合体(以下ポリビニルアルコールをPV
Aと略記することがある)、メチルセルロース、ヒドロ
キシエチルセルロース、ヒドロキシェヂルメチルセルロ
ース等のセルロース誘導体、ポリビニルピロリドン、ポ
リアクリルアミド、ポリエチレングリコール等が挙げら
れるが、中でもPVA系重合体が最も好ましく用いられ
る。
The water-soluble polymer used in the present invention is a polyvinyl alcohol polymer (hereinafter referred to as polyvinyl alcohol).
(sometimes abbreviated as A), cellulose derivatives such as methylcellulose, hydroxyethylcellulose, and hydroxyethylmethylcellulose, polyvinylpyrrolidone, polyacrylamide, and polyethylene glycol, among which PVA-based polymers are most preferably used.

PVA系重合体のけん化度、重合度としては水溶性の範
囲であれば特に制限はないが、通常げん化度として70
〜100モル%、好ましくは85〜1.00モル%、最
も好ましくは95〜100モル%、重合度として500
〜20000、好ましくは1000〜15(100の範
囲から選ばれる。
There are no particular restrictions on the saponification degree or polymerization degree of the PVA polymer as long as it is within the water-soluble range, but the saponification degree is usually 70.
~100 mol%, preferably 85-1.00 mol%, most preferably 95-100 mol%, degree of polymerization 500
~20,000, preferably from 1,000 to 15 (100).

そして本発明におけるポリビニルアルコール系重合体に
は通常の未変性ポリビニルアルコール以外にも、いわゆ
る変性ポリビニルアルコールも含よれる。変性ポリビニ
ルアルコールとしては、酢酸ビニル及びこれと共重合可
能なコモノマーとの共重合体のケン化物がまずあげられ
る。コモノマーとしては酢酸ビニル以外のビニルエステ
ル(たとえばプロピオン酸ビニル、ステアリン酸ビニル
、安息香酸ビニル、飽和分岐HFi肪酸ビニルなど)、
アクリル酸、メタクリル酸、クロトン酸などの不飽和モ
ノカルボン酸又はこれらのアルキルエステル、マレイン
酸、無水マレイン酸、フマール酸、イタコン酸などの不
飽和多価カルボン酸或いはこれらの部分エステル又は完
全エステル、アクリロニトリル、メタクリロニトリル、
アクリルアミド、メタクリルアミド、オレフィンスルホ
ン酸(たとえばエチレンスルホン酸、アリルスルホン酸
、メタアリルスルホン酸など)或いはその塩、エチレン
、プロピレン、ブテン、α−オクテン、α−ドデセン、
α−オクタデセンなどのα−オレフィン、ビニルエーテ
ル、含シランモノマーなどがあげられる。共重合体中に
占めるこれらコモノマーの割合は20モル%未満、好ま
しくは10モル%未満である。
The polyvinyl alcohol polymer in the present invention includes not only ordinary unmodified polyvinyl alcohol but also so-called modified polyvinyl alcohol. Examples of the modified polyvinyl alcohol include saponified copolymers of vinyl acetate and a comonomer copolymerizable with vinyl acetate. Comonomers include vinyl esters other than vinyl acetate (for example, vinyl propionate, vinyl stearate, vinyl benzoate, saturated branched HFi vinyl fatty acids, etc.);
Unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid or their alkyl esters; unsaturated polyhydric carboxylic acids such as maleic acid, maleic anhydride, fumaric acid, and itaconic acid; or partial or complete esters thereof; acrylonitrile, methacrylonitrile,
Acrylamide, methacrylamide, olefin sulfonic acid (e.g. ethylene sulfonic acid, allyl sulfonic acid, methalylsulfonic acid, etc.) or its salts, ethylene, propylene, butene, α-octene, α-dodecene,
Examples include α-olefins such as α-octadecene, vinyl ethers, and silane-containing monomers. The proportion of these comonomers in the copolymer is less than 20 mol %, preferably less than 10 mol %.

変性ポリビニルアルコールの他の群は、酢酸ビニルのホ
モポリマー又は前記のコポリマーのケン化物の後変性物
である。後変性の例としてはアセタール化、ウレタン化
、リン酸エステル化、硫酸エステル化、スルポン酸エス
テル化などがあげられる。
Another group of modified polyvinyl alcohols are post-modifications of vinyl acetate homopolymers or saponified products of the aforementioned copolymers. Examples of post-modification include acetalization, urethanization, phosphoric acid esterification, sulfuric acid esterification, and sulfonic acid esterification.

本発明において用いられる紡糸原液は、酸化物超電導体
(好ましくは粉末形状のもの)あるいは加熱処理するこ
とによって酸化物超電導体になりうる物質(好ましくは
粉末形状のもの)を」1記の水溶性ポリマー水溶液中に
分散あるいは溶解することによって調製しうる。
The spinning stock solution used in the present invention contains an oxide superconductor (preferably in powder form) or a substance that can become an oxide superconductor by heat treatment (preferably in powder form). It can be prepared by dispersing or dissolving it in an aqueous polymer solution.

紡糸原液中の上記酸化物超電導体あるいは加熱処理する
ことによって酸化物超電導体になりうる物質と水溶性ポ
リマーとの重量比は前者に対して後者が15重量%以下
、3重量%以上、好ましくは8重量%以下、3重量%以
上となるようにすることが好ましい。
The weight ratio of the above-mentioned oxide superconductor or a substance that can become an oxide superconductor by heat treatment to the water-soluble polymer in the spinning stock solution is such that the latter is 15% by weight or less and 3% by weight or more, preferably 3% by weight or more relative to the former. It is preferable that the amount is 8% by weight or less and 3% by weight or more.

また、上記紡糸原液を調製するに際して、上記酸化物超
電導体あるい′は加熱処理することによって酸化物超電
導体になり得る物質の分散剤を併用することはさしつか
えない。この場合の分散剤としてはアニオン性乳化剤、
ノニオン性乳化剤、カヂオン性乳化剤が使用できる。例
えばポリオキシエチレン(10)オクヂルフェニルエー
テル、ソジウムドデシルサルフェート等が使用しうる。
Further, when preparing the above-mentioned spinning stock solution, it is permissible to use a dispersant of a substance that can become an oxide superconductor by heat treatment of the above-mentioned oxide superconductor. In this case, the dispersant is an anionic emulsifier,
Nonionic emulsifiers and cationic emulsifiers can be used. For example, polyoxyethylene (10) ocdylphenyl ether, sodium dodecyl sulfate, etc. can be used.

更?こポリアクリル酸やその塩、ボリスヂレン、無水マ
レイン酸の共重合体の中和物、無水マレイン酸−イツブ
テン共重合体の中和物等のポリマー系分散安定剤も使用
できる。
Further? Polymer-based dispersion stabilizers such as polyacrylic acid and its salts, neutralized products of copolymers of borisdyrene and maleic anhydride, and neutralized products of maleic anhydride-ibutene copolymers can also be used.

上記紡糸原液中の総固形分濃度は特に限定はないが、通
常約20〜70重量%の範囲から選択することが多い。
The total solid content concentration in the above-mentioned spinning dope is not particularly limited, but is usually selected from a range of about 20 to 70% by weight.

上記紡糸原液は次に、水と相溶性で水溶性ポリマーの非
溶媒である有機溶媒中で湿式紡糸し、その後乾燥するこ
とにより連続前駆体繊維を得ることができる。
The above-mentioned spinning stock solution is then wet-spun in an organic solvent that is compatible with water and is a non-solvent for the water-soluble polymer, and then dried to obtain a continuous precursor fiber.

本発明に用いられる水と相溶性で水溶性ポリマーの非溶
媒である有機溶媒としては、メタノール、エタノール、
イソプロパツール、プロパツール等の低級アルコール、
アセトン、メチルエチルケI・ン等のケトン等が使用可
能であるが、湿式紡糸性の点でメタノールが好ましく用
いられる。
Examples of organic solvents that are compatible with water and are non-solvents for water-soluble polymers used in the present invention include methanol, ethanol,
Lower alcohols such as isopropanol and propatool;
Ketones such as acetone and methyl ethyl carbon can be used, but methanol is preferably used from the viewpoint of wet spinnability.

該有機溶媒には適宜、少量の水を併用し、混合溶媒とす
ることも可能である。この場合[有機溶媒/水]の比率
は体積比が10010〜50150とするのが良い。
It is also possible to use a small amount of water in combination with the organic solvent to form a mixed solvent. In this case, the volume ratio of [organic solvent/water] is preferably 10,010 to 50,150.

また該温度は50℃以下が好ましい。Further, the temperature is preferably 50°C or less.

紡糸ドラフトはfl、1〜2.0が良く、好ましくは0
.8〜1.2が良い。
The spinning draft is preferably fl, 1 to 2.0, preferably 0.
.. 8 to 1.2 is good.

上記前駆体繊維は次いで加熱処理される。もちろん加熱
処理に先たち、適宜、延伸することは何らさしつかえな
い。加熱処理条件としては、例えば酸素の存在下、95
0°C〜1000°Cの温度において数分〜数時間、好
ましくは数分〜数十分間焼成した後、徐冷する方法が挙
げられる。
The precursor fibers are then heat treated. Of course, there is no problem in stretching the film as appropriate prior to the heat treatment. The heat treatment conditions include, for example, 95% in the presence of oxygen.
An example is a method of baking at a temperature of 0° C. to 1000° C. for several minutes to several hours, preferably several minutes to several tens of minutes, and then slowly cooling.

本発明の製造方法により得られる酸化物超電導繊維はそ
の直径において何等の制限を受けるものではないが、実
用性に鑑み、その直径を1000μm以下とするのが普
通である。好ましい直径は500μm以下、更に好まし
い直径は200μm以下、とりわけ好ましい直径は1.
 O0μm以下である。下限については何等の制限を設
けるものでないが、通常1μm以」二である。
The diameter of the oxide superconducting fiber obtained by the production method of the present invention is not limited in any way, but in view of practicality, the diameter is usually 1000 μm or less. A preferred diameter is 500 μm or less, a more preferred diameter is 200 μm or less, and an especially preferred diameter is 1.
It is 0 μm or less. Although there is no restriction on the lower limit, it is usually 1 μm or less.

本発明の製造方法によれば、」1記の任意の直径を有し
、気孔率10容積%以下、引張強度IMPa以上であっ
て、臨界温度(Tc)が80に以上の酸化物超電導繊維
を得ることができる。
According to the manufacturing method of the present invention, an oxide superconducting fiber having an arbitrary diameter as described in item 1, a porosity of 10% by volume or less, a tensile strength of IMPa or more, and a critical temperature (Tc) of 80 or more is produced. Obtainable.

本発明の製造方法で得られる酸化物超電導繊維は、酸化
物超電導体以外の無機物、例えばアルカリ金属等を含ま
ない為、該アルカリ金属等に由来する種々の問題点がな
いことも−っの特徴である。
The oxide superconducting fiber obtained by the production method of the present invention does not contain any inorganic substances other than the oxide superconductor, such as alkali metals, so it is free from various problems caused by alkali metals. It is.

E1作用及び発明の効果 本発明の酸化物高温超電導繊維は高い強度と良好な柔軟
性を有し、超電導マグネット及び超電導送電線の超電導
繊維として極めて有効に用いられる。本発明の酸化物高
温超電導繊維は単独で用いても良いが、−本一本の繊維
の回りを銅やアルミニウム等の金属で包み込み安定化超
電導線とじて用いるのが良い。安定化超電導線を作製す
る場合には、該高温超電導繊維の直径が200μm以下
、好ましくは100μm以下の物を用いることで冷却効
果が上りかつ超電導線の柔軟性も向上することとなる。
E1 action and effects of the invention The oxide high temperature superconducting fiber of the present invention has high strength and good flexibility, and is extremely effectively used as a superconducting fiber for superconducting magnets and superconducting power transmission lines. Although the oxide high-temperature superconducting fiber of the present invention may be used alone, it is preferable to use it as a stabilized superconducting wire by wrapping a single fiber with a metal such as copper or aluminum. When producing a stabilized superconducting wire, the use of high temperature superconducting fibers having a diameter of 200 μm or less, preferably 100 μm or less increases the cooling effect and improves the flexibility of the superconducting wire.

本発明の酸化物高温超電導線を用いる具体的な用途とし
ては、MHD発電、磁気浮上列車、超電導発電機、NM
R−CT、高エネルギー加速装置等挙げることができる
Specific applications of the oxide high temperature superconducting wire of the present invention include MHD power generation, magnetic levitation trains, superconducting generators, NM
Examples include R-CT and high energy accelerator.

以下に実施例により本発明をより具体的に説明する。The present invention will be explained in more detail below using Examples.

測定法; 超電導繊維の臨界温度(Tc)及び電流密度(Jc)は
、標準的な四端子法で超電導繊維の電気抵抗を測定する
ことで求めた。この端子は直径70μmの白金線であり
、試料の接着には銀製の導電性接着剤を用いた。試料温
度は、(クロメル−金+0.007%鉄)熱電対を用い
て測定した。
Measurement method: The critical temperature (Tc) and current density (Jc) of the superconducting fiber were determined by measuring the electrical resistance of the superconducting fiber using a standard four-terminal method. This terminal was a platinum wire with a diameter of 70 μm, and a silver conductive adhesive was used to adhere the sample. Sample temperature was measured using a (chromel-gold + 0.007% iron) thermocouple.

超電導繊維の引張り強さ及び伸度は、インストロン型引
張り試験機にて室温で、ヂャック間距離J6− 5mm、引張り速度0.033m/秒により測定した。
The tensile strength and elongation of the superconducting fibers were measured using an Instron type tensile tester at room temperature with a jack distance of J6-5 mm and a tensile speed of 0.033 m/sec.

Y、0320g、 BaCO369,9gおよびCuO
43,3gをよく混合したのち、950℃で5時間仮焼
き、した後、粉砕し、846メツシユのフィルターを通
すことにより、直径15μm以下の仮焼き粉末を得た。
Y, 0320g, BaCO369,9g and CuO
After thoroughly mixing 43.3 g of the mixture, it was calcined at 950° C. for 5 hours, then crushed and passed through an 846 mesh filter to obtain calcined powder with a diameter of 15 μm or less.

参考例2 Y20!+ 2[1g、 BaCO369,9gおよび
CuO43,3gをよく混合したのち、950℃で5時
間保持したのち、酸素ガス流下に100℃/時間の速度
で室温まで冷却し、単一の斜方晶形のYBa2Cu3O
7−zの酸化物超電導体を得た。これを粉砕し、846
メツソユのフィルターを通ずことにより、直径15μm
以下の酸化物超電導体粉末を得た。
Reference example 2 Y20! +2 [1g, BaCO369.9g and CuO43.3g were well mixed, held at 950°C for 5 hours, and then cooled to room temperature at a rate of 100°C/hour under an oxygen gas flow to form a single orthorhombic crystal. YBa2Cu3O
An oxide superconductor of 7-z was obtained. Crush this, 846
By passing through the Metsusoyu filter, the diameter is 15 μm.
The following oxide superconductor powder was obtained.

釡コL皿」− Y(NO3)3・6H20Log、 Ba(No3)2
13.6gおよびCI(NO3)2・38,018.9
gをそれぞれ蒸留水に溶解し、混合してから全体で3O
0mρの水溶液とした。これを直径0.8mmの注射針
を取付けた注射器に入れ、07モル/ρのに2CO3水
溶液3O0mρ中に噴射させて共沈物の微粉を得た。こ
の時、系のI)Hが7〜8となるように、KOH水溶液
を適宜加えた。得られた粉末を濾過後水で3回洗浄し、
アルコール洗浄した後、45℃で乾燥した。続いて85
0℃で2時間仮焼きを行ない、0.2μm以下の微粉末
を得た。
Kamako L plate” - Y(NO3)3・6H20Log, Ba(No3)2
13.6g and CI(NO3)2.38,018.9
Dissolve each g in distilled water, mix and make a total of 3O
It was made into an aqueous solution of 0 mρ. This was placed in a syringe equipped with a syringe needle with a diameter of 0.8 mm, and injected into a 2CO3 aqueous solution of 300 mρ at a concentration of 07 mol/ρ to obtain a fine coprecipitate powder. At this time, a KOH aqueous solution was appropriately added so that the I)H of the system was 7 to 8. The obtained powder was filtered and washed three times with water.
After washing with alcohol, it was dried at 45°C. followed by 85
Calcination was performed at 0° C. for 2 hours to obtain a fine powder of 0.2 μm or less.

実施例I 参考例1で調整した15μm以下の粉末logを蒸留水
15g中に分散させた。(これをA液とする)別に調整
した5%のポリビニルアルコール(以下PVAと記す)
(重合度1700、けん化度985モル%、Na分:酢
酸ソーダとして0.05wt%以下のPVA使用)水溶
液にイソブチン−無水マレイン酸共重合体のアンモニア
部分中和物の40%水溶液(粘度50cps(3O°C
)、pH= 7.85) 0.05gを加えよく混合し
た。
Example I The powder log of 15 μm or less prepared in Reference Example 1 was dispersed in 15 g of distilled water. (This is called liquid A) Separately prepared 5% polyvinyl alcohol (hereinafter referred to as PVA)
(Polymerization degree 1700, saponification degree 985 mol%, Na content: 0.05 wt% or less PVA used as sodium acetate) 40% aqueous solution of ammonia partially neutralized isobutyne-maleic anhydride copolymer (viscosity 50 cps ( 3O°C
), pH=7.85) was added and mixed well.

(これをB液とする)続いてB液中にA液を加えよく撹
拌しながらホットプレート上で全量を3Ogまで濃縮し
、原液とした。
(This will be referred to as Solution B.) Subsequently, Solution A was added to Solution B, and the total amount was concentrated to 3 Og on a hot plate while stirring well to obtain a stock solution.

次にメタノールを凝固液とし、湿式紡糸してフィラメン
ト化してボビンに巻取った。このフィラメントを40℃
の乾燥機で乾燥したのち、980℃の炉中に入れ5分保
持し、100°C/BHの速度で酸素ガス流下室温まで
冷却し、直径110μmの酸化物超電導繊維を得た。
Next, methanol was used as a coagulating liquid, wet spinning was performed to form a filament, and the filament was wound onto a bobbin. This filament was heated at 40℃
After drying in a dryer, the fibers were placed in a furnace at 980°C and held for 5 minutes, and cooled to room temperature under a flow of oxygen gas at a rate of 100°C/BH to obtain oxide superconducting fibers with a diameter of 110 μm.

この繊維の臨界温度(Tc)は82にであり、77Kに
おける臨界電流(Jc) 2.5A/cm’であった。
The critical temperature (Tc) of this fiber was 82 and the critical current (Jc) at 77K was 2.5 A/cm'.

また引張り強度が3.0MPaで、切断伸度が2.9%
であった。
In addition, the tensile strength is 3.0 MPa and the breaking elongation is 2.9%.
Met.

実施例2 参考例2で調整した酸化物超電導体粉末を用い、PVA
として重合度2400、けん化度98.5モル%、Na
分:酢酸ソーダとして0.05wt%以下のものを用い
る以外は実施例1と同様にして、酸化物超電導繊維を得
た。
Example 2 Using the oxide superconductor powder prepared in Reference Example 2, PVA
As polymerization degree 2400, saponification degree 98.5 mol%, Na
Minutes: An oxide superconducting fiber was obtained in the same manner as in Example 1 except that 0.05 wt% or less of sodium acetate was used.

この繊維のTcは8]Kであり、77KにおけるJcは
1、OA/cm2であった。また引張り強度が2.1M
Paで、切断伸度が 2.5%であった。
The Tc of this fiber was 8]K, and the Jc at 77K was 1, OA/cm2. Also, the tensile strength is 2.1M
Pa, and the elongation at break was 2.5%.

実施例3 参考例3の共沈法により調整した平均粒径0.2μmの
粉末1.0gを蒸留水15g中に分散させた。
Example 3 1.0 g of powder having an average particle size of 0.2 μm prepared by the coprecipitation method of Reference Example 3 was dispersed in 15 g of distilled water.

(これをC液とする)別に調整した5%のPVA(重合
度33O0、けん化度98.7モル%、Na分、酢酸ソ
ーダとして0.05%以下)水溶液10gに蒸留水5g
、イソブチン−無水マレイン酸−N−フェニルマレイミ
ド共重合体のアンモニア部分中和物の3O%水溶液(粘
度520cp(3O℃)、pH= 8’、2) OJO
gを加え混合した。(これをD液とする)続いてB液中
にC液を加えよく撹拌しながらホットプレート上で全量
を35gまで濃縮し原液とした。
(This will be referred to as liquid C.) Add 5 g of distilled water to 10 g of a separately prepared 5% PVA (polymerization degree 33O0, saponification degree 98.7 mol%, Na content, 0.05% or less as sodium acetate) aqueous solution.
, 30% aqueous solution of partially neutralized ammonia of isobutyne-maleic anhydride-N-phenylmaleimide copolymer (viscosity 520 cp (30 °C), pH = 8', 2) OJO
g and mixed. (This will be referred to as Solution D.) Subsequently, Solution C was added to Solution B and the total amount was concentrated to 35 g on a hot plate while stirring well to obtain a stock solution.

次に[メタノール/)1,0] −90/10 (重量
比)の混合液を凝固液とし、湿式紡糸してフィラメント
化してボビンに巻取った。このフィラメントを40℃の
乾燥機で乾燥したのち、980℃の炉中に入れ5分保持
し、100℃/叶の速度で酸素ガス流下室温まで冷却し
、直径70μmの酸化物超電導繊維を得た。
Next, a mixed liquid of [methanol/)1,0] -90/10 (weight ratio) was used as a coagulating liquid, and the filament was formed by wet spinning and wound onto a bobbin. This filament was dried in a dryer at 40°C, then placed in a 980°C oven for 5 minutes, and cooled to room temperature under a flow of oxygen gas at a rate of 100°C to obtain an oxide superconducting fiber with a diameter of 70 μm. .

この繊維のTcは83にであり、77KにおけるJcは
150A/cm’であった。また引張り強度が25MP
aで、切断伸度が2.5%であった。
The Tc of this fiber was 83 and the Jc at 77K was 150 A/cm'. Also, the tensile strength is 25MP
a, the elongation at break was 2.5%.

Claims (17)

【特許請求の範囲】[Claims] (1)酸化物超電導体あるいは加熱処理することによつ
て酸化物超電導体になり得る物質を水溶性ポリマーを含
む水溶液中に分散あるいは溶解して紡糸原液を調製し、
この紡糸原液を水と相溶性で水溶性ポリマーの非溶媒で
ある有機溶媒中で湿式紡糸して超電導繊維の前駆体繊維
とした後、加熱処理することを特徴とする酸化物超電導
繊維の製造方法。
(1) Prepare a spinning dope by dispersing or dissolving an oxide superconductor or a substance that can become an oxide superconductor through heat treatment in an aqueous solution containing a water-soluble polymer;
A method for producing oxide superconducting fibers, which comprises wet-spinning this spinning stock solution in an organic solvent that is compatible with water and is a non-solvent for water-soluble polymers to obtain precursor fibers for superconducting fibers, followed by heat treatment. .
(2)酸化物超電導体あるいは加熱処理することによつ
て酸化物超電導体になり得る物質がCuを含むものであ
る特許請求の範囲第1項記載の酸化物超電導繊維の製造
方法。
(2) The method for producing an oxide superconducting fiber according to claim 1, wherein the oxide superconductor or the substance that can become an oxide superconductor by heat treatment contains Cu.
(3)酸化物超電導体が一般式LnBa_2Cu_3O
_7_−_x(但し、LnはY、Lu、Yb、Tm、E
r、Ho、Dy、Gd、Eu、Smのすくなくとも1種
、xは0<x≦0.5を表わす。)で表わされるもので
ある特許請求の範囲第2項記載の酸化物超電導繊維の製
造方法。
(3) The oxide superconductor has the general formula LnBa_2Cu_3O
_7_-_x (However, Ln is Y, Lu, Yb, Tm, E
At least one of r, Ho, Dy, Gd, Eu, and Sm, and x represents 0<x≦0.5. ) The method for producing an oxide superconducting fiber according to claim 2, wherein the oxide superconducting fiber is represented by:
(4)酸化物超電導体がYBa_2Cu_7_−_x(
但し0<x≦0.5)である特許請求の範囲第3項記載
の酸化物超電導繊維の製造方法。
(4) The oxide superconductor is YBa_2Cu_7_-_x(
The method for producing an oxide superconducting fiber according to claim 3, wherein 0<x≦0.5.
(5)加熱処理することによつて酸化物超電導体になり
得る物質が、 (a)Lnの酸化物、硝酸塩または炭酸塩、(但しLn
はY、Lu、Yb、Tm、Er、Ho、Dy、Gd、E
u、Smのすくなくとも1種) (b)Baの酸化物、硝酸塩、炭酸塩、酢酸塩またはフ
ッ化物、 及び (c)Cuの酸化物、硝酸塩、炭酸塩、グルコン酸塩ま
たはフッ化物からなるものである特許 請求の範囲第2項記載の酸化物超電導繊維 の製造方法。
(5) Substances that can become oxide superconductors by heat treatment include (a) Ln oxide, nitrate or carbonate (however, Ln
is Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, E
(b) Ba oxide, nitrate, carbonate, acetate, or fluoride; and (c) Cu oxide, nitrate, carbonate, gluconate, or fluoride. A method for producing an oxide superconducting fiber according to claim 2.
(6)LnがYである特許請求の範囲第5項記載の酸化
物超電導繊維の製造方法。
(6) The method for producing an oxide superconducting fiber according to claim 5, wherein Ln is Y.
(7)水溶性ポリマーがポリビニルアルコール系重合体
である特許請求の範囲第1項記載の酸化物超電導繊維の
製造方法。
(7) The method for producing an oxide superconducting fiber according to claim 1, wherein the water-soluble polymer is a polyvinyl alcohol polymer.
(8)水と相溶性で水溶性ポリマーの非溶媒である有機
溶媒がメタノールである特許請求の範囲第1項記載の酸
化物超電導繊維の製造方法。
(8) The method for producing an oxide superconducting fiber according to claim 1, wherein the organic solvent that is compatible with water and is a non-solvent for the water-soluble polymer is methanol.
(9)酸化物超電導繊維の直径が実質的に1000μm
以下である特許請求の範囲第1項記載の酸化物超電導繊
維の製造方法。
(9) The diameter of the oxide superconducting fiber is substantially 1000 μm
A method for producing an oxide superconducting fiber according to claim 1, which is as follows.
(10)酸化物超電導繊維の直径が実質的に500μm
以下である特許請求の範囲第9項記載の酸化物超電導繊
維の製造方法。
(10) The diameter of the oxide superconducting fiber is substantially 500 μm
A method for producing an oxide superconducting fiber according to claim 9 as follows.
(11)酸化物超電導繊維の直径が実質的に200μm
以下である特許請求の範囲第10項記載の酸化物超電導
繊維の製造方法。
(11) The diameter of the oxide superconducting fiber is substantially 200 μm
A method for producing an oxide superconducting fiber according to claim 10, which is as follows.
(12)酸化物超電導繊維の直径が実質的に100μm
以下である特許請求の範囲第11項記載の酸化物超電導
繊維の製造方法。
(12) The diameter of the oxide superconducting fiber is substantially 100 μm
A method for producing an oxide superconducting fiber according to claim 11, which is as follows.
(13)酸化物超電導繊維の直径が実質的に10μm以
下である特許請求の範囲第12項記載の酸化物超電導繊
維の製造方法。
(13) The method for producing oxide superconducting fibers according to claim 12, wherein the oxide superconducting fibers have a diameter of substantially 10 μm or less.
(14)酸化物超電導体あるいは加熱処理することによ
つて酸化物超電導体になり得る物質が、粉末形状のもの
である特許請求の範囲第1項記載の酸化物超電導繊維の
製造方法。
(14) The method for producing an oxide superconducting fiber according to claim 1, wherein the oxide superconductor or the substance that can become an oxide superconductor by heat treatment is in powder form.
(15)粉末が実質的に平均粒径15μm以下のもので
ある特許請求の範囲第14項記載の酸化物超電導繊維の
製造方法。
(15) The method for producing an oxide superconducting fiber according to claim 14, wherein the powder has a substantially average particle size of 15 μm or less.
(16)粉末が実質的に平均粒径1μm以下のものであ
る特許請求の範囲第15項記載の酸化物超電導繊維の製
造方法。
(16) The method for producing an oxide superconducting fiber according to claim 15, wherein the powder has a substantially average particle size of 1 μm or less.
(17)粉末が実質的に平均粒径0.5μm以下のもの
である特許請求の範囲第16項記載の酸化物超電導繊維
の製造方法。
(17) The method for producing an oxide superconducting fiber according to claim 16, wherein the powder has a substantially average particle size of 0.5 μm or less.
JP62280673A 1987-11-05 1987-11-05 Manufacture of oxide superconducting fiber Pending JPH01122522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62280673A JPH01122522A (en) 1987-11-05 1987-11-05 Manufacture of oxide superconducting fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62280673A JPH01122522A (en) 1987-11-05 1987-11-05 Manufacture of oxide superconducting fiber

Publications (1)

Publication Number Publication Date
JPH01122522A true JPH01122522A (en) 1989-05-15

Family

ID=17628334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62280673A Pending JPH01122522A (en) 1987-11-05 1987-11-05 Manufacture of oxide superconducting fiber

Country Status (1)

Country Link
JP (1) JPH01122522A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023230A (en) * 1987-09-08 1991-06-11 Hercules Incorporated Oxide superconductors encased in pan-derived carbon matrix
JP2014080700A (en) * 2012-10-16 2014-05-08 Japan Vilene Co Ltd Method for manufacturing metal oxide fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023230A (en) * 1987-09-08 1991-06-11 Hercules Incorporated Oxide superconductors encased in pan-derived carbon matrix
JP2014080700A (en) * 2012-10-16 2014-05-08 Japan Vilene Co Ltd Method for manufacturing metal oxide fiber

Similar Documents

Publication Publication Date Title
US6395080B1 (en) Refractory filaments
CN101982581B (en) Method for preparing aluminum oxide nanofiber by electrostatic spinning
Cena et al. BSCCO superconductor micro/nanofibers produced by solution blow-spinning technique
JPH01122522A (en) Manufacture of oxide superconducting fiber
Cui et al. Fabrication of YBa2Cu3O7− δ superconducting nanofibres by electrospinning
JPH0214817A (en) Superconductive shaping material
JPH01176606A (en) Manufacture of oxide superconductive fiber
JPH01122521A (en) Manufacture of oxide superconducting fiber
JPH01176605A (en) Manufacture of oxide superconductive fiber
CN111575835B (en) ZnSnO3-C composite nanofiber and preparation method thereof
JP3731919B2 (en) Method for dry spinning fibers containing potentially superconducting materials
JPS63277554A (en) Oxide superconductive ceramic linear sintered material and production thereof
JP2593874B2 (en) Manufacturing method of superconducting ceramic wire
DE68916891T2 (en) YBa2 Cu3 O7 fibers.
Golden et al. The extrusion of continuous lengths of YBa2Cu3O7− x wire using hydroxypropyl methylcellulose
JPH04228423A (en) Solution for manufacture of superconducting filament and coat and its application
Goto et al. Critical current density of the Y-Ba-Cu-O superconducting filament produced by suspension spinning method
JPH0359114A (en) Production of superconducting fiber
JP3157032B2 (en) Manufacturing method of oxide superconducting wire
WO1997012406A1 (en) Method for producing and/or treating refractory filaments, especially superconductive filaments
Tomita et al. Solution spinning of high-Tc oxide superconducting filament: Part VIII The effect of degree of saponification of poly (vinyl alcohol) on the critical current density of YBa2Cu3Ox superconducting filament
JPH0489314A (en) Production of superconducting fiber
JPH0248459A (en) Production of compound oxide superconductor
JPH0265010A (en) Manufacture of superconductive wire rod
Goto et al. Preparation of long Y123 superconducting filament by solution spinning