JPH0359114A - Production of superconducting fiber - Google Patents

Production of superconducting fiber

Info

Publication number
JPH0359114A
JPH0359114A JP1194212A JP19421289A JPH0359114A JP H0359114 A JPH0359114 A JP H0359114A JP 1194212 A JP1194212 A JP 1194212A JP 19421289 A JP19421289 A JP 19421289A JP H0359114 A JPH0359114 A JP H0359114A
Authority
JP
Japan
Prior art keywords
spinning
fiber
superconducting
give
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1194212A
Other languages
Japanese (ja)
Inventor
Tomoichi Kawanaka
川中 朝一
Takaaki Sugishita
杉下 高昭
Shirou Suzuki
鈴木 師朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIBI KK
Original Assignee
NICHIBI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIBI KK filed Critical NICHIBI KK
Priority to JP1194212A priority Critical patent/JPH0359114A/en
Publication of JPH0359114A publication Critical patent/JPH0359114A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Fibers (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain uniform, dense superconducting fiber suitable for cable and wire, having high critical current density, excellent handleability by adding an organic acid and spinning auxiliary to acetates of specific metals to give an aqueous solution, concentrating, spinning and burning. CONSTITUTION:Acetates of Ln, X and Cu (Ln is Sc, Y, La, Ce, Pr, Nd, pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; X is Ba, Sr and Ca) are blended with an organic acid (preferably propionic acid) and a spinning auxiliary (preferably polyvinyl alcohol-based compound) to give an aqueous solution, which is concentrated and spun to give precursor fiber. The precursor fiber is burned (preferably in an air or in an inert gas atmosphere in a lowtemperature range at <= the decomposition temperature of the organic substance at 0.2-10 deg.C/minute rate of heating and then in an air or in an oxygen atmosphere in a temperature range at >= the decomposition temperature at 1-40 deg.C/minute rate of heating) to give superconducting fiber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超電導繊維の製造方法に関する。更に詳しくは
、繊維径が数100μm以下の細繊度で取扱性が良好で
、しかも優れた超電導性能特に高臨界電流密度を示す酸
化物系超電導繊維の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing superconducting fibers. More specifically, the present invention relates to a method for producing oxide-based superconducting fibers that have a fineness of fiber diameter of several hundred micrometers or less, are easy to handle, and exhibit excellent superconducting performance, particularly high critical current density.

[従来の技術及び発明が解決しようとする課題]従来、
酸化物系超電導繊維の製造には、銀または銅のパイプに
予め固相反応や共沈法で作製した酸化、物粉末を詰め込
み、これを加熱、引き伸ばして繊維状とし、次いで焼成
して超電導繊維を得る伸線法;酸化物粉末、分散剤、バ
インダーを混合し、懸濁状態で湿式紡糸して繊維化し、
次いで焼戒する懸濁紡糸法が用いられていた。しかし、
これらの方法はいずれも出発原料が酸化物粉末であるた
め繊維径が原料粉末の粒径に大きく依存し、微細粒子を
用いた場合でも繊維径100μm以下の細繊度糸は得ら
れ難く、また焼成後の緻密度が充分に上がらず強度的に
も脆く、高臨界電流密度が期待できないものであった。
[Prior art and problems to be solved by the invention] Conventionally,
To manufacture oxide-based superconducting fibers, silver or copper pipes are filled with oxidized powder prepared in advance by solid-phase reaction or coprecipitation, heated and stretched to form fibers, and then fired to form superconducting fibers. Wire drawing method to obtain wire; oxide powder, dispersant, and binder are mixed and wet-spun in a suspended state to form fibers.
Next, a suspension spinning method was used. but,
In all of these methods, the starting material is oxide powder, so the fiber diameter largely depends on the particle size of the raw material powder, and even when fine particles are used, it is difficult to obtain fine yarn with a fiber diameter of 100 μm or less, and The subsequent density did not increase sufficiently and the strength was brittle, so a high critical current density could not be expected.

また、高分子繊維状体にセラミックス元素を含む溶液を
含浸させた後焼成する形骸法;金属アルコキシド溶液の
加水分解によって高分子化して、繊維化した後焼成する
ゾル・ゲル法があるが、これらの方法はいずれも無機物
の含有率が低かったり、また繊維化前の原液の粘度、濃
度が充分に上がらず、また均質な長繊維を製造すること
ができないものであり、その結果、均質な緻密化繊維が
得られず伸線法、懸濁紡糸法と同様に低い臨界電流密度
しか示さず実用上問題があった。
In addition, there is a token method in which a polymeric fibrous material is impregnated with a solution containing ceramic elements and then fired; and a sol-gel method in which the polymer is made into a fiber by hydrolysis of a metal alkoxide solution, which is then fired after being made into fibers. In all of these methods, the content of inorganic substances is low, the viscosity and concentration of the raw solution before fiberization cannot be sufficiently increased, and it is impossible to produce homogeneous long fibers. This method has problems in practical use because it does not produce composite fibers and shows only a low critical current density, similar to the wire drawing method and suspension spinning method.

従って、本発明の目的は、まず均質で安定な繊維化を容
易とし、次いで焼成後の繊維も強靭性、均質性、取扱性
を良好とし、更に最も重要とされる臨界電流密度が大幅
に向上した高性能で細繊度の超電導繊維の製造方法を提
供することである。
Therefore, the purpose of the present invention is to first facilitate the formation of homogeneous and stable fibers, then improve the toughness, homogeneity, and handleability of the fibers after firing, and furthermore, significantly improve the critical current density, which is the most important factor. It is an object of the present invention to provide a method for producing superconducting fibers with high performance and fineness.

[課題を解決するための手段〕 本発明者らは、従来の超電導繊維が低い臨界電流密度し
か示さない原因が繊維構造の緻密化が充分でないことに
あると考え、構成結晶粒子の組成の均一性の向上が期待
される均一系原料に注目し、均一系を維持したまま高濃
度に濃縮でき、曳糸性を備え、従って均質で安定な細繊
度の前駆体繊維が得ることのできる原料組成、焼成につ
いて種々検討した結果、本発明に到達したものである。
[Means for Solving the Problems] The present inventors believe that the reason why conventional superconducting fibers exhibit only a low critical current density is that the fiber structure is not sufficiently densified. Focusing on homogeneous raw materials that are expected to improve properties, we developed a raw material composition that can be concentrated to a high concentration while maintaining a homogeneous system, has spinnability, and can therefore yield precursor fibers with uniform and stable fineness. As a result of various studies regarding firing, the present invention was arrived at.

すなわち、本発明は、LrrX−Cu系酸化物超電導体
の構成金属のLn、 XおよびCuの酢酸化物に有機酸
、曳糸剤としての紡糸助剤を添加して水溶液とし、該水
溶液を濃縮して均一系紡糸原液とし、該紡糸原液を紡糸
して前駆体繊維とし、該前駆体繊維を焼成することを特
徴とする超電導繊維の製造方法 c式中、LnはSc、 Y、 La、 Ce、 Pr、
 Nd、 Pm、 Sm、 Eu、 Gd、 Tb。
That is, the present invention involves adding an organic acid and a spinning aid as a spinning agent to acetates of Ln, X, and Cu, which are constituent metals of an LrrX-Cu-based oxide superconductor, to form an aqueous solution, and concentrating the aqueous solution. A method for producing superconducting fibers, characterized in that: a homogeneous spinning dope is obtained, the spinning dope is spun into a precursor fiber, and the precursor fiber is fired; Pr,
Nd, Pm, Sm, Eu, Gd, Tb.

Dy、 Ho、 Er、 Tm、 YbおよびLuから
選ばれる少なくとも1種の元素であり、XはBa、Sr
およびCaから選ばれる少なくとも1種の元素である] である。
At least one element selected from Dy, Ho, Er, Tm, Yb and Lu, and X is Ba, Sr
and at least one element selected from Ca].

以下本発明をより詳細に説明する。The present invention will be explained in more detail below.

均一系原液を出発として溶液状で紡糸するセラミックス
系繊維の製造方法は一般に公知であるが、超電導組成物
の場合、原液が多成分系となるため紡糸性能面に問題が
あり、均質で安定な長繊維が得られ難い、従って、臨界
電流密度も評価できない程に低いものが多く、高いもの
でもようや< l OOA/cm”  (77K)に達
した程度である。
A method for manufacturing ceramic fibers that starts from a homogeneous stock solution and spins it in solution is generally known, but in the case of superconducting compositions, the stock solution is a multi-component system, which poses problems in terms of spinning performance. It is difficult to obtain long fibers, and therefore, the critical current density is often so low that it cannot be evaluated, and the critical current density is only as high as < 1 OOA/cm'' (77K).

本発明においては、溶液の組成、添加剤を特定すること
により、溶液の濃縮性能が著しく向上し、均一かつ安定
で曳糸性の優れた濃厚な紡糸原液が調製でき、また有機
物組成の通常の合成繊維を製造する紡糸方法により容易
に繊維化でき、更にこれを焼成することにより現在の水
準を大幅に上回る均質性と細繊度の焼成糸が製造され、
その結果として10” A/Cm”  (77K)以上
の高臨界電流密度が期待できる。
In the present invention, by specifying the solution composition and additives, the concentration performance of the solution is significantly improved, and a thick spinning stock solution that is uniform, stable, and has excellent spinnability can be prepared. It can be easily made into fibers using the spinning method used to produce synthetic fibers, and by firing it, a fired yarn with homogeneity and fineness that far exceeds current standards can be produced.
As a result, a high critical current density of 10"A/Cm" (77K) or more can be expected.

Ln−X−Cu系酸化物超電導体を構成する金属元素の
うち、Lnは一般に言う希土類元素のsc、 y、 L
a。
Among the metal elements constituting the Ln-X-Cu-based oxide superconductor, Ln is generally a rare earth element sc, y, L
a.

Ce、 Pr、Nd、Pa、Sm、 Eu、Gd、Tb
、Dy、Ho、Er、Tm、Yb、 Luであり、Xは
アルカリ土類金属のBa、 Sr、 Caであり、Ln
、Xは通常それぞれ1種の元素であるが、超電導特性向
上の目的で2種以上の元素を併用してもさしつかえない
Ce, Pr, Nd, Pa, Sm, Eu, Gd, Tb
, Dy, Ho, Er, Tm, Yb, Lu, X is alkaline earth metal Ba, Sr, Ca, Ln
,

また、焼成体組成中の非金属元素は主に酸素であるが、
超電導性能向上の目的でフッ素等の元素を均一系が維持
される範囲で添加してもさしつかえない。
In addition, the nonmetallic element in the composition of the fired body is mainly oxygen, but
For the purpose of improving superconducting performance, elements such as fluorine may be added as long as a homogeneous system is maintained.

これら金j[Ln、 X、 Cuの化合物形態は酢酸化
物である。水溶性という点のみを考えれば、塩化物、硝
酸化物等でも溶液を調製できるが、この場合、紡糸原液
にする濃縮過程で他の添加物との相溶性が低下し結晶が
析出したり、相分離を起こし不都合である。
The compound form of these gold j[Ln, X, Cu is acetate. Considering only water solubility, solutions can be prepared with chlorides, nitrates, etc., but in this case, the compatibility with other additives decreases during the concentration process to make the spinning stock solution, and crystals may precipitate or compatibility may occur. This is inconvenient as it causes separation.

有機酸を添加することにより、第1には相溶性が改善さ
れ、その結果、均一溶液を紡糸原液にする濃縮性能が向
上する。
By adding an organic acid, firstly, the compatibility is improved, and as a result, the concentration performance for turning a homogeneous solution into a spinning dope is improved.

第2には金属−曳糸剤としての紡糸助剤(例えばポリビ
ニルアルコール(以下PVAと略記))間のキレート化
を防止できる。紡糸助剤として使用する例えばPVAは
、組成金属特にCuイオンとキレート化を起こし易く、
このキレート化により相分離が発生したり、紡糸助剤と
しての曳糸性が消失する。従って、有機酸添加により溶
液のpHをキレート化を防止できる範囲にまで低下させ
なければならない、ここで、溶液のpHは5以下が好ま
しく、より好ましくは4.5〜3.0である。
Second, it is possible to prevent chelation between metal and a spinning aid (for example, polyvinyl alcohol (hereinafter abbreviated as PVA)) as a threading agent. For example, PVA used as a spinning aid tends to chelate with the constituent metals, especially Cu ions.
This chelation causes phase separation and loss of spinnability as a spinning aid. Therefore, the pH of the solution must be lowered by addition of an organic acid to a range that can prevent chelation. Here, the pH of the solution is preferably 5 or less, more preferably 4.5 to 3.0.

有機酸としては、水溶性であっても比較的高分子の化合
物では相溶性の低下を招き、相分離が発生し易くなるの
で低分子化合物が好ましい。
As the organic acid, a low-molecular compound is preferable because even if it is water-soluble, a relatively high-molecular compound causes a decrease in compatibility and tends to cause phase separation.

具体例として乳酸、プロピオン酸、酢酸が挙げられ、そ
のうち濃縮性能、取扱性の点からプロピオン酸が好まし
い。
Specific examples include lactic acid, propionic acid, and acetic acid, among which propionic acid is preferred from the viewpoint of concentration performance and ease of handling.

なお、pH調整の目的のみであれば、有機酸以外の塩酸
、硝酸、硫酸等の無機酸も使用できるはずであるが、実
際には無機酸を使用すると相溶性が不充分となり均一に
濃縮できない。
Note that inorganic acids such as hydrochloric acid, nitric acid, and sulfuric acid other than organic acids can also be used if only for the purpose of pH adjustment, but in reality, if inorganic acids are used, the compatibility will be insufficient and it will not be possible to concentrate uniformly. .

また、キレート化を防止できる紡糸助剤としては、濃縮
性、曳糸性、取扱性等から判断してPvAが最適である
。ポリエチレンオキサイド、ポリアクリル酸、ポリビニ
ルピロリドン等他の水溶性高分子を使用すると酢酸化物
に塩化物、硝酸化物を含めたいずれの金属化合物に対し
ても相溶性不足から濃縮限界が大きく低下したり、また
、たとえ濃縮が可能であっても紡糸原液としての曳糸性
、取扱性が大幅に劣るものとなる。
In addition, as a spinning aid that can prevent chelation, PvA is most suitable, judging from its thickening properties, spinnability, handling properties, etc. If other water-soluble polymers such as polyethylene oxide, polyacrylic acid, or polyvinylpyrrolidone are used, the concentration limit will be significantly lowered due to lack of compatibility with any metal compound, including acetate, chloride, and nitrate. Furthermore, even if it is possible to concentrate, the spinnability and handling properties of the spinning stock solution will be significantly inferior.

PVAの平均重合度、ケン化度については特に制限され
ないが水溶性より平均重合度5000以下、ケン化度7
0〜10010Os%が好ましく、より好ましくは曳糸
性、取扱性より平均重合度4000〜1000.ケン化
度80〜95mo1%である。
The average polymerization degree and saponification degree of PVA are not particularly limited, but due to water solubility, the average polymerization degree is 5000 or less, and the saponification degree is 7.
The average degree of polymerization is preferably 0 to 10,010 Os%, more preferably 4,000 to 1,000 in terms of spinnability and handling properties. The degree of saponification is 80 to 95 mo1%.

また水溶性であれば他の変性PVAも使用できる。Other modified PVAs can also be used as long as they are water-soluble.

一方、これら有機酸および紡糸助剤の添加量については
、全酢酸化物に対して、通常、有機酸1O10N150
%、紡糸助剤15wt%以上において取扱性良好な前駆
体繊維を得ることができるが、好ましくは有機酸30〜
100wt%、紡糸助剤20wt%以上である。これら
添加物が多くなると、前駆体繊維中に占める無機物の含
有率が小さくなるため、後の工程の焼成時に緻密化され
難くなる傾向があり超電導性能を高めるためには、極力
低添加量とすることが望ましい。
On the other hand, the amount of these organic acids and spinning aids to be added is usually 1O10N150 per total acetate.
%, and a spinning aid of 15 wt % or more can yield a precursor fiber with good handling properties, but preferably the organic acid is 30 to 30 wt %.
100 wt%, and the spinning aid is 20 wt% or more. As the amount of these additives increases, the content of inorganic substances in the precursor fiber decreases, which tends to make it difficult to densify during the subsequent firing process.In order to improve superconducting performance, the amount added should be as low as possible. This is desirable.

これら添加剤としての有機酸、紡糸助剤は共存してはじ
めて目的が達成されるもので、どちらが欠けても均一で
安定で濃厚な紡糸原液は得られない。
The purpose of the organic acid and the spinning aid as additives is achieved only when they coexist, and if either one is missing, a uniform, stable, and concentrated spinning stock solution cannot be obtained.

金属酢酸化物と有機酸のみの系では、濃縮過程または濃
縮後に金属塩の結晶が析出し易く、極めて不安定なもの
となり、紡糸原液としての曳糸性も発現しない。
In a system containing only a metal acetate and an organic acid, metal salt crystals tend to precipitate during or after concentration, resulting in an extremely unstable system, and the system does not exhibit spinnability as a spinning stock solution.

また、金属酢酸化物と紡糸助剤例えばPVAのみの系で
は、溶液調製と同時にキレート化が起き、相分離してし
まう。
Furthermore, in a system containing only a metal acetate and a spinning aid such as PVA, chelation occurs simultaneously with solution preparation, leading to phase separation.

この結果、有機酸、紡糸助剤の適切な組合せによって、
従来高濃縮が不可能であったものが、固形分濃度60〜
70%まで濃縮しても安定な紡糸原液とすることができ
るようになる。
As a result, by an appropriate combination of organic acids and spinning aids,
Although it was previously impossible to achieve high concentration, solid content concentration of 60~
Even if concentrated to 70%, a stable spinning dope can be obtained.

本発明においては紡糸法として通常の有機物合成繊維の
紡糸法である乾式紡糸法、湿式紡糸法、乾湿式紡糸法の
いずれも適用可能である。
In the present invention, any of the conventional spinning methods for organic synthetic fibers, such as dry spinning, wet spinning, and dry-wet spinning, can be used as the spinning method.

しかし、湿式紡糸の場合、凝固浴組成によっては金属酢
酸化物の溶出がみられることもあるので、その点、乾式
紡糸の方が有利である。
However, in the case of wet spinning, elution of metal acetates may be observed depending on the coagulation bath composition, so dry spinning is more advantageous in this respect.

本発明が均一系原液を使用していることから、いずれの
紡糸法においても細繊度化が可能であり、一般に前駆体
繊維径としてi ooo〜数μmものが得られ、焼成後
では数100〜ILLm程度にまでなる。
Since the present invention uses a homogeneous stock solution, it is possible to make the fiber finer with any spinning method, and generally the precursor fiber diameter can be obtained from Iooo to several μm, and after firing, it is several hundred to several μm. It becomes about ILLm.

紡糸した前駆体繊維は、次に焼成されて目的とする超電
導繊維になる。
The spun precursor fibers are then fired to become the desired superconducting fibers.

焼成は、有機物が分解する温度以下の低温領域では分解
速度を比較的遅く、分解後の高温領域では逆に分解速度
を速めた条件で行なう方が良好に緻密化されるので好ま
しい。
It is preferable to perform the calcination under conditions in which the decomposition rate is relatively slow in a low temperature range below the temperature at which the organic substance decomposes, and conversely the decomposition rate is accelerated in a high temperature range after the decomposition, since better densification can be achieved.

具体的には、例えば300〜500℃を境にして、それ
以下の温度では空気または不活性ガス雰囲気中で昇温速
度0.2〜b より高い温度では空気または酸素雰囲気にて昇温速度1
〜40℃/winで加熱する。
Specifically, for example, below 300 to 500°C, the temperature increase rate is 0.2 to b in air or an inert gas atmosphere, and at higher temperatures, the temperature increase rate is 1 in air or oxygen atmosphere.
Heat at ~40°C/win.

昇温速度にかなり幅があって、低温領域、高温領域で重
複がみられるのは前駆体繊維の径によって条件が大きく
変化するからであり、繊維径が大きくなるほどその傾向
は強まるので前駆体繊維の径によって適宜条件を選択す
ればよい。
The reason why there is a considerable range in heating rate and overlap between low temperature and high temperature regions is that the conditions change greatly depending on the diameter of the precursor fiber, and this tendency becomes stronger as the fiber diameter increases. The conditions may be selected appropriately depending on the diameter of the .

有機物の分解条件を、低温領域で速くしたり、高温領域
で遅くしたりして、上記条件から外れると、焼成後の繊
維は空洞化、多孔質化、亀裂化、変形等の現象が現われ
、緻密性が著しく低下し、超電導性能としての高臨界電
流密度が得られ難くなる。
If the decomposition conditions of organic matter are deviated from the above conditions by increasing the decomposition conditions in a low temperature range or slowing it down in a high temperature range, phenomena such as hollowing, porosity, cracking, deformation, etc. will appear in the fibers after firing. The compactness decreases significantly, making it difficult to obtain a high critical current density as a superconducting performance.

焼成温度としては900℃以上が好ましく、また降温速
度も超電導特性を高めるためには注意を要するところで
一般に酸素の取り込みが重要であることから、降温速度
はできる限り遅い方が好ましく、組成によってはアニー
リングも必要となる。
The firing temperature is preferably 900°C or higher, and the temperature cooling rate also requires attention in order to improve the superconducting properties.In general, it is important to incorporate oxygen, so it is preferable that the temperature cooling rate be as slow as possible. is also required.

[実施例] 以下、本発明について実施例を示してさらに説明を加え
る。
[Example] Hereinafter, the present invention will be further explained by showing examples.

実施例1 平均重合度1700.ケン化度90.5 mat%の部
分ケン化PVAをあらかじめ10%水溶液に調製してお
き、該水溶液360gにプロピオン酸40g、水140
gを添加して有機酸−PVA水溶液を作り、この溶液に
Y (CHsCOO) 14HJ、Ba(CHsCOO
)i 、Cu(CHsCOO)1HJをY:Ba:Cu
の原子比が1:2:3になるようにして計86gを投入
し、50℃にて溶解させ、pH4,2の均一含金属水溶
液を調製した。引き続き該水溶液をロータリーエバポレ
ーターにて溶液粘度が500 poise(80℃)近
くになるまで濃縮し、小型スピンタンクに取り出して加
圧密閉系にて80℃、1夜間放置し脱泡を行って紡糸原
液とした。
Example 1 Average degree of polymerization 1700. Partially saponified PVA with a saponification degree of 90.5 mat% was prepared in advance as a 10% aqueous solution, and 40 g of propionic acid and 140 g of water were added to 360 g of the aqueous solution.
g to make an organic acid-PVA aqueous solution, and to this solution Y (CHsCOO) 14HJ, Ba (CHsCOO
)i, Cu(CHsCOO)1HJ to Y:Ba:Cu
A total of 86 g was added so that the atomic ratio was 1:2:3 and dissolved at 50°C to prepare a homogeneous metal-containing aqueous solution with a pH of 4.2. Subsequently, the aqueous solution was concentrated using a rotary evaporator until the solution viscosity reached approximately 500 poise (80°C), taken out into a small spin tank, and left overnight at 80°C in a pressurized closed system to degas the spinning solution. And so.

次いで該紡糸原液を用いて口径0.1mmの口金にて常
法の乾式紡糸を行い、長径53μm、短径33μmのド
ックボーン形の断面を持つ前駆体繊維を得た。
Next, dry spinning was performed using the spinning dope using a conventional method using a spinneret with a diameter of 0.1 mm to obtain a precursor fiber having a dogbone-shaped cross section with a major axis of 53 μm and a minor axis of 33 μm.

この前駆体繊維を窒素雰囲気下、室温から400℃まで
昇温速度3℃/win 、 400〜930℃までは酸
素雰囲気下、昇温速度10℃/minで昇温し、同酸素
雰囲気下930℃にて5時間保持し雰囲気を変えないで
室温まで1.7℃/minの速度で降温させたところ長
径24μm、短径15μmのドツグボーン形の断面を持
つ強靭な超電導繊維が得られた。
This precursor fiber was heated under a nitrogen atmosphere from room temperature to 400°C at a heating rate of 3°C/win, and from 400 to 930°C under an oxygen atmosphere at a heating rate of 10°C/min, and then heated to 930°C under the same oxygen atmosphere. When the fibers were held for 5 hours at room temperature and cooled down to room temperature at a rate of 1.7° C./min without changing the atmosphere, a strong superconducting fiber having a dogbone-shaped cross section with a major axis of 24 μm and a minor axis of 15 μm was obtained.

この超電導繊維の臨界温度(off 5et)は89に
でさらに77Kにおける臨界電流密度1300A/cm
”を示した。
The critical temperature (off 5et) of this superconducting fiber is 89, and the critical current density at 77K is 1300 A/cm.
"showed that.

実施例2 実施例1にて調製した紡糸原液を用いて、口径0.5m
mの口金にて常温の乾式紡糸を行い、長径305μm、
短径120umのドツグボーン形の断面を持つ前駆体繊
維を得た。
Example 2 Using the spinning dope prepared in Example 1, a diameter of 0.5 m was obtained.
Dry spinning was carried out at room temperature using a spindle of m, with a long diameter of 305 μm,
A precursor fiber having a dogbone-shaped cross section with a short diameter of 120 um was obtained.

本繊維を窒素雰囲気下、室温から400℃まで昇温速度
1 ”C/win 、 400〜930℃までは酸素雰
囲気下、昇温速度20℃/winで昇温し、同酸素雰囲
気下930℃にて8時間保持した後、そのまま雰囲気を
変えないで室温まで1.7℃/minの速度で降温させ
、途中500℃にて5時間保持してアニーリングを行っ
た。
The fiber was heated under a nitrogen atmosphere from room temperature to 400°C at a heating rate of 1"C/win, and from 400 to 930°C under an oxygen atmosphere at a heating rate of 20°C/win, and then heated to 930°C under the same oxygen atmosphere. After holding at 500° C. for 8 hours, the temperature was lowered to room temperature at a rate of 1.7° C./min without changing the atmosphere, and annealing was performed by holding at 500° C. for 5 hours.

最終的に得られた繊維は長径152μm、短径48μm
のドツグボーン形の断面を持つ強靭な超電導繊維であっ
た。
The finally obtained fiber has a long axis of 152 μm and a short axis of 48 μm.
It was a strong superconducting fiber with a dogbone-shaped cross section.

この超電導繊維の臨界温度(off 5et)は90に
でさらに77Kにおける臨界電流密度は1860A/c
m”を示した。
The critical temperature (off 5et) of this superconducting fiber is 90, and the critical current density at 77K is 1860A/c.
m” was shown.

[発明の効果] 本発明によって得られた超電導繊維は均質でより緻密化
された長繊維となるので、高臨界電流密度が期待され、
取扱性も優れていることがら、用途もマグネットコイル
を利用した大型の発電輸送、医薬の各装置にあるいは送
電、通信のごときエネルギーロスが問題となるケーブル
線用に応用可能で、さらに細線化可能なことより、直流
分野から交流分野への転換がはかられ、用途も極めて大
きく拡大され、工業的利用価値は甚大である。
[Effects of the Invention] Since the superconducting fiber obtained by the present invention becomes a homogeneous and more dense long fiber, a high critical current density is expected.
Because it is easy to handle, it can be applied to large-scale power generation transportation using magnetic coils, medical devices, and cable lines where energy loss is a problem such as power transmission and communication, and can be made even thinner. As a result, the field of direct current has shifted to the field of alternating current, the range of applications has greatly expanded, and the value of industrial use is enormous.

Claims (1)

【特許請求の範囲】 1、Ln−X−Cu系酸化物超電導体の構成金属のLn
、XおよびCuの酢酸化物に有機酸、曳糸剤としての紡
糸助剤を添加して水溶液とし、該水溶液を濃縮して均一
系紡糸原液とし、該紡糸原液を紡糸して前駆体繊維とし
、該前駆体繊維を焼成することを特徴とする超電導繊維
の製造方法、 [式中、LnはSc、Y、La、Ce、Pr、Nd、P
m、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm
、YbおよびLuから選ばれる少なくとも1種の元素で
あり、XはBa、SrおよびCaから選ばれる少なくと
も1種の元素である]。 2、有機酸が乳酸、プロピオン酸または酢酸である請求
項1に記載の超電導繊維の製造方法。 3、紡糸助剤がポリビニルアルコール系化合物である請
求項1に記載の超電導繊維の製造方法。 4、紡糸原液のpHが5以下である請求項1に記載の超
電導繊維の製造方法。 5、前駆体繊維の焼成を、有機物の分解する温度以下の
低温領域では空気または不活性ガス雰囲気で昇温速度0
.2〜10℃/min、該分解温度より高い高温領域で
は空気または酸素雰囲気で昇温速度1〜40℃/min
で行なう請求項1に記載の超電導繊維の製造方法。
[Claims] 1. Ln as a constituent metal of the Ln-X-Cu-based oxide superconductor
, an organic acid and a spinning aid as a spinning agent are added to the acetate of A method for producing a superconducting fiber, comprising firing the precursor fiber, [wherein Ln is Sc, Y, La, Ce, Pr, Nd, P
m, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm
, Yb, and Lu, and X is at least one element selected from Ba, Sr, and Ca]. 2. The method for producing superconducting fibers according to claim 1, wherein the organic acid is lactic acid, propionic acid or acetic acid. 3. The method for producing superconducting fibers according to claim 1, wherein the spinning aid is a polyvinyl alcohol compound. 4. The method for producing superconducting fibers according to claim 1, wherein the spinning dope has a pH of 5 or less. 5. In the low temperature range below the decomposition temperature of organic matter, the firing rate of the precursor fiber is 0 in air or inert gas atmosphere.
.. 2 to 10°C/min, and in a high temperature region higher than the decomposition temperature, the heating rate is 1 to 40°C/min in an air or oxygen atmosphere.
The method for producing a superconducting fiber according to claim 1, which is carried out by:
JP1194212A 1989-07-28 1989-07-28 Production of superconducting fiber Pending JPH0359114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1194212A JPH0359114A (en) 1989-07-28 1989-07-28 Production of superconducting fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1194212A JPH0359114A (en) 1989-07-28 1989-07-28 Production of superconducting fiber

Publications (1)

Publication Number Publication Date
JPH0359114A true JPH0359114A (en) 1991-03-14

Family

ID=16320817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1194212A Pending JPH0359114A (en) 1989-07-28 1989-07-28 Production of superconducting fiber

Country Status (1)

Country Link
JP (1) JPH0359114A (en)

Similar Documents

Publication Publication Date Title
US5827797A (en) Method for producing refractory filaments
CN107266081B (en) Preparation method of alumina-zirconia composite ceramic continuous fiber
CN101982581B (en) Method for preparing aluminum oxide nanofiber by electrostatic spinning
US5227365A (en) Fabrication of superconducting metal-oxide textiles by heating impregnated polymeric material in a weakly oxidizing atmosphere
CN104005115A (en) Method for preparing aluminum oxide ceramic fibers
CN113089132B (en) Zirconate fiber and preparation method thereof
EP0363438A4 (en) Improved process for making 90 k superconductors
CN101516803B (en) Polycrystalline corundum fibers and method for the production thereof
US4988671A (en) Process for producing a superconductive complex metal oxide
JPH0359114A (en) Production of superconducting fiber
JPH0214817A (en) Superconductive shaping material
JPH0489314A (en) Production of superconducting fiber
JPH04192226A (en) Manufacture of superconductive fiber of oxide
US4978515A (en) Perovskite fibers from bimetal complexes
Catania et al. Superconducting YBa2Cu3O7− x fibers from aqueous acetate/PAA and nitrate/PAA gels
JPH02259115A (en) Preparation of high density superconductive fiber
JPH04228423A (en) Solution for manufacture of superconducting filament and coat and its application
JPH09241918A (en) Fibrous composition containing composite metallic titanate fiber and its production
JPH01122522A (en) Manufacture of oxide superconducting fiber
JPH01122511A (en) Oxide ceramic superconducting fiber
JPH01122512A (en) Oxide superconducting fiber
WO1997012406A1 (en) Method for producing and/or treating refractory filaments, especially superconductive filaments
JP3157032B2 (en) Manufacturing method of oxide superconducting wire
JPH0265010A (en) Manufacture of superconductive wire rod
JPH027306A (en) Superconductive wire