JPH09241918A - Fibrous composition containing composite metallic titanate fiber and its production - Google Patents

Fibrous composition containing composite metallic titanate fiber and its production

Info

Publication number
JPH09241918A
JPH09241918A JP5209196A JP5209196A JPH09241918A JP H09241918 A JPH09241918 A JP H09241918A JP 5209196 A JP5209196 A JP 5209196A JP 5209196 A JP5209196 A JP 5209196A JP H09241918 A JPH09241918 A JP H09241918A
Authority
JP
Japan
Prior art keywords
fiber
composite metal
metal titanate
organic polymer
fibrous composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5209196A
Other languages
Japanese (ja)
Inventor
Satoru Ueno
覚 上野
Takashi Hiragushi
敬資 平櫛
Minoru Yasuki
稔 安喜
Masayoshi Suzue
正義 鈴江
Yoshinari Miura
嘉也 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKAYAMA CERAMICS GIJUTSU SHINK
Otsuka Chemical Co Ltd
Okayama Ceramics Research Foundation
Original Assignee
OKAYAMA CERAMICS GIJUTSU SHINK
Otsuka Chemical Co Ltd
Okayama Ceramics Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKAYAMA CERAMICS GIJUTSU SHINK, Otsuka Chemical Co Ltd, Okayama Ceramics Research Foundation filed Critical OKAYAMA CERAMICS GIJUTSU SHINK
Priority to JP5209196A priority Critical patent/JPH09241918A/en
Publication of JPH09241918A publication Critical patent/JPH09241918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce the subject composition, useful as a reinforcing material for a structural material, especially a dielectric continuous filament, etc., by dispersing a composite metallic titanate having toughness in a specific state in an organic polymer. SOLUTION: This organic fibrous composition comprises a composite metallic titanate fiber, oriented in the fiber axial direction and dispersed in an organic polymer. The fibrous composition is obtained by orienting and supporting the composite metallic titanate fiber in the organic polymer having spinnability in an organic polymer fiber by a method for adding and mixing the composite metallic titanate fiber in the organic polymer having the spinnability and forming the metallic titanate fiber into a continuous filament, etc., The resultant composition is useful as a part of electronic apparatuses such as a dielectric cloth for substrates, etc., from the viewpoint of reinforcing properties and dielectric characteristics thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複合チタン酸金属
塩繊維を含有する繊維状組成物及びその製造方法に関す
るもので、チタン酸金属塩繊維の持つ靭性特性や電気的
特性を利用した長繊維、主として構造材料への補強材、
特に誘電性長繊維を提供することを目的とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fibrous composition containing composite metal titanate fibers and a method for producing the same, which is a long fiber utilizing the toughness and electrical characteristics of metal titanate fibers. , Mainly to structural materials,
In particular, it aims to provide dielectric long fibers.

【0002】[0002]

【従来の技術】一般に、繊維が繊維軸方向に配向してい
る無機系繊維は、構造材料には靭性向上のための補強材
として、またチタン酸バリウムをはじめとする強誘電性
酸化物は、コンデンサー、共振器、基板等電子機器への
応用がなされている。複合チタン酸金属塩繊維は、例え
ば本出願人の一人が開発した特開平6-279025号に記載さ
れた方法で製造できる。
2. Description of the Related Art In general, inorganic fibers in which fibers are oriented in the fiber axis direction are used as structural materials for reinforcing materials for improving toughness, and barium titanate and other ferroelectric oxides are It is applied to electronic devices such as capacitors, resonators, and substrates. The composite metal titanate fiber can be produced, for example, by the method described in JP-A-6-279025 developed by one of the applicants of the present invention.

【0003】無機系繊維の成形法としては、ガラス繊維
やアルミナシリカ繊維などにみられるような溶融紡糸に
よる方法がある。また、溶融紡糸ほど高温を要しないで
無機繊維を得る方法として、いわゆるゾル−ゲル法があ
り、有機アルミニウム化合物の水和ゾルに曳糸性を持た
せるために水溶性高分子や水ガラスなど添加して紡糸し
たものを焼結する方法がある。またチタン酸バリウム等
の誘電性長繊維についてはゾル−ゲル法による製造方法
等種々検討が加えられ、例えば、アルギン酸ナトリウム
を出発原料にしたアルギン酸繊維を塩化バリウム、三塩
化チタン溶液に浸した後、加熱焼成する方法なども学術
文献にみられる。しかし、いずれの場合もその繊維長は
短く、かつ、繊維の配向性も低いものであって、およそ
フィラメント(長繊維)とは程遠いものである。
As a method for molding an inorganic fiber, there is a method by melt spinning as found in glass fiber, alumina silica fiber and the like. A so-called sol-gel method is known as a method of obtaining inorganic fibers without requiring high temperatures as in melt spinning. In order to impart spinnability to a hydrated sol of an organoaluminum compound, a water-soluble polymer or water glass is added. And sintering the spun. Further, for dielectric long fibers such as barium titanate, various studies such as a production method by a sol-gel method have been added.For example, after soaking alginate fibers starting from sodium alginate in barium chloride and titanium trichloride solution, The method of heating and baking is also found in academic literature. However, in each case, the fiber length is short, the fiber orientation is low, and it is far from the filament (long fiber).

【0004】[0004]

【発明が解決しようとする課題】靭性が高く補強性に優
れ、かつ、誘電特性を有したフィラメントが製造できれ
ば新しい電子材料としての応用が考えられる。そのフィ
ラメントの形態として、有機高分子の中に複合チタン酸
金属塩繊維が配向分散していてもよいし、有機高分子が
炭化した炭素繊維中に配向分散してもよい。また、複合
チタン酸金属塩繊維のみが繊維の配向を乱すことなく焼
結したフィラメントとなってもよい。しかし、このよう
な複合チタン酸金属塩繊維からなるフィラメントは、い
まだ得られていないように思われる。本発明は複合チタ
ン酸金属塩繊維のフィラメント、あるいはこれから得ら
れる比較的繊維長の大なステープルを得ることと、その
製造方法を確立する目的で検討を加えたものである。
If a filament having high toughness, excellent reinforcing property and dielectric properties can be produced, it can be applied as a new electronic material. As the form of the filament, the composite metal titanate fiber may be oriented and dispersed in the organic polymer, or may be oriented and dispersed in the carbon fiber in which the organic polymer is carbonized. Further, only the composite metal titanate fiber may be a sintered filament without disturbing the orientation of the fiber. However, it seems that filaments composed of such composite metal titanate fibers have not been obtained yet. The present invention has been made for the purpose of obtaining a filament of a composite metal titanate fiber or a staple having a relatively large fiber length obtained from the filament and establishing a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段】本発明で得られる複合チ
タン酸金属塩繊維を含有する繊維状組成物(以下、単に
繊維状組成物という)は、複合チタン酸金属塩繊維が繊
維軸方向に配向して有機ポリマー中に分散されてなる。
そして、この製造方法は複合チタン酸金属塩繊維を曳糸
性を有する有機ポリマー中に添加混合し、溶融紡糸ある
いは乾式または湿式紡糸等により原料繊維より長繊維化
することを特徴とする。得られた繊維状組成物は有機ポ
リマー繊維中に配向担持された有機繊維状組成物であ
る。
A fibrous composition containing a composite metal titanate fiber obtained in the present invention (hereinafter, simply referred to as a fibrous composition) has a composite metal titanate fiber in the fiber axial direction. It is oriented and dispersed in an organic polymer.
This production method is characterized in that the composite metal salt of titanate is added to and mixed with an organic polymer having spinnability, and the fibers are made longer than the raw fibers by melt spinning or dry or wet spinning. The obtained fibrous composition is an organic fibrous composition that is oriented and supported in organic polymer fibers.

【0006】また、本発明により複合チタン酸金属塩繊
維の無機繊維状組成物も得られる。その内容は、複合チ
タン酸金属塩繊維が繊維軸方向に配向して焼結されてな
るものであって、製造手段としては、複合チタン酸金属
塩繊維と無機焼結助剤とを曳糸性を有する有機ポリマー
中に添加混合し、溶融あるいは乾式または湿式紡糸等に
より長繊維化した後、複合チタン酸金属塩繊維の配向が
消失しない程度の温度で焼成することを特徴とする。
The present invention also provides an inorganic fibrous composition of composite metal titanate fibers. The content is that the composite metal titanate fiber is oriented in the fiber axis direction and sintered, and as a manufacturing means, the composite metal titanate fiber and the inorganic sintering aid are spinnable. It is characterized in that it is added and mixed into the organic polymer having the above-mentioned, and is made into long fibers by melting or dry or wet spinning, and is then fired at a temperature at which the orientation of the composite metal titanate fibers does not disappear.

【0007】ここで、複合チタン酸金属塩繊維は、一般
式MO・TiO2(式中、Mは2価の金属元素を示す)で表され
る組成を有するチタン酸金属塩結晶を非晶質TiO2が包み
込む形で、複合一体化した繊維状物であって、2価金属
MとTiとのモル比が1:1.05〜1.5の範囲にあり、かつ
繊維長径の比が10以上であるもので、例えば、MはBa,S
r,Ca,Mg,Co,Pb,Zn,Be,Cdのものをあ挙げることができ
る。
The composite metal titanate fiber is an amorphous metal titanate crystal having a composition represented by the general formula MO.TiO 2 (where M represents a divalent metal element). A fibrous material in which TiO 2 is wrapped in a composite and integrated form, in which the molar ratio of the divalent metal M to Ti is in the range of 1: 1.05 to 1.5, and the fiber major axis ratio is 10 or more. So, for example, M is Ba, S
R, Ca, Mg, Co, Pb, Zn, Be, and Cd can be mentioned.

【0008】有機ポリマーはポリオレフィン、ナイロ
ン、ポリエステル等溶融紡糸可能なもの、あるいはニト
ロセルロース系ポリマー等乾式紡糸可能なもの、又はポ
リビニルアルコール等湿式紡糸可能なものであれば、い
ずれも利用できる。
As the organic polymer, any one that can be melt-spun such as polyolefin, nylon and polyester, one that can be dry-spun such as a nitrocellulose polymer, and one that can be wet-spun such as polyvinyl alcohol can be used.

【0009】無機焼結助剤は、一般に無機ガラス質と称
されるものが好ましく、SiO2,Al2O3,TiO2,B2O3,ZnO,な
どのほか、CaO-Al2O3-P2O5系ガラスなどの酸化物で複合
チタン酸金属塩繊維と有機ポリマー中に混合し、紡糸し
て得られたフィラメントを焼成した後でも繊維形態を保
持し、かつ複合チタン酸金属塩繊維の配向が損われない
条件で紡糸するのに不可欠なものである。無機焼結助剤
の添加量は繊維状組成物の要求性能によって自由に変更
可能であるが、上記曳糸性を損わず、焼成後の形態安定
性を保持する範囲に設定する。通常複合チタン酸金属塩
繊維と無機焼結助剤との混合比は重量比で3:97〜97:
3、好ましくは10:90〜90:10の範囲で上記無機焼結助
剤の一種又は二種以上の混合物を添加するとよい。焼成
温度は通常300〜1,400℃、好ましくは400〜1,300℃の範
囲で、複合チタン酸金属塩繊維の配向が損われない範囲
内に設定する。
As the inorganic sintering aid, those generally referred to as inorganic glass materials are preferable, and in addition to SiO 2 , Al 2 O 3 , TiO 2 , B 2 O 3 , ZnO, CaO-Al 2 O 3 -Compound metal titanate with oxide such as P 2 O 5 type glass mixed with fiber and organic polymer and retain fiber morphology even after firing the filament obtained by spinning, and complex metal titanate It is essential for spinning under conditions in which the orientation of the fibers is not impaired. The addition amount of the inorganic sintering aid can be freely changed depending on the required performance of the fibrous composition, but it is set within a range that does not impair the spinnability and maintains the shape stability after firing. Usually, the mixing ratio of the composite metal titanate fiber and the inorganic sintering aid is 3:97 to 97: by weight.
It is advisable to add one or a mixture of two or more of the above-mentioned inorganic sintering aids in the range of 3, preferably 10:90 to 90:10. The firing temperature is usually in the range of 300 to 1,400 ° C., preferably 400 to 1,300 ° C., and set within the range in which the orientation of the composite metal titanate fiber is not impaired.

【0010】[0010]

【発明の実施の形態】以下、具体的実施例によって本発
明の繊維状組成物を詳細に説明する。 実施例1〜4 複合チタン酸金属塩繊維としての複合チタン酸バリウム
を以下に示す方法で作成した。すなわち、繊維状チタニ
ア水和物(TiO2・1/2H2O、平均繊維長12μm、平均繊維径
0.3μm)2部を100部の脱イオン水に分散させ、撹拌しな
がらアンモニア水を加えてpHを9に調整した後、20重量
%の酢酸バリウム水溶液26部と15重量%の炭酸アンモニ
ウム水溶液17部を別々に同時に滴下した。滴下は、室温
で撹拌下に60分間かけておこなった。その際、10分毎に
pHを確認し、pHが8〜10の範囲となるようにアンモニア
水で調整した。滴下終了後、撹拌を続けながら液温を70
℃に昇温し、30分間撹拌を続けた後、ろ別、水洗、乾燥
することにより白色の繊維状物質6部を得た。この繊維
状物質は、X線回折、赤外吸収スペクトル(IR)及び走
査型電子顕微鏡(SEM)観察の結果から、原料繊維であ
る繊維状チタニア化合物の繊維形状を保持して、繊維の
平均長さは約10μm,径は約0.5μmで平均アスペクト比は
約20であった。その表面に炭酸バリウムが沈着し、Ba/T
i=0.9/1(モル比)の組成を示すものであることが判っ
た。この繊維状物質を磁性るつぼに移し、大気雰囲気中
で、950℃で2時間加熱処理することにより、白色の繊
維状物質からなる複合チタン酸バリウム繊維を得た。
BEST MODE FOR CARRYING OUT THE INVENTION The fibrous composition of the present invention will be described in detail below with reference to specific examples. Examples 1 to 4 Composite barium titanate as composite metal titanate fiber was prepared by the following method. That is, fibrous titania hydrate (TiO 2 1 / 2H 2 O, average fiber length 12 μm, average fiber diameter
0.3 μm) 2 parts was dispersed in 100 parts of deionized water, pH was adjusted to 9 by adding ammonia water while stirring, and then 26 parts of 20 wt% barium acetate aqueous solution and 15 wt% ammonium carbonate aqueous solution 17 Parts were dropped separately at the same time. The dropping was performed at room temperature with stirring for 60 minutes. At that time, every 10 minutes
The pH was confirmed, and the pH was adjusted to 8 to 10 with aqueous ammonia. After finishing the dropping, adjust the liquid temperature to 70 while continuing to stir.
The temperature was raised to 0 ° C., stirring was continued for 30 minutes, and then filtered, washed with water, and dried to obtain 6 parts of a white fibrous substance. From the results of X-ray diffraction, infrared absorption spectrum (IR) and scanning electron microscope (SEM) observation, this fibrous substance retains the fibrous shape of the fibrous titania compound as the raw material fiber and determines the average fiber length. The size was about 10 μm, the diameter was about 0.5 μm, and the average aspect ratio was about 20. Barium carbonate is deposited on the surface and Ba / T
It was found to have a composition of i = 0.9 / 1 (molar ratio). This fibrous substance was transferred to a magnetic crucible and heat-treated at 950 ° C. for 2 hours in the air atmosphere to obtain a composite barium titanate fiber made of a white fibrous substance.

【0011】有機ポリマーにはニトロセルロース系ポリ
マー(セメダイン(株)製321、ポリマー含有量25%、溶剤
はアルコールで75%)を用いた。これら複合チタン酸金
属塩繊維と有機ポリマーを用いて、50,60,70,80%まで
複合チタン酸金属塩繊維量を変化させたスラリーを4種
類調整した。このスラリーを射出装置(米国EFD社製
デジタルディスペンサー、Model 1500XL)を用い、射出
圧力を70psi,ノズル径を0.6mmとし連続的に射出した。
試作した有機長繊維状組成物の引張り強さ及び伸びを測
定した。結果を表1に示す。装置は島津製作所製オート
グラフAG1000Bを用いて、試料長さ5cm、引張り速度5m
m/min、温度25±2℃、湿度65±3%の恒温、恒湿下で
測定した。誘電率はJIS K-6911に準じた方法で測定し
た。
As the organic polymer, a nitrocellulose polymer (321 manufactured by Cemedine Co., Ltd., the polymer content is 25%, and the solvent is alcohol is 75%) is used. Using these composite metal titanate fibers and organic polymers, four types of slurries were prepared in which the amount of composite metal titanate fibers was changed to 50, 60, 70, 80%. This slurry was continuously injected using an injection device (digital dispenser, Model 1500XL, manufactured by EFD, USA) with an injection pressure of 70 psi and a nozzle diameter of 0.6 mm.
The tensile strength and elongation of the prototype organic long fibrous composition were measured. The results are shown in Table 1. The equipment is Shimadzu's Autograph AG1000B, sample length 5 cm, pulling speed 5 m
It was measured under constant temperature and humidity of m / min, temperature of 25 ± 2 ° C. and humidity of 65 ± 3%. The dielectric constant was measured by a method according to JIS K-6911.

【0012】[0012]

【表1】 [Table 1]

【0013】スラリー射出装置を用いることで連続的に
スラリーを射出することができ、長繊維を作成すること
ができた。調製した実施例1〜3の繊維状組成物の外観
は、図1〜3にそれぞれ示すように、フィラメント状の
きれいな有機繊維状組成物が得られた。また、繊維の引
張り強さ、伸び、及び比誘電率の測定結果を表1に示
す。引張り強さは約230gf程度、比誘電率は10〜60の長
繊維状物が得られた。
By using the slurry injecting device, the slurry can be continuously ejected and the long fibers can be produced. As for the appearance of the prepared fibrous compositions of Examples 1 to 3, the filamentous clean organic fibrous compositions were obtained as shown in FIGS. Table 1 shows the measurement results of the tensile strength, elongation, and relative dielectric constant of the fiber. A long fiber material having a tensile strength of about 230 gf and a relative dielectric constant of 10 to 60 was obtained.

【0014】また、この長繊維からなる有機繊維状組成
物を1,000℃、6時間焼成して無機繊維状組成物とした
後のSEM写真を、実施例1の複合チタン酸金属塩繊維
含有量50%の試料について図4(a)(b)に示す。複合チタ
ン酸金属塩繊維の繊維長さ方向への配向性は認められる
が、繊維自体は焼結していないため強度が著しく低下
し、力を加えれば脆くて長繊維の形体を保つことができ
ないものであった。
Further, an SEM photograph of the organic fibrous composition comprising the long fibers, which was calcined at 1,000 ° C. for 6 hours to give an inorganic fibrous composition, is a composite metal titanate fiber content of Example 1 of 50. % Samples are shown in FIGS. 4 (a) and 4 (b). Although the orientation of the composite metal titanate fiber in the length direction of the fiber is recognized, the strength of the fiber itself is significantly reduced because it is not sintered, and the shape of the long fiber cannot be maintained due to brittleness when force is applied. It was a thing.

【0015】比較例1,2 実施例1で用いたニトロセルロースのみの紡糸繊維の比
較例1の物性を表1の下段に示す。当然のことながら、
比誘電率は3.1と低いものであった。結果を表1の後段
に示す。
Comparative Examples 1 and 2 The physical properties of the spun fiber containing only nitrocellulose used in Example 1 in Comparative Example 1 are shown in the lower row of Table 1. As a matter of course,
The relative permittivity was as low as 3.1. The results are shown in the latter part of Table 1.

【0016】実施例5〜9 原料の複合チタン酸金属塩繊維には実施例1〜4と同じ
チタン酸バリウム繊維を用いた。有機ポリマーも実施例
3の混合比のニトロセルロース系ポリマー(セメダイン
(株)製321、ポリマー含有量25%、溶剤はアルコールで7
5%)を用いた。そして更に、無機焼結助剤としてSiO2,B
2O3系ガラス組成物を添加した。組成を表2に示す。SiO
2源にはシリカオリゴマー(コルコート製HAS-6)を、実施
例6,7のB2O3源にはフェニルホウ酸を用い、実施例8
〜9のB2O3源にはホウ酸を用いた。これら複合チタン酸
バリウム繊維と有機ポリマー及び無機焼結助剤、更にグ
リコール等を用いて、スラリーを調整した。このスラリ
ーを射出装置(米国EFD社製デジタルディスペンサ
ー、Model 1500XL)を用い、射出圧力を70psi、ノズル径
を0.6mmとし連続的に射出した。また長繊維の焼成は、
電気炉中で所定温度で0.5〜6時間行った。焼成後、繊維
のSEM観察を行い焼結性及び比誘電率を求めた。焼成
前後の繊維組成物の比誘電率を表2に示す。
Examples 5 to 9 The same barium titanate fibers as in Examples 1 to 4 were used as the composite metal titanate fiber as the raw material. The organic polymer is also the nitrocellulose-based polymer (cemedine) having the mixing ratio of Example 3.
321, polymer content 25%, solvent is alcohol 7
5%) was used. Furthermore, as an inorganic sintering aid, SiO 2 , B
A 2 O 3 based glass composition was added. The composition is shown in Table 2. SiO
A silica oligomer (HAS-6 manufactured by Colcoat) was used as the 2 source, and phenylboric acid was used as the B 2 O 3 source in Examples 6 and 7.
The to 9 of B 2 O 3 source using boric acid. A slurry was prepared by using these composite barium titanate fibers, an organic polymer, an inorganic sintering aid, glycol and the like. This slurry was continuously injected using an injection device (digital dispenser, Model 1500XL, manufactured by EFD, USA) with an injection pressure of 70 psi and a nozzle diameter of 0.6 mm. The firing of long fibers is
It was carried out in an electric furnace at a predetermined temperature for 0.5 to 6 hours. After firing, the fiber was observed by SEM to determine the sinterability and the relative dielectric constant. Table 2 shows the relative dielectric constant of the fiber composition before and after firing.

【0017】[0017]

【表2】 [Table 2]

【0018】ここで、実施例8の試料の長繊維を及び10
00℃、6時間焼成した後のSEM写真を、図5(a)(b)に
示す。複合チタン酸バリウム繊維の焼結が認められ、か
つ、長繊維の形態を保ち、比誘電率は表2に示すように
28と十分な比誘電率が得られた。すなわち、無機焼結助
剤の効果が認められた。
Here, the long fibers of the sample of Example 8 and 10
SEM photographs after firing at 00 ° C. for 6 hours are shown in FIGS. Sintering of the composite barium titanate fiber was observed, the shape of the long fiber was maintained, and the relative dielectric constant was as shown in Table 2.
A sufficient relative dielectric constant of 28 was obtained. That is, the effect of the inorganic sintering aid was confirmed.

【0019】実施例10〜19 実施例1〜9の複合チタン酸バリウム繊維に加えて、他
の金属繊維として、実施例10,11のストロンチウム、実
施例12,13のカルシウム、実施例14,15のマグネシウム及
び実施例16〜19の鉛につき有機ポリマー、無機焼結助剤
を変えて実施した。結果をまとめて表3に示す。
Examples 10 to 19 In addition to the composite barium titanate fibers of Examples 1 to 9, strontium of Examples 10 and 11, calcium of Examples 12 and 13 and Examples 14 and 15 were used as other metal fibers. Magnesium of Example 1 and lead of Examples 16 to 19 were changed by changing the organic polymer and the inorganic sintering aid. Table 3 summarizes the results.

【0020】[0020]

【表3】 [Table 3]

【0021】表3において、チタン酸金属塩繊維と無機
焼結助剤との重量比率は90:10であり、これら無機物と
有機ポリマーとの重量比率は70:30に調製した。
In Table 3, the weight ratio of the metal titanate fiber and the inorganic sintering aid was 90:10, and the weight ratio of these inorganic substances and the organic polymer was adjusted to 70:30.

【0022】実施例14,15におけるポリエチレンの溶融
紡糸は次の条件で行った。チタン酸マグネシウム繊維70
部と、融点130℃、軟化点126℃の高密度ポリエチレン30
部とを185℃で溶融混合して押出し、約5倍に延伸して
繊度約510デニールのフィラメントとした。実施例15の
無機焼結助剤としてのSiO2-B2O3の添加系も無機物70部
とポリエチレン30部混合系である。
Melt spinning of polyethylene in Examples 14 and 15 was carried out under the following conditions. Magnesium titanate fiber 70
Part, high-density polyethylene 30 with a melting point of 130 ° C and a softening point of 126 ° C
Melted and mixed at 185 ° C., extruded, and stretched about 5 times to obtain a filament having a fineness of about 510 denier. The addition system of SiO 2 —B 2 O 3 as the inorganic sintering aid in Example 15 is also a mixed system of 70 parts of inorganic material and 30 parts of polyethylene.

【0023】実施例18,19におけるポリビニルアルコー
ルポリマー混合系からの湿式紡糸は次のようにして行っ
た。組成比は上記溶融紡糸と同様に無機物:有機ポリマ
ーとの重量比率は70:30である。ポリビニルアルコール
には、株式会社クラレ製PVA117の15%水溶液を用
い、これに上記比率でチタン酸金属塩繊維又はこれと無
機焼結助剤との混合物を押出圧力1.7Kg/cm2で紡糸浴と
して60℃のNa2SO432%水溶液中へ押出し3倍に延伸しな
がら水洗、洗浄して繊度500デニールのフィラメントか
らなる有機繊維状組成物を得た。無機焼結助剤の混合さ
れたものは、更に1,100℃で焼成して無機繊維状組成物
を得た。
Wet spinning from the polyvinyl alcohol polymer mixed system in Examples 18 and 19 was carried out as follows. The composition ratio is 70:30 as the weight ratio of the inorganic substance to the organic polymer as in the above melt spinning. As the polyvinyl alcohol, a 15% aqueous solution of PVA117 manufactured by Kuraray Co., Ltd. was used, and a metal titanate metal salt fiber or a mixture thereof with an inorganic sintering aid in the above ratio was used as a spinning bath at an extrusion pressure of 1.7 Kg / cm 2. An organic fibrous composition composed of filaments having a fineness of 500 denier was obtained by extruding into a 32% aqueous solution of Na 2 SO 4 at 60 ° C., washing with water while stretching 3 times, and washing. The mixed inorganic sintering aid was further fired at 1,100 ° C. to obtain an inorganic fibrous composition.

【0024】表3のデータから明らかなように、いずれ
も長繊維化が可能で、無機焼結助剤混入系は焼成後も繊
維の形体を保つものであった。なお、SEM写真からは
これらの長繊維はチタン酸金属塩繊維の配向性良好なも
のであり、比誘電率も良好な値を示した。
As is clear from the data in Table 3, it was possible to make the fibers long, and the system in which the inorganic sintering aid was mixed maintained the fiber shape even after firing. In addition, from the SEM photograph, these long fibers had good orientation of the metal titanate fibers, and showed a good relative dielectric constant.

【0025】[0025]

【発明の効果】本発明の繊維状組成物は複合チタン酸金
属塩繊維が繊維方向に配向した長繊維であり、その補強
性および誘電特性よりみて、基板などに使用される誘電
性クロス、誘電性ガラスクロスをはじめ電子機器部品と
して非常に有効なものである。
INDUSTRIAL APPLICABILITY The fibrous composition of the present invention is a long fiber in which composite metal titanate fibers are oriented in the fiber direction, and in view of its reinforcing property and dielectric property, it can be used as a dielectric cloth or dielectric for a substrate or the like. It is very effective as a part of electronic equipment such as a transparent glass cloth.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた長繊維の写真である。1 is a photograph of long fibers obtained in Example 1. FIG.

【図2】実施例2で得られた長繊維の写真である。FIG. 2 is a photograph of the long fibers obtained in Example 2.

【図3】実施例3で得られた長繊維の写真である。FIG. 3 is a photograph of the long fibers obtained in Example 3.

【図4】実施例1で得られた焼成後の長繊維の微細構造
を示すSEM写真であって、(a)は100倍、(b)は5,000倍
である。
FIG. 4 is an SEM photograph showing the fine structure of the filaments after firing obtained in Example 1, (a) being 100 times and (b) being 5,000 times.

【図5】実施例8で得られた焼成後の長繊維の微細構造
を示すSEM写真であって、(a)は100倍、(b)は5,000倍
である。
5 is an SEM photograph showing the fine structure of the filament after firing obtained in Example 8, (a) being 100 times and (b) being 5,000 times. FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D01F 6/92 301 D01F 6/92 301M 9/14 9/14 9/16 9/16 9/21 531 9/21 531 (72)発明者 安喜 稔 徳島県徳島市川内町加賀須野463 大塚化 学株式会社徳島研究所内 (72)発明者 鈴江 正義 徳島県徳島市川内町加賀須野463 大塚化 学株式会社徳島研究所内 (72)発明者 三浦 嘉也 岡山県岡山市津島中3丁目1番1号 岡山 大学内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location D01F 6/92 301 D01F 6/92 301M 9/14 9/14 9/16 9/16 9/21 531 9/21 531 (72) Inventor Minoru Aki 463 Kagasuno, Kawauchi Town, Tokushima City, Tokushima Prefecture Otsuka Chemical Co., Ltd., Tokushima Research Institute (72) Masayoshi Suzue 463 Kagasuno, Kawauchi Town, Tokushima City, Tokushima Prefecture Otsuka Chemical Co., Ltd. Company Tokushima Research Institute (72) Inventor Yoshiya Miura 3-1-1 Tsushimachu, Okayama City, Okayama Prefecture Okayama University

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複合チタン酸金属塩繊維が繊維軸方向に
配向して有機ポリマー中に分散されてなる複合チタン酸
金属塩繊維を含有する有機繊維状組成物。
1. An organic fibrous composition containing a composite metal titanate fiber in which the composite metal titanate fiber is oriented in the fiber axis direction and dispersed in an organic polymer.
【請求項2】 複合チタン酸金属塩繊維が繊維軸方向に
配向してガラス状マトリックス中に分散されてなる複合
チタン酸金属塩繊維を含有する無機繊維状組成物。
2. An inorganic fibrous composition containing composite metal titanate fibers in which composite metal titanate fibers are oriented in the fiber axis direction and dispersed in a glassy matrix.
【請求項3】 複合チタン酸金属塩繊維を曳糸性有機ポ
リマー中に添加混合し、紡糸して原料の複合チタン酸金
属塩繊維よりも長繊維化することを特徴とする複合チタ
ン酸金属塩繊維を含有する繊維状組成物の製造方法。
3. A composite metal titanate characterized in that the composite metal titanate fiber is added to and mixed with a spinnable organic polymer and spun to make a longer fiber than the raw material composite metal titanate fiber. A method for producing a fibrous composition containing fibers.
【請求項4】 複合チタン酸金属塩繊維と無機焼結助剤
とを曳糸性有機ポリマー中に添加混合し、紡糸により繊
維化した後、原料複合チタン酸金属塩繊維の繊維軸方向
の配向が消失しない程度の温度で焼成することを特徴と
する複合チタン酸金属塩繊維を含有する繊維状組成物の
製造方法。
4. A composite metal titanate fiber and an inorganic sintering aid are added and mixed into a spinnable organic polymer, and after spinning to form a fiber, the raw material composite metal titanate fiber is oriented in the fiber axis direction. A method for producing a fibrous composition containing a composite metal titanate fiber, wherein the fibrous composition is fired at such a temperature that does not disappear.
JP5209196A 1996-03-08 1996-03-08 Fibrous composition containing composite metallic titanate fiber and its production Pending JPH09241918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5209196A JPH09241918A (en) 1996-03-08 1996-03-08 Fibrous composition containing composite metallic titanate fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5209196A JPH09241918A (en) 1996-03-08 1996-03-08 Fibrous composition containing composite metallic titanate fiber and its production

Publications (1)

Publication Number Publication Date
JPH09241918A true JPH09241918A (en) 1997-09-16

Family

ID=12905171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5209196A Pending JPH09241918A (en) 1996-03-08 1996-03-08 Fibrous composition containing composite metallic titanate fiber and its production

Country Status (1)

Country Link
JP (1) JPH09241918A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043876A1 (en) * 1998-02-25 1999-09-02 Otsuka Kagaku Kabushiki Kaisha Fine electrically conductive fiber, and resin composition and conductive yarn comprising the same
JP2009269790A (en) * 2008-05-07 2009-11-19 Ishihara Chem Co Ltd Long filamentous metal titanate and its producing method
WO2021024833A1 (en) * 2019-08-08 2021-02-11 Jnc株式会社 Barium titanate fiber, resin composition containing same, polymer composite piezoelectric body, and method for producing barium titanate fiber
CN112899889A (en) * 2021-01-22 2021-06-04 清华大学深圳国际研究生院 Preparation method of titanate fiber membrane
CN113026146A (en) * 2021-02-09 2021-06-25 清华大学深圳国际研究生院 Superfine barium strontium titanate nanofiber-based flexible film and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043876A1 (en) * 1998-02-25 1999-09-02 Otsuka Kagaku Kabushiki Kaisha Fine electrically conductive fiber, and resin composition and conductive yarn comprising the same
US6333107B1 (en) 1998-02-25 2001-12-25 Otsuka Kagaku Kabushiki Kaisha Fine electrically conductive fiber, and resin composition and conductive yarn comprising the same
CN1125200C (en) * 1998-02-25 2003-10-22 大塚化学株式会社 Fine electrically conductive fiber, and resin composition and conductive yarn comprising same
JP2009269790A (en) * 2008-05-07 2009-11-19 Ishihara Chem Co Ltd Long filamentous metal titanate and its producing method
WO2021024833A1 (en) * 2019-08-08 2021-02-11 Jnc株式会社 Barium titanate fiber, resin composition containing same, polymer composite piezoelectric body, and method for producing barium titanate fiber
CN112899889A (en) * 2021-01-22 2021-06-04 清华大学深圳国际研究生院 Preparation method of titanate fiber membrane
CN113026146A (en) * 2021-02-09 2021-06-25 清华大学深圳国际研究生院 Superfine barium strontium titanate nanofiber-based flexible film and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100988751B1 (en) Ceramic fiber and process for producing the same
US4797378A (en) Internally modified ceramic fiber
US5017316A (en) Internally modified ceramic fiber
JPS62223320A (en) Composite ceramic fiber and its production
KR940010096B1 (en) Ceramic articles containing silicon carbide
JP2756258B2 (en) Refractory solid article and method for producing the same
US4937212A (en) Zirconium oxide fibers and process for their preparation
EP2103722B1 (en) Ceramic fiber and method for production of ceramic fiber
KR100596543B1 (en) Ag-Containing Silica Nano-Fibers and Method for Producing the Same
JPH09241918A (en) Fibrous composition containing composite metallic titanate fiber and its production
JP2005501984A (en) Zirconium / metal oxide fiber
JP2007321277A (en) Metal oxide fiber and method for producing the same
US4820664A (en) Piggy back method for producing ceramic fibers and non-circular ceramic fibers in particular
CN110117841B (en) Method for preparing mullite nanofibers by electrospinning biphase precursors
JPS6088162A (en) Production of ceramic fiber blanket
CN110629322A (en) Preparation method of high-purity polycrystalline yttrium aluminum garnet continuous fiber
JP2011219359A (en) Method for producing ceramics porous body
US4798815A (en) Nested ceramic fibers and piggyback micro-mold method for producing same
CN114773070B (en) Preparation method of alumina continuous fiber taking aluminum carboxylate sol as precursor
JP2007217235A (en) Ceramic porous body and method of manufacturing ceramic porous body
Fan et al. Synthesis of solid and spirally cracked TiO2 fibers by a liquid mix process
JPH045770B2 (en)
JPH0541726B2 (en)
Liang et al. Preparation of superhydrophobic silicon-based net-like hollow nanostructure using electrospinning
SOLID et al. SECTION IV