JPS63257132A - Manufacture of oxide superconductor - Google Patents

Manufacture of oxide superconductor

Info

Publication number
JPS63257132A
JPS63257132A JP62092330A JP9233087A JPS63257132A JP S63257132 A JPS63257132 A JP S63257132A JP 62092330 A JP62092330 A JP 62092330A JP 9233087 A JP9233087 A JP 9233087A JP S63257132 A JPS63257132 A JP S63257132A
Authority
JP
Japan
Prior art keywords
oxide
sol
soluble organic
gel
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62092330A
Other languages
Japanese (ja)
Inventor
Akio Nojiri
昭夫 野尻
Yasuzo Tanaka
田中 靖三
Toshiaki Shibata
柴田 俊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62092330A priority Critical patent/JPS63257132A/en
Publication of JPS63257132A publication Critical patent/JPS63257132A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the good superconductive characteristic by using specific soluble organic metals to hydrolyze, forming the sol material thus obtained into a gelatinous molding directly or via another base material, and sintering this gelatinous molding to form a composite metal oxide. CONSTITUTION:The preset quantity of soluble organic metals expressed by formulas M1(OR1)3, M2(OR2)2, Cu(OR3)2 is dissolved in a water-soluble organic solvent to form a sol by hydrolysis, the sol material thus obtained is formed into a gelatinous molding directly or via another base material. Next, the gelatinous molding thus obtained is dried then heated and sintered to form a composite metal oxide. In the formulas, M1 is the rare earth element of the IIIa group, M2 is the alkaline earth metal of the IIa group, R1-R3 are the groups combined or coordinated with M1 or M2 such as the low-grade alkyl group or alkyl carbonyl group or acetyacetone base and dissolved in a water-soluble organic solvent. A superconductor excellent in the superconductive characteristic is efficiently obtained accordingly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物系超電導体の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing an oxide superconductor.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

従来酸化物系超電導体としては種々のものがあるが例え
ばLa−Ba−Cu−0系酸化物体の製造方法としては
Lag 03 、BaC0z 、CuOの粉末を所要量
秤量し、水などと混練した後、円柱や円盤上に成形後、
1000℃付近の温度で焼結する方法が行われている。
Conventionally, there are various types of oxide-based superconductors, but for example, a method for producing a La-Ba-Cu-0-based oxide is to weigh the required amount of powder of Lag 03 , BaC0z , and CuO, knead it with water, etc. , after forming into a cylinder or disk,
A method of sintering at a temperature around 1000°C is used.

この製造方法における最大の問題点は、酸化物系超電導
体に共通の特性である機械的な脆さのために焼結稜線状
に加工することが全く不可能であることにある。また酸
化物から出発した成形体は焼結性に乏しく、たとえ線状
成形体を得たとしても焼結工程後の形状の維持は困難で
、よしんば形状維持ができたとしても特性のよいものを
得るには酸化物の粉砕混合を長時間行い微細化する必要
があるなど多くの問題がある。
The biggest problem with this manufacturing method is that it is completely impossible to process it into a sintered ridge shape due to mechanical fragility, which is a common characteristic of oxide superconductors. In addition, compacts made from oxides have poor sinterability, and even if a linear compact is obtained, it is difficult to maintain the shape after the sintering process, and even if the shape can be maintained, it is difficult to maintain the shape. There are many problems, such as the need to grind and mix oxides for a long time to make them fine.

〔問題点を解決するための手段および作用〕本発明は上
記の問題について種々検討の結果、酸化物系超電導体の
製造において焼結性が良好で、線状、管状などに成形可
能な効率のよい製造方法を開発したものである。
[Means and effects for solving the problems] As a result of various studies regarding the above-mentioned problems, the present invention has developed an efficient method for manufacturing oxide-based superconductors that has good sinterability and can be formed into linear, tubular, etc. A good manufacturing method has been developed.

即ち、本発明は水に可溶な有機溶媒に、一般式%式%) 示される各々の可溶性のを機金属の所定量を溶解せしめ
、加水分解によりゾルとなす工程、得たゾル化物を直接
または他の母材を介してゲル状成形物となす工程、得ら
れたゲル状成形物を乾燥する工程、乾燥したゲル状成形
物を加熱し焼結させて複合金属酸化物となす工程を有す
ることを特徴とする酸化物系超電導体の製造方法である
That is, the present invention is a process of dissolving a predetermined amount of each soluble metal represented by the general formula (%) in a water-soluble organic solvent, and forming a sol by hydrolysis, and directly dissolving the obtained sol. or a step of forming a gel-like molded product through another base material, a step of drying the obtained gel-like molded product, and a step of heating and sintering the dried gel-like molded product to form a composite metal oxide. This is a method for producing an oxide-based superconductor characterized by the following.

上記一般式において、MlはY、La、Scなどのma
族の希土類元素、MlはCa、Sr、BaなどのI’l
a族のアルカリ土金属、R,、R,、R1はHまたはC
H3、CzHs 、C1Ht 、C4H9などの低級ア
ルキル基またはHCOlCH。
In the above general formula, Ml is ma of Y, La, Sc, etc.
Group rare earth elements, Ml is I'l such as Ca, Sr, Ba, etc.
Group a alkaline earth metal, R,, R,, R1 is H or C
Lower alkyl groups such as H3, CzHs, C1Ht, C4H9 or HCOlCH.

C−0,CzHsCOなどのアルキルカルボニル基また
はC,H,Oのアセチルアセトン残基などのMlまたは
Mlと化合あるいは配位して水に可溶な有機溶媒に溶解
し得る基である。
It is an alkylcarbonyl group such as C-0, CzHsCO, or a group such as an acetylacetone residue of C, H, O, etc., or a group that can be combined with or coordinated with M1 and dissolved in a water-soluble organic solvent.

上記において水に可溶な有Ia溶媒としては、メチルア
ルコール、エチルアルコールなどのアルコール、アセト
ンなどのケトン類、酢酸などの有機酸、ヒドラジンなど
のアミン類等があり、本発明は、これらの有機溶媒に前
記一般式であられされる3種類の有機金属をそれぞれ所
定量溶解してのち、加水分解して希土類元素、アルカリ
土金属および銅の水酸化物をゾル状に生成させ、ゾルの
状態においてファイバ、フィルム、パイプ、棒などに成
形し、これを脱水縮合してゲルとし、更にこれを加熱焼
結して酸化物系超電導体とするものである。
In the above, water-soluble Ia solvents include alcohols such as methyl alcohol and ethyl alcohol, ketones such as acetone, organic acids such as acetic acid, and amines such as hydrazine. After dissolving a predetermined amount of each of the three types of organic metals represented by the above general formula in a solvent, hydrolysis is performed to generate hydroxides of rare earth elements, alkaline earth metals, and copper in the form of a sol, and in the sol state. It is formed into a fiber, film, pipe, rod, etc., dehydrated and condensed to form a gel, and then heated and sintered to form an oxide-based superconductor.

またタンタル被覆銅線、または通常の超電導線において
使用されるベースメタルまたはバリヤー材などを母材と
して、これにゾル化物をを膜状に付着させ上記の工程を
経て、酸化物系超電導体とすることもできる。
In addition, a tantalum-coated copper wire or a base metal or barrier material used in ordinary superconducting wires is used as a base material, and a sol compound is attached in a film form to this, and through the above steps, an oxide-based superconductor is obtained. You can also do that.

本発明において、ゾル状に懸濁した水酸化物粒子を脱水
、加熱して酸化物体を得るので、各酸化物は微細均質に
分布しており、粉砕混合などの手間を要さずに、良好な
超電導特性が得られる。
In the present invention, oxide particles are obtained by dehydrating and heating hydroxide particles suspended in a sol state, so each oxide is finely and homogeneously distributed, and a good Superconducting properties can be obtained.

しかして本発明において対象とする酸化物系超電導体は
、La−Ba−Cu−0系、Y−Ba−Cu−0系、5
c−Ba−Cu−0系およびその他のma族の希土類元
素−Ua族のアルカリ土金属−Cu−0系の酸化物など
であり、その組成は例えば(II a + II a)
tc u Oa−δまたは(II[a+U a)s C
uzot−δで代表される組成などがある。
Therefore, the oxide-based superconductors targeted in the present invention include La-Ba-Cu-0 system, Y-Ba-Cu-0 system, 5
c-Ba-Cu-0 series and other Ma group rare earth elements - Ua group alkaline earth metals - Cu-0 series oxides, etc., and the composition is, for example, (II a + II a)
tc u Oa−δ or (II[a+U a)s C
There is a composition represented by uzot-δ.

次に本発明の一態様について説明すると第1図に示すよ
うに、メチルアルコールに前記一般式であられされる3
種類のを機金属をそれぞれ所定量溶解し、これに水を加
えて撹拌しゾル状懸濁液1とし、これを加熱脱水を行い
つつポリマーのゲルとし、これを自重または加圧してダ
イス2により所望の形状、寸法に押出し、成形して、乾
燥炉3により乾燥し、リール4により巻取り、これを加
熱焼結して超電導体とするものである。
Next, one embodiment of the present invention will be explained. As shown in FIG.
Dissolve a predetermined amount of each type of machine metal, add water and stir to form a sol-like suspension 1. This is heated and dehydrated to form a polymer gel, which is then molded by its own weight or under pressure into a die 2. It is extruded and molded into a desired shape and size, dried in a drying oven 3, wound up on a reel 4, and heated and sintered to form a superconductor.

しかして前記一般式であられされる3種類の有機金属を
溶解させたメチルアルコールに水を加えるのは、加水分
解により例えばLa(OH)3、B a (OH)z 
、Cu (OH)zなどの水酸化物を得るためでその配
合比は、溶解に供した化合物総量:メチルアルコール:
水=0.1〜a:O,t〜3:0.1〜8が適当であり
、脱水縮合温度は50〜150°Cがよく、また焼結温
度は500℃〜1800°Cの範囲において焼結性が優
れ適している。
However, when water is added to methyl alcohol in which the three types of organic metals represented by the above general formula are dissolved, for example, La(OH)3, B a (OH)z
In order to obtain hydroxides such as Cu(OH)z, the blending ratio is: total amount of compounds subjected to dissolution: methyl alcohol:
Water = 0.1~a:O, t~3:0.1~8 is suitable, the dehydration condensation temperature is preferably 50~150°C, and the sintering temperature is in the range of 500°C~1800°C. It has excellent sinterability and is suitable for use.

水にHCIなどの酸またはアンモニアなどのアルカリを
触媒として微量配合してお(と加水分解が促進される。
Adding a small amount of an acid such as HCI or an alkali such as ammonia to water as a catalyst accelerates hydrolysis.

加水分解後懸濁液を撹拌すると上記水酸化物間に鎖状ま
たは網状の重合反応が進行して、粘度がボイズ−数十ボ
イズに高まり紡糸などの成形が可能になる。尚、粘度が
不十分のときはアルギン酸ナトリウム、アリルウレア、
アメリン、カルボキシメチルセルロースやポリビニルア
ルコール等の可溶性有機物の増粘剤を加えてもよい。
When the suspension after hydrolysis is stirred, a chain or network polymerization reaction proceeds between the hydroxides, and the viscosity increases to between 10 and 10 voids, making it possible to perform shaping such as spinning. If the viscosity is insufficient, use sodium alginate, allyl urea,
A soluble organic thickener such as amerine, carboxymethyl cellulose or polyvinyl alcohol may be added.

〔実施例〕〔Example〕

以下に本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

実施例−1 エチルアルコール11にL a (OCzHs)*、B
 a (OC2H3)z、Cu(OH)zをそれぞれ7
.00 g 。
Example-1 Ethyl alcohol 11, L a (OCzHs)*, B
a (OC2H3)z and Cu(OH)z each at 7
.. 00g.

0.72 g、3.84 g溶解し、よく混合したのち
HCIを0.11d#2の濃度で含有する水を35d加
えて撹拌しゾル状懸濁液とした。撹拌に伴い粘度が上昇
し、更にこれに少量の増粘剤カルボキシメチルセルロー
スナトリウム塩を0.5g加え曳糸状にした。
After 0.72 g and 3.84 g were dissolved and mixed well, 35 d of water containing HCI at a concentration of 0.11 d#2 was added and stirred to form a sol-like suspension. The viscosity increased with stirring, and a small amount of carboxymethyl cellulose sodium salt (0.5 g) as a thickener was added thereto to form a string.

次いでこれを0.2mI!+φの紡糸ノヅルから100
°Cの乾燥室内に押出してゾルファイバを得、更にこれ
を乾燥してゲルファイバとした。乾燥にあたっては、フ
ァイバにひびわれや巣が入らないよう乾燥室の温度は低
めに押さえた。このファイバを更に800″Cの大気加
熱炉で5時間加熱して酸化物系超電導体とし、直ちにウ
レタン樹脂をコーティングし補強した。
Next, add this to 0.2 mI! 100 from +φ spinning nozzle
A sol fiber was obtained by extrusion into a drying chamber at °C, and this was further dried to obtain a gel fiber. During drying, the temperature in the drying room was kept low to avoid cracks or cavities in the fibers. This fiber was further heated in an atmospheric heating furnace at 800''C for 5 hours to form an oxide superconductor, and immediately coated with urethane resin for reinforcement.

実施例−2 酢酸200mfにL a (CI(3COO)3、B 
a (CH3Coo)t、CLI(CH,C00)2を
それぞれ3.5 g 。
Example-2 L a (CI(3COO)3, B
3.5 g each of a (CH3Coo)t and CLI(CH,C00)2.

0.4g、1.9g熔解しよく混合したのち、HCIを
O,Ld/1の濃度で含有する水を30m加えて撹拌し
ゾル状懸濁液とした。これを実施例=1と同じ方法によ
りウレタン樹脂で補強した酸化物系超電導体となした。
After melting 0.4 g and 1.9 g and mixing well, 30 m of water containing HCI at a concentration of O, Ld/1 was added and stirred to form a sol-like suspension. This was made into an oxide-based superconductor reinforced with urethane resin by the same method as in Example 1.

従来例−1 一方従来例としてI、ago、、 、BaCO3CuO
の粉末をLa : Ba : Cu=3.55:0.4
4:2.5になるように配合し、これに水を加えてスラ
リー状とし、0.2omの孔を有するダイを通し、10
0°Cの乾燥室中に押出し、このファイバをさらに80
0°Cの大気加熱炉で5時間加熱して超電導線とした。
Conventional example-1 On the other hand, as a conventional example, I, ago, , BaCO3CuO
The powder of La: Ba: Cu=3.55:0.4
4:2.5, water was added to this to make a slurry, passed through a die with 0.2 om holes, and 10
Extruded into a drying chamber at 0°C, the fiber was further dried at 80°C.
The superconducting wire was heated in an atmospheric heating furnace at 0°C for 5 hours.

これらの超電導線について特性試験を行った結果を第1
表に示す。
The results of characteristic tests on these superconducting wires are presented in the first
Shown in the table.

第  1  表 第1表から明らかなように本発明によれば従来に比べて
著しく長尺の線材が得られ、しかも曲げ歪特性および超
電導特性に優れた酸化物系超電導線が得られた。
Table 1 As is clear from Table 1, according to the present invention, a significantly longer wire rod than the conventional wire rod was obtained, and an oxide-based superconducting wire with excellent bending strain characteristics and superconducting characteristics was obtained.

実施例−3 酢酸200dにL a (CHa COO) 3、Ba
(CHxCoo)x、Cu (CHzCOO)tをそれ
ぞれ4.05 g 。
Example-3 La (CHa COO) 3, Ba in 200 d of acetic acid
(CHxCoo)x, Cu (CHzCOO)t, 4.05 g each.

0.41 g、3.57g溶解し、よく混合したのち、
HCIをO,1m/ ffiの濃度で含有する水を24
m1加えて撹拌し、ゾル状懸濁液とした。別にタンタル
で被覆された外径0.5mmφの銅線を用意した。
After dissolving 0.41 g and 3.57 g and mixing well,
Water containing HCI at a concentration of O, 1 m/ffi was
ml was added and stirred to obtain a sol-like suspension. Separately, a copper wire coated with tantalum and having an outer diameter of 0.5 mm was prepared.

第2図に示すように上記のタンタル被覆銅線6をゾル状
懸濁液5中を通過させてゾル化物を表面に付着せしめ、
これを80°Cの乾燥炉7を通して乾燥し、カセットロ
ーラーダイス8で整形圧縮後−丁 190℃の乾燥炉9を通して外径0.6mmφとした。
As shown in FIG. 2, the tantalum coated copper wire 6 is passed through the sol-like suspension 5 to cause the sol to adhere to the surface.
This was dried in a drying oven 7 at 80°C, shaped and compressed using a cassette roller die 8, and then passed through a drying oven 9 at 190°C to have an outer diameter of 0.6 mmφ.

これを最終的に950°Cで6時間加熱焼結して超電導
線とした。第3図にその横断面図を示した。銅線10上
にタンタル11が被覆され、その上に酸化物系超電導体
12が形成されている。
This was finally heated and sintered at 950°C for 6 hours to obtain a superconducting wire. Figure 3 shows its cross-sectional view. Copper wire 10 is coated with tantalum 11, and oxide-based superconductor 12 is formed thereon.

従来例−2 一方従来例としてはLazO3、BaCO3CuOの粉
末をLa : Ba : Cu=1.78:0.22:
1.25になるように配合し、この混合粉体に水を加え
てスラリー状とし、この中にタンタルで被覆した外径0
.5則φの銅線を通し、内径0.6snφ孔のダイスか
ら引出し80”C−190°Cで乾燥した後950℃で
6時間加熱焼結して超電導線とした。
Conventional Example-2 On the other hand, as a conventional example, powders of LazO3 and BaCO3CuO were prepared as follows: La: Ba: Cu=1.78:0.22:
1.25, add water to this mixed powder to make a slurry, and add tantalum-coated powder with an outer diameter of 0.
.. A copper wire with a diameter of 5 mm was passed through a die having an inner diameter of 0.6 sn φ, dried at 80''C-190°C, and then heated and sintered at 950°C for 6 hours to obtain a superconducting wire.

これらの超電導線について特性試験を行った。Characteristic tests were conducted on these superconducting wires.

結果を第2表に示す。The results are shown in Table 2.

第2表から明らかなように本発明により得られた超電導
線は表面の超電導層が非常に剥離し難(、また超電導開
始温度、終了温度のいずれも従来の方法で得られたもの
より著しく高く、優れた特性を示すことが確認できた。
As is clear from Table 2, the surface superconducting layer of the superconducting wire obtained by the present invention is extremely difficult to peel off (and both the superconducting start temperature and superconducting end temperature are significantly higher than those obtained by the conventional method). It was confirmed that the material exhibited excellent properties.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように本発明によれば、長尺でしかも機
械的特性および超電導特性の優れた種り形状の酸化物系
超電導体が効率よく得られ、更に酸化物系超電導体を母
材上に形成させたものは加工性、密着性にも優れており
、工業上顕著な効果を奏するものである。
As explained above, according to the present invention, a long, seed-shaped oxide superconductor with excellent mechanical properties and superconducting properties can be efficiently obtained, and furthermore, the oxide superconductor can be formed on a base material. The material formed by this method has excellent workability and adhesion, and has a significant industrial effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す酸化物系超電導線の製
造方法の説明図、第2図は他の実施例を示すタンタル被
覆銅線上に酸化物系超電導体を形成させる方法の説明図
、第3図は上記形成体の横断面図である。 1.5・・・ゾル状懸濁液、 2・・・ダイス、 3・
・・乾燥炉、  4・・・リール、  6・・・タンタ
ル被覆銅線、7.9・・・乾燥炉、  8・・・カセッ
トローラー’)Eス、0・・・銅線、 11・・・タン
タル、 12・・・酸化物系超電導体。
FIG. 1 is an explanatory diagram of a method for manufacturing an oxide-based superconducting wire showing one embodiment of the present invention, and FIG. 2 is an explanatory diagram of a method for forming an oxide-based superconductor on a tantalum-coated copper wire, showing another embodiment. FIG. 3 is a cross-sectional view of the above-mentioned formed body. 1.5...Sol suspension, 2...Dice, 3.
... Drying oven, 4... Reel, 6... Tantalum coated copper wire, 7.9... Drying oven, 8... Cassette roller') E, 0... Copper wire, 11...・Tantalum, 12...Oxide-based superconductor.

Claims (3)

【特許請求の範囲】[Claims] (1)水に可溶な有機溶媒に、一般式M_1(OR_1
)_3、M_2(OR_2)_2、Cu(OR_3)_
2(式中M_1はIIIa族の希土類元素、M_2はIIa
族のアルカリ土金属、R_1、R_2、R_3はHまた
は低級アルキル基、またはアルキルカルボニル基、アセ
チルアセトン残基などのM_1と化合あるいは配位して
水に可溶な有機溶媒に溶解し得る基の群から選ばれる同
一または異なる基。)で示される各々の可溶性の有機金
属の所定量を溶解せしめ、加水分解によりゾルとなす工
程、得たゾル化物を直接または他の母材を介してゲル状
成形物となす工程、得られたゲル状成形物を乾燥する工
程、乾燥したゲル状成形物を加熱し焼結させて複合金属
酸化物となす工程を有することを特徴とする酸化物系超
電導体の製造方法。
(1) General formula M_1 (OR_1
)_3, M_2(OR_2)_2, Cu(OR_3)_
2 (in the formula, M_1 is a group IIIa rare earth element, M_2 is IIa
R_1, R_2, R_3 are H or lower alkyl groups, or a group of groups that can be combined or coordinated with M_1 such as alkyl carbonyl groups and acetylacetone residues to dissolve in water-soluble organic solvents. Same or different groups selected from. ) A step of dissolving a predetermined amount of each soluble organometallic substance and forming it into a sol by hydrolysis, a step of forming the obtained sol directly or through another base material into a gel-like molded product, A method for producing an oxide superconductor, comprising the steps of drying a gel-like molded product, and heating and sintering the dried gel-like molded product to form a composite metal oxide.
(2)ゲル状成形物の形状がファイバ、フィルム、パイ
プ、棒であることを特徴とする特許請求の範囲第1項記
載の酸化物系超電導体の製造方法。
(2) The method for producing an oxide superconductor according to claim 1, wherein the gel-like molded product is in the form of a fiber, film, pipe, or rod.
(3)母材がタンタル被覆銅線、または通常の超電導線
において使用されるベースメタルまたはバリヤー材であ
ることを特徴とする特許請求の範囲第1項記載の酸化物
系超電導体の製造方法。
(3) The method for producing an oxide-based superconductor according to claim 1, wherein the base material is a tantalum-coated copper wire, or a base metal or barrier material used in ordinary superconducting wires.
JP62092330A 1987-04-15 1987-04-15 Manufacture of oxide superconductor Pending JPS63257132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62092330A JPS63257132A (en) 1987-04-15 1987-04-15 Manufacture of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62092330A JPS63257132A (en) 1987-04-15 1987-04-15 Manufacture of oxide superconductor

Publications (1)

Publication Number Publication Date
JPS63257132A true JPS63257132A (en) 1988-10-25

Family

ID=14051381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62092330A Pending JPS63257132A (en) 1987-04-15 1987-04-15 Manufacture of oxide superconductor

Country Status (1)

Country Link
JP (1) JPS63257132A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308812A (en) * 1987-06-10 1988-12-16 Asahi Chem Ind Co Ltd Manufacture of superconductive ceramics wire material
JPS63310705A (en) * 1987-05-15 1988-12-19 ピーピージー インダストリーズ,インコーポレーテッド Manufacture of superconductive ceramic by chemical polymerization
JPS6456303A (en) * 1987-07-20 1989-03-03 Philips Nv Manufacture of superconductive oxide composition
FR2681534A1 (en) * 1991-09-20 1993-03-26 Rhone Poulenc Chimie CONCENTRATED COLLOUID SOLUTIONS OF UNCERTAINED MONOCRYSTALLINE PARTICLES OF METAL OXIDES, PROCESS FOR PREPARING THEM AND THEIR APPLICATION TO THE PRODUCTION OF FILMS

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310705A (en) * 1987-05-15 1988-12-19 ピーピージー インダストリーズ,インコーポレーテッド Manufacture of superconductive ceramic by chemical polymerization
JPS63308812A (en) * 1987-06-10 1988-12-16 Asahi Chem Ind Co Ltd Manufacture of superconductive ceramics wire material
JPS6456303A (en) * 1987-07-20 1989-03-03 Philips Nv Manufacture of superconductive oxide composition
FR2681534A1 (en) * 1991-09-20 1993-03-26 Rhone Poulenc Chimie CONCENTRATED COLLOUID SOLUTIONS OF UNCERTAINED MONOCRYSTALLINE PARTICLES OF METAL OXIDES, PROCESS FOR PREPARING THEM AND THEIR APPLICATION TO THE PRODUCTION OF FILMS

Similar Documents

Publication Publication Date Title
US5534468A (en) Ceramic oxide compounds
JP2700207B2 (en) Oxide superconducting material and method for producing the same
JPH02247385A (en) Chemical gold plating process for ceramic oxide particle
JPS63257132A (en) Manufacture of oxide superconductor
JPS63281321A (en) Wire forming method for oxide superconductive material
CN113248256B (en) Preparation method of strong toughness paste for ceramic optical fiber extrusion molding
CN1252399C (en) Nanometer ceramic spring producing method
JPH0214817A (en) Superconductive shaping material
US5413753A (en) Method for dispersion spinning of sheathed rod-in-tube superconducting composites
JPH0476324B2 (en)
EP0638054B1 (en) Method for dispersion spinning of sheathed rod-in-tube superconducting composites
EP0360550B1 (en) Fibres of YBa2 Cu3 O7
JP3179084B2 (en) Manufacturing method of oxide superconducting wire
JPH078725B2 (en) Method for producing mullite fiber or film
TWI325855B (en) Manufacturing method of ceramic fibers
JPH01110908A (en) Method for forming ceramic coil spring
JPS63318020A (en) Method for forming oxide superconductor
JPH01241711A (en) Manufacture of oxide superconductor wire
JPH04130043A (en) Production of ceramics
Sakka et al. Superconducting oxides prepared by sol-gel process
JPH01122522A (en) Manufacture of oxide superconducting fiber
JPH03261009A (en) Manufacture of oxide superconductive wire
JPH02239103A (en) Precursor solution for superconducting ceramics
JPH027306A (en) Superconductive wire
JPS63294622A (en) Manufacture of oxide superconductor wire materials