JPS63237314A - Manufacture of superconductive compound material - Google Patents

Manufacture of superconductive compound material

Info

Publication number
JPS63237314A
JPS63237314A JP62072787A JP7278787A JPS63237314A JP S63237314 A JPS63237314 A JP S63237314A JP 62072787 A JP62072787 A JP 62072787A JP 7278787 A JP7278787 A JP 7278787A JP S63237314 A JPS63237314 A JP S63237314A
Authority
JP
Japan
Prior art keywords
metal
powder
oxide
paint
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62072787A
Other languages
Japanese (ja)
Other versions
JP2527179B2 (en
Inventor
Osamu Michigami
修 道上
Shugo Kubo
衆伍 久保
Keiichi Tanabe
圭一 田辺
Hidefumi Asano
秀文 浅野
Yujiro Kato
加藤 雄二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62072787A priority Critical patent/JP2527179B2/en
Publication of JPS63237314A publication Critical patent/JPS63237314A/en
Application granted granted Critical
Publication of JP2527179B2 publication Critical patent/JP2527179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a superconductive compound material moldable in any shape by burning a mixed substance including metallic paint consisting of a metal or alloy powder, binder and solvent, and also including superconductive oxide after applying the mixed substance on a heat resisting substrate. CONSTITUTION:Powder of superconductive oxide is dispersed in metallic paint consisting of a metal or alloy powder, binder and solvent and the paint is applied on the surface of a heat resisting substrate made of a metal or ceramics, etc. Thereafter, the paint is burned at a temperature of several hundreds deg.C. Thereby, particles of superconductive oxide are put together closely by means of coagulative effect of metallic powder. Then, metallic substance can simultaneously exist on the boundary faces of particles of oxide so that a stable compound material of low electric resistance can be produced as a whole. Thus, a strong compound material showing a superconductive phonomenon can be obtained because the particles of oxide may be covered with a metal strengthened through mutual dispersion of metallic particles under this condition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、任意の形状に形成が可能な超伝導性複合材の
作製方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a superconducting composite material that can be formed into any shape.

(従来の技術およびそめ問題点) 超伝導現象は超伝導臨界温度(T c )以下において
、電気抵抗がゼロになる現象であるが、この状態で電流
を流した場合、エネルギを消費しない、金属・合金系の
これまでの最高のTcは、Nb、Geの23.8 Kで
ある。高いTcを持つ合金系は A15構造という化合
物であり、非常に脆く加工することが難しい。このため
、これら材料を線材等に加工する場合、補助材の利用や
、加工性の良い状態で、線材等に成形した後、熱処理に
より所定の化合物超伝導体を形成する等、いくつかの方
法が開発されている。例えば。
(Prior art and related problems) Superconductivity is a phenomenon in which electrical resistance becomes zero below the superconducting critical temperature (T c ), but when a current is passed in this state, no energy is consumed in the metal.・The highest Tc of alloy systems to date is 23.8 K for Nb and Ge. The alloy system with high Tc is a compound with A15 structure, which is extremely brittle and difficult to process. For this reason, when processing these materials into wire rods, etc., there are several methods such as using auxiliary materials, forming them into wire rods, etc. in a state with good workability, and then forming a predetermined compound superconductor through heat treatment. is being developed. for example.

Cuパイプ等に化合物超伝導材料を埋め込み、このパイ
プを焼きなまし、引き抜きを多数回繰り返して線材にす
る方法、Nbの粉末とSnの粉末をNbパイプに充填し
、所定の形状比してから加熱し、N1gSn等を作製す
る方法、或は、溶融しているGa浴中にVテープを通過
させた後、熱処理してVzGa層を形成する方法等があ
り、超伝導材料に適した方法がある。何れもが、化合物
超伝導体そのものが加工性がないことに起因する。高い
Tcを持つ材料は、冷却方法の容易さから、また、冷却
コストの観点から実用的価値が高い、Nb、Ge等の超
伝導材を使用する場合、適当な冷媒が存在しないため、
高価な液体He(4,2K)を使用することになり、使
用コストは著しく高いものになっている。
A method of embedding a compound superconducting material in a Cu pipe, etc., annealing the pipe, and repeating drawing many times to make a wire rod.A method of filling a Nb pipe with Nb powder and Sn powder, heating it after forming a predetermined shape ratio. , N1gSn, etc., or a method of passing a V tape through a molten Ga bath and then heat-treating it to form a VzGa layer, which methods are suitable for superconducting materials. Both are due to the fact that the compound superconductor itself has no processability. Materials with high Tc have high practical value from the viewpoint of easy cooling methods and cooling costs.When using superconducting materials such as Nb and Ge, there is no suitable refrigerant.
Since expensive liquid He (4.2K) is used, the cost of use is extremely high.

ところが、最近、(Lat−xBax)zcu04. 
(Lat−xSrx)gcu04. (Y+−xBax
)Cu04等の酸化物が30〜100数10 Kという
高いTcを示すことが分かうてきた。
However, recently, (Lat-xBax)zcu04.
(Lat-xSrx)gcu04. (Y+-xBax
) It has been found that oxides such as Cu04 exhibit a high Tc of 30 to several 10 K.

77に以上のTcを持つ材料では、非常に安価な液体N
Xが使用できる。上記の酸化物にはこの条件を満足する
ものがあり、実用性の高い材料である。
For materials with Tc greater than 77, very cheap liquid N
X can be used. Some of the above oxides satisfy this condition and are highly practical materials.

しかし、酸化物は、加工性は全くなく、最初に述べた方
法で線材、厚膜、配線等に加工することも容易でなく、
使用上に大きな欠点があった。
However, oxides have no processability, and it is not easy to process them into wires, thick films, wiring, etc. using the method mentioned above.
There were major drawbacks in its use.

(問題点を解決するための手段)。(Means for solving problems).

本発明は、酸化物超伝導体の難加工性の問題を解決し、
任意の形状の酸化物超伝導体を含む複合材を容易に形成
する方法を提供するものである。
The present invention solves the problem of difficulty in processing oxide superconductors,
The present invention provides a method for easily forming a composite material containing an oxide superconductor of any shape.

具体的には、金属塗料にTcの高い酸化物超伝導体の粉
末を分散し、その塗料を金属あるいはセラミックス等の
耐熱性基板の表面に塗布し、その後、数100℃で焼成
することにより、酸化物超伝導体と金属からなる超伝導
性複合材を形成する。酸化物超伝導体は、数種の酸化物
や炭化物等を混合させ、800℃〜1300℃の温度で
焼成して作製できる。この焼成された酸化物超伝導体は
比較的硬い状態を示し、十分使用に耐えるものであるが
、複雑な形状や薄層状の酸化物超伝導材を形成すること
は、著しく困難である。
Specifically, powder of an oxide superconductor with a high Tc is dispersed in a metal paint, the paint is applied to the surface of a heat-resistant substrate such as metal or ceramics, and then fired at several hundred degrees Celsius. Form a superconducting composite consisting of an oxide superconductor and metal. Oxide superconductors can be produced by mixing several types of oxides, carbides, etc. and firing the mixture at a temperature of 800°C to 1300°C. Although this fired oxide superconductor exhibits a relatively hard state and is sufficiently durable for use, it is extremely difficult to form an oxide superconductor material with a complicated shape or a thin layer.

焼成された酸化物超伝導体は、一般のセラミックスと同
様に、衝撃によって容易に破壊されるが、粉体になった
としても個々の粒子は超伝導状態を示す、しかし、粉体
を高圧でプレスして固めた塊は、全体として高抵抗の状
態を示す。
Sintered oxide superconductors, like general ceramics, are easily destroyed by impact, but even when turned into powder, individual particles exhibit superconductivity. The pressed and solidified mass exhibits a state of high resistance as a whole.

これは、粉体の単一粒子はTc以下で超伝導状態を示し
ているにも関わらず、粉体同士の密着性が悪いために、
高い抵抗を示すことになる。
This is because even though a single particle of powder exhibits a superconducting state below Tc, the adhesion between powder particles is poor.
It will show high resistance.

高圧でプレスした状態では、接触部の抵抗を低下させる
ことも可能であるが、その用途は限られたものである。
Although it is possible to reduce the resistance of the contact portion when pressed under high pressure, its use is limited.

この様に、粉体のままでは、実用に供する範囲は著しく
狭い。
As described above, if the powder is used as it is, the scope of its practical use is extremely narrow.

上記酸化物超伝導体の機械的特性、加工性、及び、粉体
の接触特性等の問題点を解決するには、酸化物超伝導の
粒子そのものを加工するのではなく、個々の粒子の接触
抵抗を低下させると同時にそれらの状態が強固に固めら
れることが必要である。
In order to solve the problems of the mechanical properties, processability, and powder contact characteristics of the oxide superconductor mentioned above, it is necessary to contact each particle instead of processing the oxide superconductor particles themselves. It is necessary to lower the resistance and at the same time to solidify these conditions.

この方法として、本発明では酸化物超伝導粉体を金属塗
料に分散し、それらを焼成することにより、金属粉体の
凝集効果を利用し酸化物超伝導粒子を接近させる。同時
に、酸化物粒子界面に金属を介在することになり、接触
抵抗は減少し、全体として抵抗の低い安定した複合材を
得ることができる。この状態では酸化物粒子は、金属粒
子の相互拡散で強固になった金属で覆われているため複
合材は強靭となる。
As a method for this, in the present invention, oxide superconducting powder is dispersed in a metal paint, and by firing them, the oxide superconducting particles are brought close to each other by utilizing the agglomeration effect of the metal powder. At the same time, the presence of metal at the interface of the oxide particles reduces contact resistance, making it possible to obtain a stable composite material with low resistance as a whole. In this state, the oxide particles are covered with metal that has become stronger due to interdiffusion of the metal particles, making the composite material tougher.

本発明では、酸化物超伝導体として、(M1+−1M2
x)vCuOz (0<X<1.1≦Y≦2.2≦2≦
4、肘は■族金属(Sc、Y、La、Ce、Pr、Nd
、Pm、Yb、Lu、B、Al、Ga。
In the present invention, (M1+-1M2
x) vCuOz (0<X<1.1≦Y≦2.2≦2≦
4. Elbows are made of group ■ metals (Sc, Y, La, Ce, Pr, Nd
, Pm, Yb, Lu, B, Al, Ga.

In、TLEs)、M2は■族金属(Be、 Mg、 
Cdl Sr、 Ba、 Zn。
In, TLEs), M2 is group II metal (Be, Mg,
Cdl Sr, Ba, Zn.

Cd、 Hg、 Cf) )の中から選ばれた酸化物の
粉体であり、金属粉体として、Ag、Cu、Al等の比
較的融点の低い金属あるいは合金と更に、高分子系バイ
ンダとその溶剤の混合体を作製し、それを塗布した後、
焼成することにより超伝導現象を示す強固な複合材料を
容易に得るものである。
It is a powder of an oxide selected from Cd, Hg, Cf), and the metal powder is a metal or alloy with a relatively low melting point such as Ag, Cu, Al, etc., and a polymeric binder and its After making the solvent mixture and applying it,
By firing, a strong composite material exhibiting superconductivity can be easily obtained.

(実施例) 〔実施例1〕 エチルセルロース2gとブチルアセテート18gに1O
BIIIのAg粉Logを混合したA、塗料20gにT
c=85にの(Y(+、 5Baa、 5)CaO2粉
体20gを混合させた。
(Example) [Example 1] 2 g of ethyl cellulose and 18 g of butyl acetate with 1O
A mixed with BIII Ag powder Log, T with 20g of paint
20g of (Y(+, 5Baa, 5)CaO2 powder with c=85 was mixed.

この複合塗料を1インチの石英基板上に厚さ1m+−に
塗布し、400℃で1時間焼成した。また、同時に、酸
化物を混入しないAge料のみを、もう一枚の石英基板
上に同様の条件で塗布後、焼成した。
This composite paint was applied to a thickness of 1 m+- on a 1-inch quartz substrate and baked at 400° C. for 1 hour. At the same time, only the Age material containing no oxide was applied onto another quartz substrate under the same conditions, and then fired.

これら焼成した複合材を3+wa+X10+mの大きさ
に切り出し、電気抵抗測定用試料とした。第1図は4端
子法で測定した電気抵抗の測定温度依存性を示す、1の
点線は、Ag塗料のみから作製されたA、材の抵抗変化
であり、温度の減少と共に抵抗は減少することを示す、
2の実線は、酸化物とAgの複合材の電気抵抗の変化を
示したものである。温度の低下と共に、抵抗は減少する
が、90 K付近で急激に減少し、低温側で抵抗が残っ
ていることが分かる。抵抗が急激に減少する温度は、酸
化物そのもののTcであり、9は酸化物の8の抵抗変化
を示す。複合材でのTc以下の抵抗を便宜上、残留抵抗
と名づけるとする。
These fired composite materials were cut out into a size of 3+wa+X10+m and used as samples for measuring electrical resistance. Figure 1 shows the temperature dependence of electrical resistance measured using the four-terminal method.The dotted line 1 shows the resistance change of material A made only from Ag paint, and the resistance decreases as the temperature decreases. showing,
The solid line 2 shows the change in electrical resistance of the composite material of oxide and Ag. It can be seen that the resistance decreases as the temperature decreases, but sharply decreases around 90 K, and that resistance remains on the low temperature side. The temperature at which the resistance rapidly decreases is the Tc of the oxide itself, and 9 indicates the resistance change of 8 of the oxide. For convenience, the resistance below Tc in the composite material will be referred to as residual resistance.

液体N2温度(77K)では、残留抵抗がありこの値は
、Ag材の値の175程度である0作製された複合材は
金属的な強固な材料であった。
At the liquid N2 temperature (77K), there is a residual resistance, and this value is approximately 175 of the value of the Ag material.The composite material produced was a strong metallic material.

〔実施例2〕 実施例1と同様のAg塗料に、(Ml + −XM2X
) ycuoz(0<X<1.1≦Y≦2.2≦2≦4
、(Ml : Sc+Y、La、Ce。
[Example 2] The same Ag paint as in Example 1 was coated with (Ml + -XM2X
) ycuoz(0<X<1.1≦Y≦2.2≦2≦4
, (Ml: Sc+Y, La, Ce.

Pr+Nd、Pm、Yb、Lu、B、A1.Ga、In
、T1.Hs) % (M2 : Be。
Pr+Nd, Pm, Yb, Lu, B, A1. Ga, In
, T1. Hs) % (M2: Be.

Mg、Ca、Sr、Ba、Zn、Cdl)Iglcf)
)からなる酸化物超伝導体の粉体を少なくとも一種類分
散させて複合塗料とし、実施例1と同様の焼成試料を作
製し、抵抗を測定した。抵抗の温度依存性は実施例1の
図1の2の変化と同様の変化を示したが、急激な抵抗の
変化が見られる温度は、酸化物自身のTcであり、その
温度は酸化物により異なった。Tcの異なる2種類の酸
化物を分散した場合の焼成試料では、2段の急激な抵抗
減少が観測された。Ag塗料に分散させる酸化物の量が
多くなると、Tc以下の残留抵抗は減少した。しかし、
複合材の強度は減少する傾向にあった。バインダとして
小量のガラスを塗料に添加すると強度は改善された。
Mg, Ca, Sr, Ba, Zn, Cdl)Iglcf)
) A composite paint was prepared by dispersing at least one kind of powder of an oxide superconductor consisting of the following: ), a fired sample similar to that in Example 1 was prepared, and the resistance was measured. The temperature dependence of the resistance showed a change similar to the change in 2 in FIG. Different. In the fired sample in which two types of oxides with different Tc were dispersed, a two-step rapid decrease in resistance was observed. As the amount of oxide dispersed in the Ag paint increased, the residual resistance below Tc decreased. but,
The strength of composites tended to decrease. Strength was improved by adding small amounts of glass as a binder to the paint.

〔実施例3〕 実施例1と同様のバインダと溶剤にCa粉とAl粉を混
ぜ、Cu塗料とAl塗料を作製しルa1.5sro、 
zCub、の粉体を混合させ複合塗料とした。 Cu塗
料では600℃、AlPji料では300℃で焼成した
。この様にして作製した2種類の複合材は何れも実施例
1と同じ超伝導現象を示した。この時のTcは34にで
あった。
[Example 3] Mix Ca powder and Al powder with the same binder and solvent as in Example 1 to prepare Cu paint and Al paint.
The powder of zCub was mixed to make a composite paint. The Cu paint was fired at 600°C, and the AlPji material was fired at 300°C. Both of the two types of composite materials produced in this manner exhibited the same superconductivity phenomenon as in Example 1. Tc at this time was 34.

また、金属粉体として、CuとAlの粉体、或は、Ag
とAlの粉体を混合して塗料にしても、焼成された複合
材は同じ超伝導現象を示した。また、pbやSnのよう
な低融点金属の塗料を作製して、焼成に用いても同様の
効果が得られた。
In addition, as metal powder, Cu and Al powder or Ag
Even when powders of Al and Al were mixed to form a paint, the fired composite exhibited the same superconductivity phenomenon. Furthermore, the same effect was obtained even when a paint made of a low melting point metal such as PB or Sn was prepared and used for firing.

〔実施例4〕 市販のAg塗料(DUPONT 4929)に(Yo、
 5Bao、 5)CaO2粉体を混合させ複合塗料と
して、実施例1と同じ様に焼成して、複合材を作製した
。この試料においても98 Kで超伝導現象を示し、実
施例1と同じ挙動が観測された。
[Example 4] Commercially available Ag paint (DUPONT 4929) was coated with (Yo,
5Bao, 5) CaO2 powder was mixed to prepare a composite coating material, which was fired in the same manner as in Example 1 to produce a composite material. This sample also exhibited a superconducting phenomenon at 98 K, and the same behavior as in Example 1 was observed.

(発明の効果) 以上説明したように、金属系塗布材に、酸化物超伝導体
の粉体を分散させた混合体を、塗布し、それを焼成する
のであるから、溶剤とバインダは蒸発し、分散した金属
粉体粒子は酸化物粉体粒子を取り込みながら相互拡散を
伴い凝縮し、金属結合を形成するため、焼成された複合
材は機械的に強靭となる。焼成の際、酸化物粒子は相互
に接近し、かつ、酸化物粒子の接触界面には金属が介在
するため、酸化物粒子は固定され、酸化物粒子相互の接
触抵抗は減少して、Tc以下の残留抵抗が小さな、安定
した超伝導現象を示す材料となる。また、この複合材は
、塗布と焼成により形成できるため、任意の形状が容易
に形成できる利点がある。
(Effects of the Invention) As explained above, since a mixture in which oxide superconductor powder is dispersed is applied to a metal-based coating material and then baked, the solvent and binder are not evaporated. The dispersed metal powder particles condense while taking in the oxide powder particles through interdiffusion to form a metallic bond, so that the fired composite material becomes mechanically strong. During firing, the oxide particles come close to each other and metal is present at the contact interface of the oxide particles, so the oxide particles are fixed and the contact resistance between the oxide particles decreases to below Tc. It is a material that exhibits stable superconducting phenomena with a small residual resistance. Furthermore, since this composite material can be formed by coating and firing, it has the advantage that any shape can be easily formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、金属材、本発明の超伝導性複合材及び酸化物
超伝導体の電気抵抗の温度依存性を示す。 1はAg塗料のみを焼成したAg材の抵抗変化であり、
2は本発明の超伝導性複合材の抵抗変化であり、3は酸
化物超伝導体の抵抗変化である。
FIG. 1 shows the temperature dependence of the electrical resistance of a metal material, a superconducting composite material of the present invention, and an oxide superconductor. 1 is the resistance change of Ag material made by firing only Ag paint,
2 is the resistance change of the superconducting composite material of the present invention, and 3 is the resistance change of the oxide superconductor.

Claims (5)

【特許請求の範囲】[Claims] (1)金属、又は合金系粉末とバインダーと溶剤からな
る金属塗料に、酸化物超伝導体の粉末を混合させ、該混
合体を耐熱性基板に塗布した後、焼成することを特徴と
する超伝導性複合材の作製方法。
(1) A superconductor characterized by mixing oxide superconductor powder with a metal coating consisting of metal or alloy powder, binder, and solvent, applying the mixture to a heat-resistant substrate, and then firing it. Method for making conductive composites.
(2)上記酸化物超伝導体の粉末は、(M1_1_−_
XM2_X)_YCuO_Z(0<X<1、1≦Y≦2
、2≦Z≦4、M1はIII族金属(Sc、Y、La、C
e、Pr、Nd、Pm、Yb、Lu、B、Al、Ga、
In、Tl、Es)、M2はII族金属(Be、Mg、C
a、Sr、Ba、Zn、Cd、Hg、Cf))の中から
選ばれた酸化物の粉末であることを特徴とする特許請求
の範囲第1項記載の超伝導性複合材の作製方法。
(2) The above oxide superconductor powder is (M1_1_-_
XM2_X)_YCuO_Z(0<X<1, 1≦Y≦2
, 2≦Z≦4, M1 is a group III metal (Sc, Y, La, C
e, Pr, Nd, Pm, Yb, Lu, B, Al, Ga,
In, Tl, Es), M2 is a group II metal (Be, Mg, C
2. The method for producing a superconducting composite material according to claim 1, wherein the powder is an oxide selected from the group consisting of:
(3)上記金属又は合金は、Cu、Ag、Al等の比較
的再結晶温度の低い金属又はこれらの合金であることを
特徴とする特許請求の範囲第1項又は第2項記載の超伝
導性複合材の作製方法。
(3) The superconductor according to claim 1 or 2, wherein the metal or alloy is a metal having a relatively low recrystallization temperature, such as Cu, Ag, or Al, or an alloy thereof. Method for producing composite materials.
(4)上記バインダは、エポキシ系、ポリイミド系、ア
クリル系、ゴム系等の高分子樹脂であり、溶剤としては
、バインダを常温で溶融する揮発性の高い有機溶剤を使
用することを特徴とする特許請求の範囲第1項、第2項
、第3項いずれか記載の超伝導性複合材の作製方法。
(4) The binder is a polymeric resin such as epoxy, polyimide, acrylic, or rubber, and the solvent is a highly volatile organic solvent that melts the binder at room temperature. A method for producing a superconducting composite material according to any one of claims 1, 2, and 3.
(5)上記溶剤は、バインダとしての高分子分散材を溶
融し、かつ、揮発性の高い有機溶剤であることを特徴と
する特許請求の範囲第1項、第2項、第3項いずれか記
載の超伝導性複合材の作製方法。
(5) Any one of claims 1, 2, and 3, wherein the solvent is an organic solvent that melts a polymer dispersion material as a binder and is highly volatile. A method for producing the superconducting composite described.
JP62072787A 1987-03-26 1987-03-26 Method for producing superconducting composite material Expired - Fee Related JP2527179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62072787A JP2527179B2 (en) 1987-03-26 1987-03-26 Method for producing superconducting composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072787A JP2527179B2 (en) 1987-03-26 1987-03-26 Method for producing superconducting composite material

Publications (2)

Publication Number Publication Date
JPS63237314A true JPS63237314A (en) 1988-10-03
JP2527179B2 JP2527179B2 (en) 1996-08-21

Family

ID=13499447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072787A Expired - Fee Related JP2527179B2 (en) 1987-03-26 1987-03-26 Method for producing superconducting composite material

Country Status (1)

Country Link
JP (1) JP2527179B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0292385A2 (en) * 1987-05-18 1988-11-23 Sumitomo Electric Industries Limited Method of making oxide ceramic superconducting wires
JPH01144518A (en) * 1987-08-20 1989-06-06 Sumitomo Electric Ind Ltd Long-sized superconductor and manufacture thereof
US5834405A (en) * 1990-05-18 1998-11-10 International Business Machines Corporation Superconducting multilayer ceramic substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233070A (en) * 1987-03-23 1988-09-28 Semiconductor Energy Lab Co Ltd Preparation of superconductive ceramic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233070A (en) * 1987-03-23 1988-09-28 Semiconductor Energy Lab Co Ltd Preparation of superconductive ceramic

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0292385A2 (en) * 1987-05-18 1988-11-23 Sumitomo Electric Industries Limited Method of making oxide ceramic superconducting wires
US5686394A (en) * 1987-05-18 1997-11-11 Sumitomo Electric Industries, Ltd. Process for manufacturing a superconducting composite
JPH01144518A (en) * 1987-08-20 1989-06-06 Sumitomo Electric Ind Ltd Long-sized superconductor and manufacture thereof
US5834405A (en) * 1990-05-18 1998-11-10 International Business Machines Corporation Superconducting multilayer ceramic substrate

Also Published As

Publication number Publication date
JP2527179B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
JP2001513937A (en) Ceramic / metal and A15 / metal superconducting composite material applying superconducting proximity effect
GB2076430A (en) Superconductor wires
EP0606426A1 (en) Method for making an electrically conductive contact useful for joining high transition temperature superconductors
JPS63237314A (en) Manufacture of superconductive compound material
JP2904998B2 (en) Solid object made of ceramic high-temperature superconducting material connected to metal conductor and method of manufacturing the same
WO1989001706A1 (en) Machine workable, thermally conductive, high strength, ceramic superconducting composite
JPH06648B2 (en) Meltable superconductor and manufacturing method thereof
JP7277721B2 (en) Oxide superconducting bulk conductor and its manufacturing method
JP5399040B2 (en) Manufacturing method of oxide superconducting rod
JP2597704B2 (en) Metal-coated superconducting ceramics compact and metal-coated superconducting ceramic-metal joint using the same
JPH0238359A (en) Production of superconductor
JP2727565B2 (en) Superconductor manufacturing method
JPH01212225A (en) Oxide superconducting material
JPH01292871A (en) Manufacture of oxide superconductive molding with electrode layer
JP3149170B2 (en) Method for producing bismuth-based oxide superconductor
JPS63313416A (en) Superconductive wire rod and its manufacture
JPH0240813A (en) Manufacture of ceramic superconductive wire
JPH029101B2 (en)
JPH0315115A (en) Metal-coated oxide superconductor wire
JPH04124002A (en) Method for protecting oxide superconductor layer
JPS63285813A (en) Manufacture of superconductive material with metallized surface
JPS63314722A (en) Processing method for ceramic-based superconductive material
JPH02201819A (en) Compound superconductive material and manufacture thereof
JPH02252621A (en) Superconducting fibrous crystal and production thereof
JPH01192784A (en) Method for forming metal layer on surface of formed article of oxide superconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees