JPH0748627B2 - Piezoelectric vibrator - Google Patents

Piezoelectric vibrator

Info

Publication number
JPH0748627B2
JPH0748627B2 JP1773788A JP1773788A JPH0748627B2 JP H0748627 B2 JPH0748627 B2 JP H0748627B2 JP 1773788 A JP1773788 A JP 1773788A JP 1773788 A JP1773788 A JP 1773788A JP H0748627 B2 JPH0748627 B2 JP H0748627B2
Authority
JP
Japan
Prior art keywords
piezoelectric body
piezoelectric
electrode
temperature range
oscillation frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1773788A
Other languages
Japanese (ja)
Other versions
JPH01192204A (en
Inventor
雅紀 谷内
正明 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1773788A priority Critical patent/JPH0748627B2/en
Publication of JPH01192204A publication Critical patent/JPH01192204A/en
Publication of JPH0748627B2 publication Critical patent/JPH0748627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概要〕 圧電振動子の構成、特に圧電体の対向主面に形成した電
極に関し、 発振周波数の温度特性の向上を目的とし、 許容使用温度範囲で発振周波数の変化率の温度特性に極
小点のできる圧電体の対向主面に形成した電極が、長さ
方向の中間部に該温度範囲で複数の極小点を形成せしめ
る狭幅部の設けて構成する。
DETAILED DESCRIPTION OF THE INVENTION [Outline] Regarding the structure of a piezoelectric vibrator, particularly an electrode formed on the opposing main surface of a piezoelectric body, the rate of change of the oscillation frequency within an allowable operating temperature range is aimed at improving the temperature characteristics of the oscillation frequency. The electrode formed on the opposing main surface of the piezoelectric body having the minimum point in the temperature characteristic is provided with a narrow width portion which forms a plurality of minimum points in the temperature range in the middle portion in the length direction.

〔産業上の利用分野〕[Industrial application field]

本発明は圧電振動子の構成、特に所定の使用温度範囲で
発振周波数の変化率を低減させる構成上の改良に関す
る。
The present invention relates to a structure of a piezoelectric vibrator, and more particularly, to a structural improvement for reducing a change rate of an oscillation frequency in a predetermined operating temperature range.

〔従来の技術〕[Conventional technology]

振動子の圧電体には、水晶やセラミックおよびタンタル
酸リチウム,ニオブ酸リチウム等が利用されており、例
えば−10℃〜+60℃の如く決められた使用温度範囲で発
振周波数の変化率(発振周波数の温度特性)Δf/fは、
±200ppmの如き所定値に納まるように製造されている。
Crystals, ceramics, lithium tantalate, lithium niobate, etc. are used for the piezoelectric body of the oscillator. For example, the rate of change of the oscillation frequency (oscillation frequency) in the operating temperature range determined as -10 ° C to + 60 ° C. Temperature characteristic of Δf / f is
Manufactured to meet a specified value such as ± 200ppm.

かかる温度特性は使用する圧電体の材質および結晶方
位,外付けコンデンサの容量等によって変化し、一定幅
の電極を形成し共振周波数の変化率特性が使用温度範囲
に1つの極小点を有する従来の圧電素子、即ち水晶やセ
ラミックおよびタンタル酸リチウムを圧電体に使用した
圧電振動子は、該極小点が該温度範囲のほぼ中央に位置
するようにしていた。
Such a temperature characteristic changes depending on the material and crystal orientation of the piezoelectric body used, the capacity of the external capacitor, etc., forming an electrode with a constant width, and the change rate characteristic of the resonance frequency having one minimum point in the operating temperature range. In a piezoelectric element, that is, a piezoelectric vibrator using quartz, ceramics, and lithium tantalate as a piezoelectric body, the local minimum point is located substantially in the center of the temperature range.

第3図は従来の圧電素子を示す斜視図(イ)とその圧電
体に形成した電極の対向長さと発振周波数の変化率との
関係を示す図(ロ)であり、圧電素子1はリチウム酸タ
ンタレート等にてなる圧電体2の対向主面のそれぞれ
に、圧電体2の全幅に渡る電極3または4を形成してな
り、電極3,4から外部接続用のリード端子3aまたは4aが
圧電体2の端部に導出されている。
FIG. 3 is a perspective view (a) showing a conventional piezoelectric element and a view (b) showing the relationship between the facing length of electrodes formed on the piezoelectric body and the rate of change of the oscillation frequency. Electrodes 3 or 4 formed over the entire width of the piezoelectric body 2 are formed on the opposing main surfaces of the piezoelectric body 2 made of tantalate or the like, and the lead terminals 3a or 4a for external connection are formed from the electrodes 3 and 4 to the piezoelectric body. 2 is led to the end.

かかる圧電素子1において、圧電体2の厚さをHとし、
電極3と4の対向長さをlとしたとき、圧電素子1の発
振周波数の変化率Δf/f(ppm)は、l/Hによって変化
し、縦軸を発振周波数の変化率Δf/f(ppm)、横軸を温
度T(℃)とした第3図(ロ)において、実線で示す曲
線はl/Hが3.6である圧電素子1の周波数温度特性、一点
鎖線で示す曲線はl/Hが3.2である圧電素子1の周波数温
度特性、二点鎖線で示す曲線はl/Hが5.2である圧電素子
1の周波数温度特性である。
In the piezoelectric element 1, the thickness of the piezoelectric body 2 is H,
When the opposing length of the electrodes 3 and 4 is l, the change rate Δf / f (ppm) of the oscillation frequency of the piezoelectric element 1 changes with l / H, and the vertical axis shows the change rate Δf / f (of the oscillation frequency). ppm) and the horizontal axis is temperature T (° C) in FIG. 3 (b), the curve shown by the solid line is the frequency-temperature characteristic of the piezoelectric element 1 where l / H is 3.6, and the curve shown by the dashed line is l / H. Is 3.2 and the frequency-temperature characteristic of the piezoelectric element 1 is the frequency-temperature characteristic of the piezoelectric element 1 in which l / H is 5.2.

そこで、従来の圧電素子1はその使用温度範囲の中央、
例えば使用温度範囲が−10℃〜+60℃であるときは+25
℃に周波数温度特性の極小点が位置するようにされてい
たが、圧電素子1の周波数温度特性は圧電体2の結晶方
位によっても変化する。
Therefore, the conventional piezoelectric element 1 has the center of its operating temperature range,
For example, +25 when the operating temperature range is -10 ℃ to + 60 ℃
Although the minimum point of the frequency temperature characteristic is located at ° C, the frequency temperature characteristic of the piezoelectric element 1 also changes depending on the crystal orientation of the piezoelectric body 2.

第4図はタンタル酸リチウムの単結晶よりなる圧電体の
結晶方位と発振周波数の温度特性との示す図であり、縦
軸を発振周波数の変化率Δf/f(ppm)、横軸を温度T
(℃)とした第4図において、実線で示す曲線はX軸ま
わりの回転角度θが0度である圧電体の周波数の温度特
性、一点鎖線で示す曲線はX軸まわりの回転角度θが−
1度である圧電体の周波数の温度特性、二点鎖線で示す
曲線はX軸まわりの回転角度θが+1度である圧電体の
周波数の温度特性であり、−10℃〜+60℃の使用温度範
囲でθ=0度の圧電素子の周波数変化率Δf/fは0〜80p
pmであるのに対し、θ=+1度およびθ=−1度である
圧電素子のそれらは−20〜+135ppm,−10〜+135ppm程
度である。
FIG. 4 is a diagram showing the crystal orientation of a piezoelectric body made of a lithium tantalate single crystal and the temperature characteristic of the oscillation frequency, where the vertical axis represents the change rate Δf / f (ppm) of the oscillation frequency and the horizontal axis represents the temperature T.
(° C) in FIG. 4, the curve shown by the solid line is the temperature characteristic of the frequency of the piezoelectric body whose rotation angle θ about the X axis is 0 degrees, and the curve shown by the alternate long and short dash line is the rotation angle θ about the X axis is −.
The temperature characteristic of the frequency of the piezoelectric body which is 1 degree, the curve shown by the chain double-dashed line is the temperature characteristic of the frequency of the piezoelectric body whose rotation angle θ around the X axis is +1 degree, and the operating temperature of -10 ℃ to + 60 ℃ The frequency change rate Δf / f of the piezoelectric element with θ = 0 degree in the range is 0 to 80p
In contrast to pm, those of the piezoelectric element with θ = + 1 degree and θ = −1 degree are about −20 to +135 ppm and −10 to +135 ppm.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上説明したように従来の圧電振動子は発振周波数の変
化率の極小点が1つであり、該極小点は使用温度範囲の
ほぼ中央に位置するように、圧電体の結晶方位、対向電
極の対向長さ等を設定していたが、該結晶方位は単結晶
からの切り出しによって決まるものであり、対向電極の
対向長さは発振周波数に係わるため、温度特性の調整が
極めて困難であるという問題点があった。
As described above, the conventional piezoelectric vibrator has only one minimum point of the rate of change of the oscillation frequency, and the crystal orientation of the piezoelectric body and the counter electrode of the counter electrode are set so that the minimum point is located substantially in the center of the operating temperature range. Although the facing length and the like were set, the crystal orientation is determined by cutting out from the single crystal, and since the facing length of the facing electrode is related to the oscillation frequency, it is extremely difficult to adjust the temperature characteristics. There was a point.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の除去を目的とした本発明の圧電振動子は、
第1図によれば、−10℃〜+60℃の許容使用温度範囲で
発振周波数の変化率の温度特性に極小点のできる圧電体
12の対向主面に形成した電極13,14が、長さ方向の中間
部に該温度範囲で複数の極小点を形成せしめる狭幅部13
dの設けてなることを特徴とする。
The piezoelectric vibrator of the present invention intended to eliminate the above problems,
According to Fig. 1, a piezoelectric body that has a minimum point in the temperature characteristic of the rate of change of the oscillation frequency in the allowable operating temperature range of -10 ° C to + 60 ° C.
The electrodes 13 and 14 formed on the opposing main surfaces of 12 are narrow width portions 13 that form a plurality of minimum points in the temperature range in the middle portion in the length direction.
It is characterized by the provision of d.

〔作用〕[Action]

本発明によれば、圧電体12の対向主面に形成した電極の
長さ方向の中間部に、許容された使用温度範囲で発振周
波数の変化率の極小点を複数にする狭幅部を設けたこと
により、該温度範囲における該変化率の幅は従来よりも
狭められるようになる。
According to the present invention, in the middle portion in the lengthwise direction of the electrode formed on the opposing main surface of the piezoelectric body 12, a narrow width portion for providing a plurality of minimum points of the rate of change of the oscillation frequency within the allowable operating temperature range is provided. As a result, the range of the rate of change in the temperature range can be narrowed as compared with the conventional case.

〔実施例〕〔Example〕

以下に、図面を用いて本発明の実施例による圧電振動子
を説明する。
A piezoelectric vibrator according to an embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による圧電素子を示す斜視図
(イ)と該圧電素子の周波数温度特性を示す図(ロ)、
第2図は本発明の他の実施例による圧電素子を示す斜視
図(イ)と該圧電素子の周波数温度特性を示す図(ロ)
である。
FIG. 1 is a perspective view showing a piezoelectric element according to an embodiment of the present invention (a) and a frequency temperature characteristic of the piezoelectric element (b).
FIG. 2 is a perspective view showing a piezoelectric element according to another embodiment of the present invention (a) and a frequency temperature characteristic of the piezoelectric element (b).
Is.

第1図(イ)において、圧電振動子11は発振周波数の変
化率特性が使用温度範囲で極小点を形成する圧電体(例
えばタンタル酸リチウムの単結晶より切り出した圧電
体)12の対向主面に電極13および14を形成し、電極13の
長さ方向の中間部にレーザトリミングによる各一対のL
字形の溝15と直線溝16を形成すると共に、電極14に溝1
5,16にそれぞれ相当する溝(図示されず)を形成してな
る。
In FIG. 1 (a), the piezoelectric vibrator 11 has an opposing main surface of a piezoelectric body (for example, a piezoelectric body cut from a single crystal of lithium tantalate) 12 whose oscillation frequency change rate characteristic forms a local minimum point in the operating temperature range. Electrodes 13 and 14 are formed on each of the electrodes, and a pair of Ls formed by laser trimming are formed in the middle of the electrodes 13 in the longitudinal direction.
The groove 15 and the linear groove 16 are formed, and the groove 1 is formed on the electrode 14.
Grooves (not shown) corresponding to 5 and 16 are formed.

リード端子13aを具えた電極13に形成された溝15と16
は、電極13の一部分を電極13から切り離し、電極13が圧
電体12の全幅に渡る全幅部13b,13cと、圧電体12より狭
幅の狭幅部13dとで構成されるようにすると共に、電極1
4に形成され図示されない前記溝によって、リード端子1
4aを具えた電極14は、全幅部13b,13cおよび狭幅部13dに
相当する全幅部と狭幅部とで構成されるようになる。
Grooves 15 and 16 formed in the electrode 13 having lead terminals 13a
Is to separate a part of the electrode 13 from the electrode 13 so that the electrode 13 is composed of full width portions 13b and 13c extending over the entire width of the piezoelectric body 12 and a narrow width portion 13d narrower than the piezoelectric body 12. Electrode 1
The lead terminal 1 is formed by the groove formed in FIG. 4 and not shown.
The electrode 14 having 4a is composed of the full width portions 13b and 13c and the narrow width portion corresponding to the narrow width portion 13d and the narrow width portion.

このような圧電体11の発振周波数の変化率の温度特性
は、第1図(ロ)に示すように、縦軸を発振周波数の変
化率Δf/f(ppm)、横軸を温度T(℃)としたとき、測
定値をプロットし該プロットを妥当な曲線で結ぶと、該
曲線は−10℃〜+60℃の使用温度範囲で2つの極小点を
形成するようになり、その周波数変化率Δf/fは使用温
度範囲で0〜−70ppmの範囲に納まるようになる。
As shown in FIG. 1B, the temperature characteristic of the change rate of the oscillation frequency of the piezoelectric body 11 is as shown in FIG. 1B, the vertical axis shows the change rate Δf / f (ppm) of the oscillation frequency, and the horizontal axis shows the temperature T (° C. ), If the measured values are plotted and the plots are connected by an appropriate curve, the curve will form two minimum points in the operating temperature range of −10 ° C. to + 60 ° C., and the frequency change rate Δf / f comes to fall within the range of 0 to -70 ppm in the operating temperature range.

第1図(イ)と共通部分に同一符号を使用した第2図
(イ)において、圧電振動子21は、圧電体12の対向主面
にホトエッチング技術を利用した電極22と23を形成し、
電極22,23からリード端子22aまたは23aが導出されてな
る。
In FIG. 2 (a) in which the same reference numerals are used for the same parts as in FIG. 1 (a), the piezoelectric vibrator 21 has electrodes 22 and 23 formed on the main surface facing each other of the piezoelectric body 12 by using the photoetching technique. ,
A lead terminal 22a or 23a is led out from the electrodes 22 and 23.

圧電体12の全幅に形成した電極22は、その長さ方向の中
間部の2個所に圧電体12の幅方向に整列する複数個(図
は4個)の透孔24を形成したことにより、圧電体12の全
幅を覆う3個所の全幅部22bと、透孔24によって実電極
幅が狭くなる2個所の狭幅部22cとで構成される。
The electrode 22 formed on the entire width of the piezoelectric body 12 has a plurality of (four in the figure) through holes 24 aligned in the width direction of the piezoelectric body 12 at two positions in the middle portion in the length direction thereof. It is composed of three full width portions 22b covering the entire width of the piezoelectric body 12 and two narrow width portions 22c where the actual electrode width is narrowed by the through holes 24.

他方、圧電体12の下面に形成し図示されない電極23にも
透孔24に相当する透孔が設けられ、該透孔によって全幅
部22bおよび狭幅部22cに相当する全幅部と狭幅部とが電
極23に形成されるようになっている。
On the other hand, the electrode 23 (not shown) formed on the lower surface of the piezoelectric body 12 is also provided with a through hole corresponding to the through hole 24, and by the through hole, a full width portion corresponding to the full width portion 22b and a narrow width portion 22c and a narrow width portion are provided. Are formed on the electrodes 23.

このような圧電体21の発振周波数の変化率の温度特性
は、第1図(ロ)に示すように、縦軸を発振周波数の変
化率Δf/f(ppm)とし、横軸を温度T(℃)としたと
き、−10℃〜+60℃の使用温度範囲で3つの極小点を形
成するようになり、使用温度範囲における周波数変化率
Δf/fは、50ppm程度の範囲に納まるようになる。
As shown in FIG. 1B, the temperature characteristic of the change rate of the oscillation frequency of the piezoelectric body 21 is as shown in FIG. 1B, in which the vertical axis represents the change rate Δf / f (ppm) of the oscillation frequency and the horizontal axis represents the temperature T ( C), three minimum points are formed in the operating temperature range of −10 ° C. to + 60 ° C., and the frequency change rate Δf / f in the operating temperature range falls within the range of about 50 ppm.

なお、本発明によって電極の一部に狭幅部を形成する
と、そのことで共振周波数が低下する。そのため、本発
明による電極がかかる変化を予め予測し、狭幅部の形成
前の共振周波数は所期値より適当に高い共振周波数とな
るように形成する。
In addition, when the narrow width portion is formed in a part of the electrode according to the present invention, the resonance frequency is thereby lowered. Therefore, the electrode according to the present invention predicts such a change in advance, and the resonance frequency before the formation of the narrow portion is formed to be a resonance frequency that is appropriately higher than the desired value.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、圧電体12の対向主
面に形成した電極の長さ方向の中間部に、許容された使
用温度範囲で発振周波数の変化率の温度特性に複数の極
小点を形成せしめる狭幅部を設け、該温度範囲における
該変化率の幅は従来よりも狭めたことにより、圧電振動
子の温度特性は向上される。
As described above, according to the present invention, in the middle portion in the length direction of the electrode formed on the opposing main surface of the piezoelectric body 12, a plurality of local minimums are exhibited in the temperature characteristic of the change rate of the oscillation frequency in the allowable operating temperature range. The temperature characteristic of the piezoelectric vibrator is improved by providing the narrow width portion for forming the point and narrowing the width of the rate of change in the temperature range as compared with the conventional case.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例による圧電素子とその温度特
性、 第2図は本発明の他の実施例による圧電素子とその温度
特性、 第3図は従来の圧電素子とその温度特性、 第4図は圧電体の結晶方位と温度特性、 を示す。 図中において、 11,21は圧電振動子、12は圧電体、13,14,22,23は電極、
13b,13c,22bは全幅部、13d,22cは狭幅部、15,16はトリ
ミング溝、24は透孔、 である。
FIG. 1 is a piezoelectric element according to one embodiment of the present invention and its temperature characteristics, FIG. 2 is a piezoelectric element according to another embodiment of the present invention and its temperature characteristics, and FIG. 3 is a conventional piezoelectric element and its temperature characteristics. FIG. 4 shows the crystal orientation and temperature characteristics of the piezoelectric body. In the figure, 11,21 is a piezoelectric vibrator, 12 is a piezoelectric body, 13,14,22,23 are electrodes,
13b, 13c and 22b are full width portions, 13d and 22c are narrow width portions, 15 and 16 are trimming grooves, and 24 is a through hole.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】許容使用温度範囲で発振周波数の変化率の
温度特性に極小点のできる圧電体(12)の対向主面に形
成した電極(13,14,22,23)が、長さ方向の中間部に該
温度範囲で複数の極小点を形成せしめる狭幅部(13d,22
c)の設けてなることを特徴とする圧電振動子。
1. An electrode (13,14,22,23) formed on an opposing main surface of a piezoelectric body (12) having a minimum point in temperature characteristics of a change rate of an oscillation frequency in an allowable operating temperature range has a longitudinal direction. Narrow width part (13d, 22d) that forms a plurality of minimum points in the temperature range in the middle part of
A piezoelectric vibrator characterized by being provided in step c).
JP1773788A 1988-01-28 1988-01-28 Piezoelectric vibrator Expired - Lifetime JPH0748627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1773788A JPH0748627B2 (en) 1988-01-28 1988-01-28 Piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1773788A JPH0748627B2 (en) 1988-01-28 1988-01-28 Piezoelectric vibrator

Publications (2)

Publication Number Publication Date
JPH01192204A JPH01192204A (en) 1989-08-02
JPH0748627B2 true JPH0748627B2 (en) 1995-05-24

Family

ID=11952060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1773788A Expired - Lifetime JPH0748627B2 (en) 1988-01-28 1988-01-28 Piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JPH0748627B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492824U (en) * 1990-12-28 1992-08-12

Also Published As

Publication number Publication date
JPH01192204A (en) 1989-08-02

Similar Documents

Publication Publication Date Title
US4355257A (en) Thickness shear type piezoelectric vibrator with integral mounting
JPH0232807B2 (en)
JPS60137112A (en) Piezoelectric vibrator
JPH0748627B2 (en) Piezoelectric vibrator
JPS6357967B2 (en)
JPH0870232A (en) Surface acoustic wave element and oscillat0r
JP2855208B2 (en) LiTaO 3 Lower piezoelectric resonator
JPS60113511A (en) Piezoelectric vibrating element
JPS5824503Y2 (en) Width-slip crystal oscillator
JPS6173409A (en) Elastic surface wave device
JPS62220012A (en) Piezoelectric vibration element
JPS63117507A (en) Piezoelectric vibrating element
JPH0213007A (en) Litao3 thickness-share vibrator
JPS5827547Y2 (en) crystal oscillator
JPH0344451B2 (en)
JPH01288006A (en) Piezoelectric vibrator element
JPS5827550Y2 (en) Thickness sliding piezoelectric vibrator
JPH0918279A (en) Quartz vibrator
JPS62239707A (en) Crystal resonator
JPH03268508A (en) Piezo-electric vibration element
JP2003224448A (en) Surface acoustic wave element
JPS6382113A (en) Surface acoustic wave element
JPS5837150Y2 (en) piezoelectric crystal resonator
JPS5838651Y2 (en) crystal oscillator
JPS587702Y2 (en) Width-slip crystal oscillator