JPS6173409A - Elastic surface wave device - Google Patents

Elastic surface wave device

Info

Publication number
JPS6173409A
JPS6173409A JP19561084A JP19561084A JPS6173409A JP S6173409 A JPS6173409 A JP S6173409A JP 19561084 A JP19561084 A JP 19561084A JP 19561084 A JP19561084 A JP 19561084A JP S6173409 A JPS6173409 A JP S6173409A
Authority
JP
Japan
Prior art keywords
crystal substrate
cut
surface wave
euler
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19561084A
Other languages
Japanese (ja)
Inventor
Shingo Makino
真吾 牧野
Yasuhiro Shoji
正司 康宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP19561084A priority Critical patent/JPS6173409A/en
Publication of JPS6173409A publication Critical patent/JPS6173409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To set up a pitch between electrodes to a large value and to set up frequency to a high level easily by setting up the Euler's angle of the ST cut to about 90 deg. and forming an electrode body on a crystal substrate so that the transmitting direction of a surface wave transmitting on the crystal substrate makes about 90 deg. with the transmitting direction due to the ST cut. CONSTITUTION:Euler's angle display consisting of three parameters PHI, THETA, psito X, Y and Z axes is used for the separating method of the crystal substrate similarly to the ordinary method. The Euler's angle indicating the transmitting direction of the surface wave out of the Euler's angles PHI=0 deg., THETA=132.75 deg. and psi=0 deg. in the ordinary ST cut is changed to 90 deg. to cut off the crystal body 5, to form a crystal substrate 1' and a comb type electrode 2'. Consequently, the transmitting direction of the surface wave is obtained in the direction rectan gular to that of a surface wave on a crystal substrate 1' separated by the ordi nary ST cut and the transmitting speed V of the surface wave can be increased.

Description

【発明の詳細な説明】 Z又上勿且且立■ 本発明は弾性表面波装置に関し、詳しくは共振素子とし
て利用される弾性表面波共振子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface acoustic wave device, and more particularly to a surface acoustic wave resonator used as a resonant element.

従天二孜玉 一般に弾性表面波装置は、水晶、タンタル酸リチウム等
の単結晶やセラミックなどからなる圧電製基板の圧電効
果による弾性表面波を利用したもので、特に共振素子と
して使用される弾性表面波共振子(以下SAW共振子と
称す)では、上記圧電性基板に水晶基板を使用すること
が多い。
In general, surface acoustic wave devices utilize surface acoustic waves caused by the piezoelectric effect of piezoelectric substrates made of single crystals such as quartz, lithium tantalate, or ceramics. In surface wave resonators (hereinafter referred to as SAW resonators), a crystal substrate is often used as the piezoelectric substrate.

例えば水晶基板を使用したSAW共振子の具体例を第5
図及び第6図を参照しながら説明すると、(1)は圧電
性基板である水晶基板、(2)は一定間隔λ毎に区切ら
れた櫛形の電極体の一対を互いに櫛歯をかみ合わせて水
晶基板(1)上に形成したA4蒸M膜による櫛形電極、
(3)  (3)は櫛形電極(2)により励起された表
面波の反射器で、櫛形電極(2)の両側の水晶基板(1
)上に表面波の伝播方向と直交するぶ従長のパターンで
形成したAl蒸着膜によるグレーティング電極(4)(
4)からなる回折格子である。
For example, a specific example of a SAW resonator using a crystal substrate is shown in the fifth section.
To explain with reference to the figures and FIG. 6, (1) is a quartz crystal substrate which is a piezoelectric substrate, and (2) is a quartz crystal substrate in which a pair of comb-shaped electrode bodies separated at regular intervals λ are interlocked with each other. A comb-shaped electrode made of an A4 vaporized M film formed on the substrate (1),
(3) (3) is a reflector for surface waves excited by the comb-shaped electrode (2), and is a reflector for the surface waves excited by the comb-shaped electrode (2).
), a grating electrode (4) made of an Al vapor-deposited film formed in a vertical pattern perpendicular to the propagation direction of surface waves (
4).

上記SAW共振子における櫛形電極(2)にパルス電圧
を印加すると、圧電効果により隣り合う電極間の基板表
面に互いに逆位相の歪みが生じ、波長λの表面波が励起
される。この表面波は水晶基板(1)上を伝播し、反射
器(3)(3)の各グレーティング電極(4)(4)に
到達する毎に反射波と透過波に分かれる。そこで各グレ
ーティング電極(4)(4>からの反射波の位相が揃う
ように各グレーティング電極<4)(4)間の間隔を決
めれば第6図の破線に示すように各反射器(3)(3)
間に波長λの定在波が励起され共振子となる。上記表面
波又は反射波の共振周波数fはf=V/λ(Vは伝播速
度)で与えられ、波長λは電極間ピンチで決定され、且
つ、伝播速度Vは圧電性基板の材質によって決定される
When a pulse voltage is applied to the comb-shaped electrode (2) in the SAW resonator, a piezoelectric effect causes distortions in opposite phases to occur on the substrate surface between adjacent electrodes, and a surface wave with a wavelength λ is excited. This surface wave propagates on the crystal substrate (1) and is separated into a reflected wave and a transmitted wave each time it reaches each grating electrode (4) (4) of the reflector (3) (3). Therefore, if the spacing between each grating electrode <4) (4) is determined so that the phases of the reflected waves from each grating electrode (4) (4> are aligned, each reflector (3) (3)
A standing wave of wavelength λ is excited between them and becomes a resonator. The resonance frequency f of the surface wave or reflected wave is given by f=V/λ (V is the propagation velocity), the wavelength λ is determined by the pinch between the electrodes, and the propagation velocity V is determined by the material of the piezoelectric substrate. Ru.

ところで上記SAW共振子の製造において、圧電性基板
である水晶基板(1)は第7図に示すようなXYZ軸か
らなる結晶軸を有する水晶体(5)から切り出して製造
される。上記水晶基板(1)上を伝播する表面波の伝播
速度■は水晶体(5)からの水晶基板(1)の切出し方
によって決定され、例えば近年ではSTカットなる切出
し方により所定の伝播速度■を有する水晶基板(1)を
切り出している。このSTカットによる水晶基板(1)
の切出し方を以下に説明すると、まず第8図に示すよう
にカット面(m)を表示するため水晶体(5)のXYZ
軸に対してΦ、Θ、Ψの31固のパラメータからなるオ
イラー角表示を使用する。オイラー角φはZ軸を中心と
したX軸からの回転角、即ちZ−0の基準面(mo>上
でのX軸となす角度で、またオイラー角θはカット面(
m)の法線nとZ軸とのなす角度で、更にオイラー角型
はカット面(m)上において基準面(no)及びカフ)
面(m)の交線lとなす角度で表面波の伝播方向を示す
、上記オイラー角Φ、Θ、Ψによってカット面(m)を
決定し、例えばSTカプトの場合、Φ−〇°、e−13
2,75°、’F−0”からなるオイラー角によって第
9図に示すようにカット面(m′)が決定され、このカ
ット面(m′)が板面となるような水晶基板(1°)を
水晶体(5)から切出す。この時、上記オイラー角!=
0°であるため水晶基板(1′)上を伝播する表面波の
伝播方向は第10図の矢印に示すようにX軸方向となり
、このX軸方向と直交する方向に櫛歯がかみ合うように
櫛形電極(2′)を水晶基板(1″)上に形成して第1
1図に示すSAW共振子を得る。
By the way, in manufacturing the above-mentioned SAW resonator, a crystal substrate (1) which is a piezoelectric substrate is manufactured by cutting out a crystalline body (5) having crystal axes consisting of XYZ axes as shown in FIG. The propagation velocity (■) of the surface wave propagating on the crystal substrate (1) is determined by the way the crystal substrate (1) is cut out from the crystalline lens (5). A crystal substrate (1) having the following structure is cut out. Crystal substrate by this ST cut (1)
To explain how to cut out the crystalline lens (5), first, as shown in Fig. 8, in order to display the cut plane (m),
An Euler angle representation consisting of 31 parameters Φ, Θ, and Ψ is used for the axis. The Euler angle φ is the rotation angle from the X axis around the Z axis, that is, the angle made with the X axis on the Z-0 reference plane (mo>), and the Euler angle θ is the rotation angle from the
The angle between the normal n of m) and the Z axis, and the Euler square shape is the angle between the reference plane (no) and the cuff) on the cut surface (m).
The cut plane (m) is determined by the above Euler angles Φ, Θ, Ψ, which indicate the propagation direction of the surface wave by the angle formed with the intersection line l of the plane (m). For example, in the case of ST Kapto, Φ-〇°, e -13
The cut plane (m') is determined by the Euler angle of 2.75° and 'F-0' as shown in Fig. 9, and the cut plane (m') is the plate surface. °) is cut out from the crystalline lens (5).At this time, the above Euler angle !=
0°, the propagation direction of the surface wave propagating on the crystal substrate (1') is in the X-axis direction as shown by the arrow in Figure 10, and the comb teeth are interlocked in a direction perpendicular to this X-axis direction. A comb-shaped electrode (2') is formed on the crystal substrate (1'') and the first
The SAW resonator shown in Figure 1 is obtained.

■ ()I′シー゛と る。占 従来、上述したようにSTカットによる水晶基板(1゛
)における表面歯の伝播速度Vは3158 m/s程度
であり、近年のSAW共振子における共振周波数fの高
周波化に伴い、例えばUHF帯で使用するS A W共
振子の場合、表面波の波長λを小さくするため、電極間
ピンチを1μm程度に設定して櫛形電極(2°)を形成
しなければならない。この1μm程度の電極間ピッチを
有する櫛形電極(2°)を水晶基板(1°)上に形成す
るには、高度なフォトリソグラフィー技術を必要とし、
プロセス技術的に困難性を伴い、SAW共振子の高周波
化を図ることが容易ではなかった。
■ ()I' Seat. Conventionally, as mentioned above, the propagation velocity V of the surface teeth in the ST-cut crystal substrate (1゛) is about 3158 m/s, and as the resonant frequency f of SAW resonators has become higher in recent years, for example in the UHF band. In the case of the SAW resonator used in , in order to reduce the wavelength λ of the surface wave, the interelectrode pinch must be set to about 1 μm to form comb-shaped electrodes (2°). In order to form comb-shaped electrodes (2°) with an inter-electrode pitch of about 1 μm on a crystal substrate (1°), advanced photolithography technology is required.
It has been difficult to increase the frequency of the SAW resonator due to difficulties in process technology.

a行内を   るための 1 本発明は上記問題点に鑑み提案されたもので、この問題
点を解決する技術的手段は、XYZ軸からなる結晶軸を
有する水晶体から、Φ、e、甲のオイラー角で決定され
るSTカットで切り出された水晶基板上に、櫛歯がかみ
合うように薄膜状の電極体を形成したものであって、上
記STカー/ トのオイラー角ψを90°近傍に設定す
ることにより水晶基板上を伝播する表面波の伝播方向が
3T力7トによる伝播方向と略90゜の角度をなすよう
に上記水晶基板上に電極体を形成したものである。
1 The present invention was proposed in view of the above problem, and the technical means to solve this problem is to convert the crystalline lens having crystal axes consisting of XYZ axes into Eulerian A thin film electrode body is formed on a quartz crystal substrate cut by an ST cut determined by the angle, and the Euler angle ψ of the ST cart is set to around 90°. As a result, the electrode body is formed on the crystal substrate so that the propagation direction of the surface wave propagating on the crystal substrate forms an angle of approximately 90° with the propagation direction due to the 3T force.

五土医 以下に本発明を第5図及び第6図に示すSAW共振子に
適用した一実施例を第1図乃至第4図を参照しながら説
明する。本発明の特徴は、表面波の伝播速度Vが大きく
なるように水晶体から切り出された水晶基板を使用する
ことにある。即ち本発明で使用される水晶基板は第7図
に示すようなXYZ軸からなる結晶軸を有する水晶体〈
5)から切り出して製造される。この水晶基板の切出し
方は従来要領と同様に上記xyz軸に対してΦ、e、v
の3個のパラメータからなるオイラー角表示をf吏用す
る。これは前述した如く第8図にも示すようにオイラー
角甲はZ軸を中心としたX軸からの回転角、部ちXY面
と一致するZ=CI基準面(mo)上でのX軸となす角
度で、またオイラー角eはカット面(m)の法Ijtn
とZ軸とのなす角度で、更にオイラー角型はカット面(
阻)上において基準面(mo )及びカット面(m )
の交線βとなす角度で表面波の伝播方向を示し、このオ
イラー角Φ、o1甲によってカット面(m)を決定する
。本発明の場合、φ=0゛、θ−132,75°、!−
90’なるオイラー角によって第1閲に示すようにカッ
ト面(m−が決定され、このカット面(m”)が板面と
なるような水晶基板(1”)を水晶体(5)から切出す
、この時、上記オイラー角’P=90”であるため水晶
基板(1”〉上を伝播する表面波の伝播方向は第2図の
矢印に示すようにX!IlIと直交する方向となり、こ
の伝播方向と直交する方向に櫛歯がかみ合うように櫛形
電極(2′)を水晶基板(1”)上に形成して第3図に
示すS A W共振子を得る。このように従来のSTカ
フトにおけるオイラー角Φ=O°、θ=132.75°
、甲=0°の内、表面波の伝播方向を示すオイラー角型
を90°に変更して水晶体(5)をカットして水晶基板
(1”)を形成し、且つ、櫛形電極(2′)を形成する
と、従来のSTカフトで切り出された水晶基板(1′)
上での表面波の伝播方向(X軸方向)と直交する方向に
表面波の伝播方向が得られ、表面波の伝播速度■を大き
くすることができる。本出願人の実験結果によれば、第
4図に示すように共振周波数特性において、上記オイラ
ー角型が90゜近傍にて共振周波数[が略ピーク値を示
し、従来のSTカットでのオイラー角型が0°の場合の
約1.6倍の共振周波数fを得ることができる。
One embodiment of the present invention applied to the SAW resonator shown in FIGS. 5 and 6 will be described below with reference to FIGS. 1 to 4. A feature of the present invention lies in the use of a crystal substrate cut out from a crystalline lens so that the propagation velocity V of surface waves is increased. That is, the crystal substrate used in the present invention is a crystalline substance having crystal axes consisting of the XYZ axes as shown in FIG.
5) Manufactured by cutting out from. This crystal substrate is cut out in the same way as the conventional method, with Φ, e, v
An Euler angle representation consisting of three parameters is used. As mentioned above and shown in Figure 8, Euler's horn is the rotation angle from the X-axis around the Z-axis, and the X-axis on the Z = CI reference plane (mo), which coincides with the XY plane. and the Euler angle e is the modulus of the cut surface (m) Ijtn
In addition, the Euler square shape has a cut surface (
on the reference plane (mo) and the cut plane (m)
The propagation direction of the surface wave is indicated by the angle formed with the intersection line β, and the cut plane (m) is determined by this Euler angle Φ, o1A. In the case of the present invention, φ=0゛, θ-132,75°,! −
The cut plane (m-) is determined by the Euler angle of 90' as shown in the first review, and the crystal substrate (1") is cut out from the crystalline lens (5) such that this cut plane (m") becomes the plate surface. , At this time, since the above Euler angle 'P=90'', the propagation direction of the surface wave propagating on the crystal substrate (1'') is perpendicular to X!IlI as shown by the arrow in Figure 2, and this A comb-shaped electrode (2') is formed on a crystal substrate (1'') so that the comb teeth are interlocked in a direction perpendicular to the propagation direction to obtain the S A W resonator shown in FIG. 3. In this way, the conventional ST Euler angle at the cuft Φ=O°, θ=132.75°
, the Euler angle indicating the propagation direction of the surface wave is changed to 90°, and the crystalline lens (5) is cut to form a crystal substrate (1"), and the comb-shaped electrode (2' ), the crystal substrate (1') cut out using the conventional ST cup
The propagation direction of the surface waves can be obtained in a direction perpendicular to the propagation direction of the surface waves (X-axis direction) above, and the propagation speed (2) of the surface waves can be increased. According to the applicant's experimental results, as shown in Fig. 4, in the resonant frequency characteristic, the resonant frequency [shows approximately the peak value when the above-mentioned Euler angle is around 90°, and the Euler angle in the conventional ST cut It is possible to obtain a resonance frequency f that is approximately 1.6 times that when the mold is at 0°.

11の41巣 本発明によれば、従来のSTカットでのオイラー角゛y
を90°近傍に設定することにより水晶基板上を伝播す
る表面波の伝播方向がX軸方向と略90°の角度をなす
ように水晶基板上に電極体を形成したから、従来の共振
周波数を得ようとする場合には、電極間ピッチを大きく
設定することができ、即ち高度なフォトリソグラフィー
技術を必要とせず、プロセス技術的にも容易に高周波化
を図ることが実現可能となる。
11 of 41 According to the present invention, the Euler angle ゛y in the conventional ST cut
Since the electrode body is formed on the crystal substrate so that the propagation direction of the surface wave propagating on the crystal substrate forms an angle of approximately 90 degrees with the X-axis direction by setting the If desired, the inter-electrode pitch can be set large, and in other words, high frequency can be easily achieved in terms of process technology without requiring sophisticated photolithography technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明の一実施例を説明するための
もので、第1図は本発明におけるオー(ラー角表示によ
るカット面を示す説明図、第2図は本発明におけるカッ
ト面に形成した櫛形型を舅を示す説明図、第3図は本発
明に係る弾性表面波装置(SAW共振子)を示す平面図
、第4図は共振周波数特性を示す特性図である。第5図
は一般的な弾性表面波装置(SAw共振子)の具体例を
示す斜視図、第6図は第5図のA−A線に沿う断面図、
第7図は水晶体の一例を示す斜視図、第8図はオイラー
角表示を説明するための説明図、第9図は従来における
オイラー角表示によるSTカット面を示す説明図、第1
0図は従来のSTカプト面に形成した櫛形電極を示す説
明図、第11図は従来の弾性表面波装置(SAW共振子
)を示す平面図である。 (1)  (1’)−m−水晶基板、(2)  (2°
)−・電極体く櫛形電極)、(5)・−・水晶体。 と: 115  図 116  図 s 8 図 第 99 X軸方−
1 to 4 are for explaining one embodiment of the present invention. FIG. 1 is an explanatory diagram showing a cut surface according to the O(R) angle representation in the present invention, and FIG. 2 is an explanatory diagram showing a cut surface in the present invention. FIG. 3 is a plan view showing a surface acoustic wave device (SAW resonator) according to the present invention, and FIG. 4 is a characteristic diagram showing resonance frequency characteristics. FIG. 5 is a perspective view showing a specific example of a general surface acoustic wave device (SAw resonator), FIG. 6 is a sectional view taken along line A-A in FIG. 5,
Fig. 7 is a perspective view showing an example of a crystalline lens, Fig. 8 is an explanatory drawing for explaining Euler angle display, Fig. 9 is an explanatory drawing showing an ST cut surface by conventional Euler angle display,
FIG. 0 is an explanatory view showing a conventional comb-shaped electrode formed on an ST cupto surface, and FIG. 11 is a plan view showing a conventional surface acoustic wave device (SAW resonator). (1) (1')-m-crystal substrate, (2) (2°
)--electrode body comb-shaped electrode), (5)-- crystalline lens. and: 115 Figure 116 Figure s 8 Figure 99 X-axis direction -

Claims (1)

【特許請求の範囲】[Claims] (1)XYZ軸からなる結晶軸を有する水晶体から、Φ
、Θ、Ψのオイラー角で決定されるSTカットで切り出
された水晶基板上に、櫛歯がかみ合うように薄膜状の電
極体を形成したものであって、上記STカットのオイラ
ー角Ψを90°近傍に設定することにより水晶基板上を
伝播する表面波の伝播方向がSTカットによる伝播方向
と略90°の角度をなすように上記水晶基板上に電極体
を形成したことを特徴とする弾性表面波装置。
(1) From a crystalline lens with crystal axes consisting of XYZ axes, Φ
, Θ, Ψ A thin film-like electrode body is formed on a quartz crystal substrate cut out with an ST cut determined by the Euler angles of , Θ, and Ψ so that the comb teeth engage with each other. The electrode body is formed on the crystal substrate so that the propagation direction of the surface wave propagating on the crystal substrate forms an angle of approximately 90 degrees with the propagation direction by the ST cut by setting the electrode body near 90°. surface wave device.
JP19561084A 1984-09-18 1984-09-18 Elastic surface wave device Pending JPS6173409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19561084A JPS6173409A (en) 1984-09-18 1984-09-18 Elastic surface wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19561084A JPS6173409A (en) 1984-09-18 1984-09-18 Elastic surface wave device

Publications (1)

Publication Number Publication Date
JPS6173409A true JPS6173409A (en) 1986-04-15

Family

ID=16344022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19561084A Pending JPS6173409A (en) 1984-09-18 1984-09-18 Elastic surface wave device

Country Status (1)

Country Link
JP (1) JPS6173409A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777419A (en) * 1995-08-15 1998-07-07 Motorola Inc. Surface acoustic wave device with minimized bulk scattering
WO2000024123A1 (en) * 1998-10-16 2000-04-27 Seiko Epson Corporation Surface acoustic wave device
US6856218B2 (en) * 2001-12-28 2005-02-15 Seiko Epson Corporation Surface acoustic wave device and communications apparatus using the same
US7336016B2 (en) 2003-08-20 2008-02-26 Seiko Epson Corporation Surface-acoustic wave device and method of manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777419A (en) * 1995-08-15 1998-07-07 Motorola Inc. Surface acoustic wave device with minimized bulk scattering
WO2000024123A1 (en) * 1998-10-16 2000-04-27 Seiko Epson Corporation Surface acoustic wave device
US6339277B1 (en) 1998-10-16 2002-01-15 Seiko Epson Corporation Surface acoustic wave device
US6566788B2 (en) 1998-10-16 2003-05-20 Seiko Epson Corporation Surface acoustic wave device
CN1130824C (en) * 1998-10-16 2003-12-10 精工爱普生株式会社 Surface acoustic wave device
US6856218B2 (en) * 2001-12-28 2005-02-15 Seiko Epson Corporation Surface acoustic wave device and communications apparatus using the same
US7336016B2 (en) 2003-08-20 2008-02-26 Seiko Epson Corporation Surface-acoustic wave device and method of manufacturing same

Similar Documents

Publication Publication Date Title
KR102156247B1 (en) Elastic wave device
TWI762832B (en) Surface acoustic wave device
GB2098395A (en) Gt-cut piezo-electric resonators
US7352104B2 (en) Surface acoustic wave element, method of manufacturing the same and surface acoustic wave device
JPH01129517A (en) Manufacture of surface wave resonance element
JPH07263998A (en) End face reflecting surface wave resonator
US4926086A (en) Piezoelectric resonator
JPS6173409A (en) Elastic surface wave device
US4670681A (en) Singly rotated orientation of quartz crystals for novel surface acoustic wave devices
JPS61134111A (en) Lithium tantalate single crystal wafer
JP2004146963A (en) Super-thin plate piezoelectric device and manufacturing method thereof
JPH02295212A (en) Surface acoustic wave resonator
JPS61222312A (en) Surface acoustic wave device
JP2565880B2 (en) Manufacturing method of surface acoustic wave device
JPH04294622A (en) Production of piezoelectric element
JP2007053670A (en) Elastic boundary wave element
JPS6127929B2 (en)
JPS616919A (en) Surface acoustic wave element
JPS6346605B2 (en)
JPS6264110A (en) Manufacture of piezoelectric crystal device
JPH10126208A (en) Surface acoustic wave device
JPS6072311A (en) Lithium tantalate piezo-electric vibrator
JPS63118715A (en) Acoustooptic element
JP2640937B2 (en) Overtone oscillation piezoelectric resonator with composite structure
JPS62220012A (en) Piezoelectric vibration element