JPH0744788B2 - Control system of reactive power compensator - Google Patents

Control system of reactive power compensator

Info

Publication number
JPH0744788B2
JPH0744788B2 JP61300395A JP30039586A JPH0744788B2 JP H0744788 B2 JPH0744788 B2 JP H0744788B2 JP 61300395 A JP61300395 A JP 61300395A JP 30039586 A JP30039586 A JP 30039586A JP H0744788 B2 JPH0744788 B2 JP H0744788B2
Authority
JP
Japan
Prior art keywords
bus
voltage
svc
reactive power
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61300395A
Other languages
Japanese (ja)
Other versions
JPS63154024A (en
Inventor
尚 西迫
茂 陰野
英機 山村
政弘 石浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP61300395A priority Critical patent/JPH0744788B2/en
Publication of JPS63154024A publication Critical patent/JPS63154024A/en
Publication of JPH0744788B2 publication Critical patent/JPH0744788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、定電圧制御方式による無効電力補償装置にお
いて、無効電力補償装置の設置母線と抑制対象母線が異
なる場合、両母線の電圧を検出して重みづけにより、両
母線の電圧制御を行う方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention, in a var compensator using a constant voltage control method, detects the voltage of both var compensators when the installed var compensator and the bus to be suppressed are different. Then, the present invention relates to a method of performing voltage control of both buses by weighting.

[従来技術と問題点] 第4図は無効電力補償装置の概略を一相分について示
す。図において、1は交流電源、2は電源側の短絡イン
ピーダンス、3は降圧変圧器等の漏洩インピーダンス、
4は無効電力補償装置(以下SVCという)である。
[Prior Art and Problems] FIG. 4 shows an outline of a reactive power compensator for one phase. In the figure, 1 is an AC power supply, 2 is a short-circuit impedance on the power supply side, 3 is a leakage impedance of a step-down transformer,
Reference numeral 4 is a reactive power compensator (hereinafter referred to as SVC).

PTが前記電源系統の、例えば220kV母線(高圧側)に接
続され、例えば66kV母線(低圧側)に設置されたSVC4の
制御回路に入力するものとする。この構成はSVCの設置
母線と抑制対象母線が異なる場合を示すものである。
It is assumed that PT is connected to, for example, a 220 kV bus (high voltage side) of the power supply system, and is input to a control circuit of the SVC 4 installed on, for example, a 66 kV bus (low voltage side). This configuration shows the case where the SVC installation busbar and the suppression target busbar are different.

SVC4の制御回路を第5図(イ)に、又SVC4の構成例を同
(ロ)に示す。
The control circuit of SVC4 is shown in Fig. 5 (a), and the configuration example of SVC4 is shown in (b).

(イ)図に示すように、PTよりの電圧VsとVrefとが加算
器に入力して差電圧が求められ、リセットフィルタ5、
比例積分器6、リミッタ7を介して制御出力信号Qsとし
て取り出される。又(ロ)図において、8は逆並列接続
されたサイリスタスイッチであり、これにそれぞれリア
クトル9、コンデンサ10が直列に接続され、第4図のイ
ンピーダンス3により低圧側となった母線に並列に接続
されて、進み、遅れの無効電力を発生する。
(A) As shown in the figure, the voltages V s and V ref from PT are input to the adder to obtain the differential voltage, and the reset filter 5,
It is taken out as a control output signal Q s through the proportional integrator 6 and the limiter 7. Further, in FIG. (B), 8 is an antiparallel connected thyristor switch, to which a reactor 9 and a capacitor 10 are respectively connected in series, and connected in parallel to a bus line which is a low voltage side by impedance 3 in FIG. Then, the reactive power of the advanced or delayed is generated.

(1)今、SVC設置母線と制御対象母線が同じ場合(通
常の設置ケース)についてみることとし、これを特定の
母線からながめた系統特性を電圧と無効電力によって表
わすと、第6図〜のようになる。直線の傾きは、短
絡容量に対応しており、平常時に対し、軽負荷時に
は、発電機解列など系統操作により短絡容量が小さくな
るので、直線の傾きは大きくなるのと同時に、系統電圧
もE点からA点まで上昇する。重負荷時には、軽負荷
時とは逆に、短絡容量が大きくなるため、直線の傾きは
小さくなると同時に、系統電圧はE点からB点まで低下
する。
(1) Now, let us look at the case where the SVC installation bus and the controlled bus are the same (normal installation case), and the system characteristics seen from a specific bus are represented by voltage and reactive power. Like The slope of the straight line corresponds to the short-circuit capacity, and when the load is lighter than normal, the short-circuit capacity decreases due to system operation such as generator disconnection. Ascend from point to point A. At the time of heavy load, contrary to the case of light load, since the short-circuit capacity becomes large, the slope of the straight line becomes small, and at the same time, the system voltage drops from point E to point B.

ここでの特性をもつSVCを設置すると、+Q1(軽負荷
時)、又は−Q2(重負荷時)の無効電力を供給し、系統
電圧はC点、又はD点まで改善される。SVC特性の傾き
(XSL)はスロープリアクタンスと呼ばれ、制御系ゲイ
ンで調整できる。ここでで示す特性(XSL=0,すなわ
ち制御系のゲインは∞に相当する)のSVCを設置する
と、系統電圧は常にEに保たれるが、SVCの容量が+Q3
〜−Q4と大きくなるので、通常は母線電圧が許容範囲に
なるようにXSLの値を選定する。
If an SVC with the characteristics described here is installed, + Q 1 (during light load) or −Q 2 (during heavy load) reactive power is supplied, and the system voltage is improved to point C or point D. The slope of the SVC characteristic (X SL ) is called the slope reactance and can be adjusted by the control system gain. If an SVC with the characteristics shown here (X SL = 0, that is, the gain of the control system corresponds to ∞) is installed, the system voltage is always kept at E, but the SVC capacity is + Q 3
Since it will be as large as ~ -Q 4 , the value of X SL is usually selected so that the bus voltage is within the allowable range.

(2)次に、SVC設置母線と制御対象母線が異なる場合
についてみてみる。例えば、SVCを同系統上にある66kV
母線(低圧側)に設置して、220kV母線(高圧側)に対
する電圧制御を行う場合(第4図)を考える。前記
(1)と同様な制御方式を適用した場合は、第7図に示
すような特性となる。すなわち、220kV系がに示すよ
うな系統特性の場合、SVC特性を図の点線で示すように
選ぶと、基準電圧よりΔVの電圧低下に対して、SVCがQ
1の進相Varを出力し、220kV母線はG点からA点の電圧
まで改善され、66kV母線はG点からB点まで電圧が上昇
する。なお、X220は220kV系背後の短絡インピーダンス
(系統変更により変化する)であり、XTrは220/66kVTr
の漏洩インピーダンス(一定)である。ここで系統変更
により220kV系の特性がからへ変化した場合を考え
る。通常X220《XTrであり、66kV系の特性はほとんど変
化しないので、SVCはQ2の進相Varを供給するように動作
して、220kV母線はG点からC点、66kV母線はG点から
D点と移るが、220kV母線における改善効果(A−C点
間の電圧の大きさ)に対し、66kV母線の変動(B−D点
間の電圧の大きさ)が著しく大きいことがわかる。
(2) Next, let's look at the case where the SVC installation bus and the controlled bus are different. For example, SVC is 66kV on the same system
Consider the case where the voltage is controlled on the 220 kV bus (high voltage side) by installing it on the bus (low voltage side) (Fig. 4). When the control method similar to the above (1) is applied, the characteristics are as shown in FIG. In other words, if the 220kV system has the system characteristics as shown by, if the SVC characteristics are selected as shown by the dotted line in the figure, the SVC becomes Q
The leading phase V ar of 1 is output, the voltage of the 220 kV bus is improved from the point G to the point A, and the voltage of the 66 kV bus is increased from the point G to the point B. Note that X 220 is the short-circuit impedance behind the 220kV system (which changes depending on the system change), and X Tr is 220 / 66kVT r
Is the leakage impedance of (constant). Here, consider the case where the characteristic of the 220 kV system changes from to due to the system change. Normally, it is X 220 << X Tr , and the characteristics of the 66kV system hardly change. Therefore, the SVC operates so as to supply the leading phase V ar of Q 2 , the 220kV bus bar from the G point to the C point, and the 66kV bus bar is the G point. Although it moves from the point to the D point, it can be seen that the fluctuation of the 66 kV bus (the voltage magnitude between the B and D points) is significantly larger than the improvement effect (the voltage magnitude between the A and C points) on the 220 kV bus. .

このように、同系統上にある高圧母線と低圧母線におい
て、SVC設置母線と制御対象母線が異なる場合に、通常
の制御方式を適用すると、220kV系統特性の影響を大き
く受け、220kV系の短絡容量が大きいと、下流の66kV母
線の電圧上昇が著しく高くなる。
In this way, if the normal control method is applied to the high-voltage bus and the low-voltage bus on the same system when the SVC installation bus and the controlled bus are different, the 220 kV system characteristics are greatly affected and the 220 kV system short-circuit capacity is reduced. When the value is large, the voltage rise of the downstream 66kV bus becomes significantly high.

[発明の構成] 以上説明のように、同一系統上において、無効電力補正
装置を定電圧制御で運転する場合、装置の設置母線と制
御母線が異なると、設置母線の電圧変動が大きくなる
が、本発明は、両母線の電圧を検出して適切な重みづけ
を行い、両母線における電圧変動を適切な配分で補償し
ようとするものである。
[Configuration of the Invention] As described above, when the reactive power compensating device is operated by constant voltage control on the same system, if the installation bus and the control bus of the device are different, the voltage fluctuation of the installation bus increases, The present invention is intended to detect the voltages of both buses and perform appropriate weighting to compensate for voltage fluctuations on both buses with an appropriate distribution.

以下図面に示す実施例により本発明を説明する。The present invention will be described below with reference to embodiments shown in the drawings.

第1図は本発明の実施例を一相分についてブロック図で
示し、第2図は第1図における制御系をブロック図で示
す。また、第4図、第5図と同一部分は同一符号で示
す。電源1より高圧母線、例えば220kVが引出され、こ
の高圧母線より、降圧変圧器を介して低圧母線が引出さ
れる。この場合高圧母線では短絡インピーダンス2(X
220)、低圧母線では漏洩インピーダンス3(XTr)を有
するものとする。高圧母線、例えば220kV母線及び低圧
母線、例えば66kV母線にそれぞれPT1,PT2が結合され、
その2次側に重みづけ設定器5,6が接続され、重みづけ
設定器5,6の出力は加算器により加算され、SVC4の定電
圧制御系に入力する。
FIG. 1 shows an embodiment of the present invention in a block diagram for one phase, and FIG. 2 shows a control system in FIG. 1 in a block diagram. The same parts as those in FIGS. 4 and 5 are designated by the same reference numerals. A high-voltage bus, for example 220 kV, is drawn from the power supply 1, and a low-voltage bus is drawn from this high-voltage bus via a step-down transformer. In this case, short-circuit impedance 2 (X
220 ) and the low voltage busbar shall have a leakage impedance of 3 (X Tr ). PT1, PT2 are respectively coupled to a high voltage bus bar, for example, a 220 kV bus bar and a low voltage bus bar, for example, a 66 kV bus bar,
The weighting setters 5 and 6 are connected to the secondary side, and the outputs of the weighting setters 5 and 6 are added by an adder and input to the constant voltage control system of the SVC 4.

SVC制御系はXSL≒(制御系ゲイン→∞)としてほぼ完全
な閉ループ制御を行う。制御対象は、220kV母線電圧と6
6kV母線電圧に対して、n:mの重みづけした仮想の母線電
圧である。重みづけ設定器5,6はn/n+m及びm/n+mに
形成される。例えばn=1、m=0とすると220kV母線
に対する定電圧制御となり、220kV母線は常に一定に保
たれ、n=0、m=1とすると66kV母線に対する定電圧
制御となる。
The SVC control system performs almost complete closed loop control with X SL ≈ (control system gain → ∞). The control target is 220kV bus voltage and 6
It is an imaginary bus voltage weighted by n: m with respect to the 6 kV bus voltage. The weight setters 5 and 6 are formed at n / n + m and m / n + m. For example, when n = 1 and m = 0, the constant voltage control for the 220 kV bus is performed, the 220 kV bus is always kept constant, and when n = 0 and m = 1, the constant voltage control for the 66 kV bus is performed.

第2図に示すように、重みづけ設定器5,6の出力を加算
した出力Vsの一方は、フイルタ回路11を介してリファレ
ンス電圧Vrefが作られ、VsよりVrefが減算され、比例積
分器7を介して出力される。リミッタ8の上下限は系統
電圧の許容値に基いて設定されており、リミッタ8より
の出力信号Qsは図示していないがパルス発生回路に入力
し、第5図(ロ)のリアクトル、又はコンデンサのサイ
リスタスイッチの通電制御を行う。
As shown in FIG. 2, one of the outputs V s obtained by adding the outputs of the weight setting devices 5 and 6 forms a reference voltage V ref via the filter circuit 11, and V ref is subtracted from V s . It is output via the proportional integrator 7. The upper and lower limits of the limiter 8 are set on the basis of the allowable value of the system voltage, and the output signal Q s from the limiter 8 is input to the pulse generating circuit, which is not shown, and the reactor shown in FIG. Controls energization of the thyristor switch of the capacitor.

第3図は、220kV母線:66kV母線=n:mの重みで定電圧制
御を行っている場合を示している。220kV系特性がか
らへ変化すると、220kV母線電圧はA点からC点とな
り、66kV母線電圧はB点からD点に上昇するが、変動幅
(A−C間とB−D間)は一定である。SVC出力も
Q1′,Q2′と第7図により説明した従来の方式によるも
のに比べ小さくなる。
FIG. 3 shows a case where constant voltage control is performed with a weight of 220 kV bus: 66 kV bus = n: m. When the 220kV system characteristic changes from to, the 220kV bus voltage changes from A point to C point, and the 66kV bus voltage rises from B point to D point, but the fluctuation range (between A and C and B and D) is constant. is there. SVC output also
Q 1 ′, Q 2 ′ and the conventional method described with reference to FIG. 7 are smaller.

この方式は第3図において、SVCが′、又は′のよ
うな特性をもつ仮想の系統に対して定電圧制御を行って
いるのと等価である。
This system is equivalent to the SVC performing constant voltage control on a virtual system having a characteristic of "or" in FIG.

[発明の効果] 以上説明したように、本発明によれば、同一系統上にあ
る高圧母線と低圧母線の電圧変動の割合を重みづけを設
定して一定とすることができ、低圧母線の著しい電圧上
昇を回避しながらSVCを運転することができ、両電圧変
動を許容範囲におさめることができる。
[Effects of the Invention] As described above, according to the present invention, the ratio of the voltage fluctuations of the high-voltage bus and the low-voltage bus on the same system can be set to be constant by weighting, and the remarkable effect of the low-voltage bus can be obtained. The SVC can be operated while avoiding a voltage rise, and both voltage fluctuations can be kept within an allowable range.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の実施例をブロック図で示す。 第2図は、第1図のSVCの制御系の一部を示す。 第3図は、第1図、第2図のSVCの動作説明図である。 第4図は、従来のこの種SVCをブロック図で示す。 第5図(イ)は第4図のSVCの制御系の一部を示し、同
(ロ)は無効電力補償回路例を示す。 第6図、第7図は第4図、第5図のSVCの動作説明図で
ある。 1…電源、4…SVC、5,6…重みづけ設定器。
FIG. 1 shows a block diagram of an embodiment of the present invention. FIG. 2 shows a part of the control system of the SVC of FIG. FIG. 3 is an operation explanatory diagram of the SVC of FIGS. 1 and 2. FIG. 4 shows a block diagram of a conventional SVC of this type. FIG. 5A shows a part of the control system of the SVC of FIG. 4, and FIG. 5B shows an example of the reactive power compensation circuit. 6 and 7 are explanatory diagrams of the operation of the SVC of FIGS. 4 and 5. 1 ... Power supply, 4 ... SVC, 5, 6 ... Weight setting device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】変圧器等インピーダンスを介して同一系統
にある高圧母線及び低圧母線の一方の母線に無効電力補
償装置を設置し、他方の母線を制御対象として定電圧制
御を行う場合、前記両母線電圧を検出し、該両電圧に重
みづけを行った電圧信号に基いて前記無効電力補償装置
を制御することを特徴とする無効電力補償装置の制御方
式。
1. When a reactive power compensator is installed on one bus of a high voltage bus and a low voltage bus in the same system via impedances of transformers, etc., and constant voltage control is performed with the other bus as a control target, both of the above are provided. A control system for a reactive power compensator, which detects a bus voltage and controls the reactive power compensator based on a voltage signal obtained by weighting both voltages.
JP61300395A 1986-12-16 1986-12-16 Control system of reactive power compensator Expired - Fee Related JPH0744788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61300395A JPH0744788B2 (en) 1986-12-16 1986-12-16 Control system of reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61300395A JPH0744788B2 (en) 1986-12-16 1986-12-16 Control system of reactive power compensator

Publications (2)

Publication Number Publication Date
JPS63154024A JPS63154024A (en) 1988-06-27
JPH0744788B2 true JPH0744788B2 (en) 1995-05-15

Family

ID=17884271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61300395A Expired - Fee Related JPH0744788B2 (en) 1986-12-16 1986-12-16 Control system of reactive power compensator

Country Status (1)

Country Link
JP (1) JPH0744788B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270234A (en) * 1988-09-06 1990-03-09 Toshiba Corp Reactive power compensator
JPH02206331A (en) * 1989-02-02 1990-08-16 Mitsubishi Electric Corp Method of controlling voltage and reactive power

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101823A (en) * 1984-10-24 1986-05-20 Toshiba Corp Reactive power compensating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101823A (en) * 1984-10-24 1986-05-20 Toshiba Corp Reactive power compensating device

Also Published As

Publication number Publication date
JPS63154024A (en) 1988-06-27

Similar Documents

Publication Publication Date Title
Hammad Analysis of power system stability enhancement by static var compensators
US5900723A (en) Voltage based VAR compensation system
Haddad et al. Control algorithms for series static voltage regulators in faulted distribution systems
JPH0744788B2 (en) Control system of reactive power compensator
JPH0432621B2 (en)
JPS6132915B2 (en)
US10637244B1 (en) Voltage control of a facts shunt compensator
JP2792085B2 (en) Control method of reactive power compensator
Lam et al. An Enhanced Voltage Control Method for Multilevel-Converter-Based Electric Spring at the Distribution Voltage Level
JP3319307B2 (en) Self-excited reactive power compensator
JPH08214459A (en) Controller of reactive power compensating equipment
JPH03122705A (en) Static type reactive power compensating device
Pranusha et al. Fuzzy Controller Based Power Quality Improvement Using VLLMS Based Shunt Active Power Filter
JP2763618B2 (en) Static type reactive power regulator
JP2606946Y2 (en) Control device for voltage fluctuation suppression device
JPH03222016A (en) Control system for reactive power compensator
JPH04178117A (en) Control system for voltage fluctuation suppressor
JPS6154823A (en) Controller of power system stabilizer
JPS63178732A (en) Reactive power compensator
JPS6043720A (en) Static reactive power compensating device
JPS629414A (en) Instantaneous reactive and effective power compensating device
JP2507434B2 (en) Excitation controller for synchronous machine
JP3228033B2 (en) Control method of DC intermediate voltage of reactive power compensator
JP3319111B2 (en) Static var compensator
JPH01206842A (en) Compensator for reactive power

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees