JPH02206331A - Method of controlling voltage and reactive power - Google Patents

Method of controlling voltage and reactive power

Info

Publication number
JPH02206331A
JPH02206331A JP1024632A JP2463289A JPH02206331A JP H02206331 A JPH02206331 A JP H02206331A JP 1024632 A JP1024632 A JP 1024632A JP 2463289 A JP2463289 A JP 2463289A JP H02206331 A JPH02206331 A JP H02206331A
Authority
JP
Japan
Prior art keywords
voltage
reactive power
bus voltage
side bus
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1024632A
Other languages
Japanese (ja)
Inventor
Toru Sano
徹 佐野
Yukio Kojima
小島 雪夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP1024632A priority Critical patent/JPH02206331A/en
Publication of JPH02206331A publication Critical patent/JPH02206331A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To keep system voltage stable by controlling the voltage and reactive power of a system within the limits of a blind sector provided in and around a set target value with the primary side bus voltage and secondary side bus voltage of a controlled transformer as control variables. CONSTITUTION:With the primary side and secondary side bus voltage of a controlled transformer 6 as control variables the voltage and reactive power of a power system is controlled within the limits of a blind sector 4 provided in and around the set target value. Consequently, a control vector 5 of each voltage regulator on a V-V plane with the primary side bus voltage V1 on the vertical line and the secondary side bus voltage V2 on the horizontal line will face the direction of a point of intersection 3 of a rectangular coordinate axis, so that the primary side and secondary side bus voltage V1 and V2 deviated from the blind sector 4 by system disturbance can be converged effectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は調相設備および被制御変圧器を用いて、電力
系統の、を圧・無効電力を制御する1圧・無効電力制御
方法に関するもつでめる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a single voltage/reactive power control method for controlling voltage/reactive power in a power system using a phase modifier and a controlled transformer. Demeru.

〔従来の技術] 第3図は従来の電圧・無効電力制御方法による電圧・無
効電力の制御範囲を示す図でめり、この図は縦軸(1)
に被利(2)変圧器の二次側母線′電圧v2を横軸(2
1に該制御変圧器の一次側通過無効戒力Q。
[Prior Art] Figure 3 is a diagram showing the control range of voltage and reactive power by a conventional voltage and reactive power control method.
(2) The voltage v2 of the secondary bus of the transformer is plotted on the horizontal axis (2
1 is the primary side passing invalid force Q of the control transformer.

をとったv−c4.平面図である。I took v-c4. FIG.

上記直交座標軸1,2の交点(原点)(3;があらかじ
め設定された上記二次側母線電圧v2および一次側通過
無効心力Q、のスケジュール運転値となり、この原点3
0回9にはハンチングを防ぐための不感帯+41が設け
られており、下記の様な機器制御によ・り、上記二次側
母線′電圧v2および一次開通過無効電力Q、を不感帯
内に制御する。
The intersection point (origin) (3;
A dead zone +41 is provided at time 0 and 9 to prevent hunting, and the secondary bus' voltage v2 and the primary open-pass reactive power Q are controlled within the dead zone by the following equipment control. do.

すなわち2.電力系統における擾乱によって。That is, 2. by disturbances in the power system.

現在の二次−m 、IsF!を圧v2および一次1i1
0通過無効電力Q、が上記v−Q平面の第1象限にるる
場合は被制御111変圧器のI、RTタッグを下げ、第
2象限にめる場合は分路リアクトル(以下、  ShR
と略記する)の投入または電力用コンデンサ(以下、 
Saと略記する)などの調相設備を切る。まfc第3象
限にりる場合はLRTタップを上げ、第4象限にある場
合はSo、7)投入または13hRを切る。
Current quadratic-m, IsF! The pressure v2 and the primary 1i1
When the zero passing reactive power Q is in the first quadrant of the above v-Q plane, lower the I and RT tags of the controlled transformer 111, and when it is in the second quadrant, the shunt reactor (hereinafter referred to as ShR) is lowered.
(hereinafter abbreviated as ) or power capacitor (hereinafter referred to as
(abbreviated as Sa), etc., are turned off. If it is in the 3rd quadrant, raise the LRT tap, if it is in the 4th quadrant, turn on So, 7) or turn off 13hR.

図中に示した矢印に各機器の操作によるv21Q1の変
化方向である0従って上記の機器選択方式によってv2
1Q1を不感帯に効率良く制御すること従来の電圧・無
効電力料゛呻方法は以上のように構成されているので、
被制御変圧器の1次側短絡容量が2次側mNt容童に比
べ大きいことが前提となっている。この前提によると、
系統擾乱による′電圧変動は主に2次111Il母線に
生じ、1次側母線の電圧変動は無視できる。
The arrow shown in the figure indicates the direction of change in v21Q1 due to the operation of each device. Therefore, by the above device selection method, v2
To efficiently control 1Q1 into a dead zone, the conventional voltage/reactive power charge control method is configured as described above.
It is assumed that the primary side short-circuit capacity of the controlled transformer is larger than the secondary side mNt capacity. According to this premise,
Voltage fluctuations due to system disturbance mainly occur on the secondary 111Il bus, and voltage fluctuations on the primary bus can be ignored.

しかしながら、被制御系統の構成により、被制御変圧器
の1次側9f1絡容蛍が2次側短絡容量より小さい時は
、擾乱によって1次側電圧も大きく変動し、第4図の如
く、1次側パンク通過無効電力Q、が従来通りの変化を
示さない。従って、この第4図の場合はSCの投入を行
うべきでろるが。
However, due to the configuration of the controlled system, when the primary side 9f1 circuit capacity of the controlled transformer is smaller than the secondary side short circuit capacity, the primary side voltage also fluctuates greatly due to the disturbance, and as shown in Figure 4, the primary side voltage fluctuates greatly. The next-side puncture-passing reactive power Q does not show the same change as before. Therefore, in the case of Fig. 4, SC should be inserted.

従来方式ではlv2<0.Δct、、<o  となるた
め、 LRTタップを下げる制御を行い、1次側母線1
圧をさらに低下させてしまい逆効果となるという問題点
がめつtO この発明はこのような問題点を解消するためになされた
もので、被制御変圧器の一次判短絡谷量が二次側短t1
谷櫨に比べて小さい電力系統でも。
In the conventional method, lv2<0. Since Δact,,<o, the LRT tap is controlled to be lowered, and the primary bus 1
The problem is that the voltage is further lowered and the opposite effect occurs. This invention was made to solve this problem, and the primary short circuit valley amount of the controlled transformer is
Even if the power system is smaller than Tanizaki.

系統(圧を安定に維持することができる電圧・無効電力
制御方法を得ることを目的とする。
The purpose of this study is to obtain a voltage/reactive power control method that can maintain stable system pressure.

〔晶を解決するための手段〕[Means to solve crystal]

この発明にかかる1圧・無効′(力制御方法は。 The 1-pressure/ineffective force control method according to this invention is as follows.

被制御変圧器の一次1111Iおよび二次側の母線電圧
を制御変数として、(力系統の電圧及び無効電力を設定
目標値の周辺に設けられた不感帯同に制御するものでめ
ろ。
The primary 1111I and secondary side bus voltages of the controlled transformer are used as control variables to control the voltage and reactive power of the power system to the same dead band provided around the set target value.

〔作用〕[Effect]

この発明におけろ系統の′電圧および無効電力は被制御
変圧器の一次側および二次側の母線1圧を制御変数とす
ることr(より制御され、−次側ffl絡容量が二次側
IJ!i絡容漣に比べて小さい電力系統でも系杭戒圧を
安定に維持する。
In this invention, the voltage and reactive power of the system are controlled by using the primary and secondary bus voltages of the controlled transformer as the control variables, so that the negative side ffl circuit capacity is It maintains system pressure stably even in a smaller power system compared to IJ!i connection.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図は各変数を直交座標軸にとったときのv−’v平面で
あるが、  LRTタップ、  ShR,Soなどの制
0I41機器の選択は象限によって下記の通りとする0 第1R限(lv>o、  lv2>O):ShR投入、
まタハSC切 第2象限(ΔV、)0.  lv2(Q):LRTタッ
プ上げ第3象限(lv <at lv2く0):SC投
大またはShR切第4域限CIV (0、lv2>0)
:LRTタッグ下げ第2図は成気所におけろ電圧・無効
1力制呻を考えるときの電力系統のモテルでりる。図中
、nは被制御変圧器6のLRTタップを、qは調相設備
(Soまたは5hR)を、ηは1次側短絡インピーダン
ス+  X2は2次則短絡インピーダンスを衣す0この
モテルを用いて、  LRTタッグおよび調相設備qの
操作による1次側母線電圧と2次側母線電圧の変化を関
係式にて表すと下の通りとなる。ただし1式中lΩt 
”1は各々の変化量を表すこととする。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows the v-'v plane when each variable is set on the orthogonal coordinate axes, but the selection of restricted 0I41 equipment such as LRT tap, ShR, So etc. is as follows depending on the quadrant.0 1st R limit (lv>o , lv2>O): ShR input,
Mataha SC cut second quadrant (ΔV,) 0. lv2 (Q): LRT tap up 3rd quadrant (lv <at lv2ku 0): SC throw up or ShR cut 4th quadrant CIV (0, lv2>0)
: LRT tag lowering Figure 2 is a model of the electric power system when considering voltage and reactive single force control at the air station. In the figure, n is the LRT tap of the controlled transformer 6, q is the phase adjustment equipment (So or 5hR), η is the primary side short circuit impedance + X2 is the quadratic law short circuit impedance. Then, the changes in the primary bus voltage and secondary bus voltage due to the operation of the LRT tag and phase modifier q are expressed using the following relational expression. However, lΩt in one formula
``1'' represents each amount of change.

上式からLRTタッグを上げる(ΔΩ〉0)場合はlv
<o、  lv2>o となり、  LRTタッグを下
げる(an<o)4合はav >o、  lv2く0と
なる。また。
From the above formula, if the LRT tag is raised (ΔΩ〉0), lv
<o, lv2>o, and lowering the LRT tag (an<o)4 results in av>o, lv2>0. Also.

sc2投入(J(t>0) t、た場合はlv〉0.l
v2〉0となり、  ShR投入(Δ(1<O)L、た
場合はlv1<口。
sc2 input (J(t>0) t, if lv>0.l
v2>0, and ShR input (Δ(1<O)L, if lv1<mouth.

lv2くOとなることがわかる。It can be seen that lv2kuO.

従って、縦111(11に一次側母線1圧y1. Fj
!4+1q41t2uc二次側母線、に圧v2をとった
V−V平面上におけろ各電圧調整機器の制御ベクトル+
51は、第1図に示す如く直交座標軸の交点(3)の方
間を向くので、系統擾乱によって不感帯から逸脱した一
次側および二次側の母線電圧(V、、 V2)を不感帯
(4)内に効率よく収束させろことができろ。
Therefore, vertical 111 (11 has primary side busbar 1 pressure y1. Fj
! 4+1q41t2uc Control vector of each voltage regulator on the V-V plane with voltage v2 on the secondary busbar +
51 faces toward the intersection point (3) of the orthogonal coordinate axes as shown in Fig. 1, so the bus voltages (V, V2) on the primary and secondary sides that deviate from the dead zone due to system disturbance are included in the dead zone (4). Be able to efficiently converge within.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、制御変数を被制御変
圧器の1次側母線電圧及び2次側母線電圧としたので、
−次側短絡容量が2次側短絡容量に比べ小さい電力系統
においても、系統(圧を安定に維持することができると
いう効果かめる。
As described above, according to the present invention, since the control variables are the primary bus voltage and the secondary bus voltage of the controlled transformer,
- Even in power systems where the short-circuit capacity on the secondary side is smaller than the short-circuit capacity on the secondary side, the system pressure can be maintained stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による直圧・無効心力制御
方法の制御変数Vt* V2を座標軸とするV−V平面
図、第2図は電圧・無効電力制御1g1%性を考えるた
めの1力系統のモデル回路図、第3図は従来の制御変数
v29 Qlを座標軸にとったV−Q平面図、第4図は
バンク無効電力潮流が1次側と2次側の母線電圧の傾斜
によって流れることななお9図中、同一符号は同一また
は相当部分を示す。
Fig. 1 is a V-V plan view with the coordinate axis being the control variable Vt*V2 of the direct pressure/reactive force control method according to an embodiment of the present invention, and Fig. 2 is a V-V plan view for considering the voltage/reactive power control 1g1% property. A model circuit diagram of a single-power system. Figure 3 is a V-Q plan view with the conventional control variable v29 Ql as the coordinate axis. Figure 4 shows the bank reactive power flow and the slope of the bus voltage on the primary and secondary sides. 9. In Figure 9, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 被制御変圧器と調相設備とで系統の電圧及び無効電力を
制御する電圧・無効電力制御方法において、上記被制御
変圧器の1次側母線電圧および2次側母線電圧を制御変
数とし、上記系統の電圧及び無効電力をあらかじめ設定
された目標値の周辺に設けられた不感帯内に制御するよ
うに構成したことを特徴とする電圧・無効電力制御方法
In a voltage/reactive power control method for controlling the voltage and reactive power of a system using a controlled transformer and phase adjustment equipment, the primary bus voltage and secondary bus voltage of the controlled transformer are used as control variables, and the A voltage/reactive power control method characterized in that the voltage and reactive power of a grid are controlled within a dead zone provided around a preset target value.
JP1024632A 1989-02-02 1989-02-02 Method of controlling voltage and reactive power Pending JPH02206331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1024632A JPH02206331A (en) 1989-02-02 1989-02-02 Method of controlling voltage and reactive power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1024632A JPH02206331A (en) 1989-02-02 1989-02-02 Method of controlling voltage and reactive power

Publications (1)

Publication Number Publication Date
JPH02206331A true JPH02206331A (en) 1990-08-16

Family

ID=12143510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1024632A Pending JPH02206331A (en) 1989-02-02 1989-02-02 Method of controlling voltage and reactive power

Country Status (1)

Country Link
JP (1) JPH02206331A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298839A (en) * 1996-04-30 1997-11-18 Mitsubishi Electric Corp Double-motion controller
JP2013247785A (en) * 2012-05-25 2013-12-09 Mitsubishi Electric Corp Voltage reactive power control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738223B2 (en) * 1977-09-27 1982-08-14
JPS5961433A (en) * 1982-09-30 1984-04-07 三菱電機株式会社 Voltage reactive power control system
JPS6244028A (en) * 1985-08-20 1987-02-26 三菱電機株式会社 Voltage/reactive power controller
JPS63154024A (en) * 1986-12-16 1988-06-27 日新電機株式会社 Control system of reactive power compensator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738223B2 (en) * 1977-09-27 1982-08-14
JPS5961433A (en) * 1982-09-30 1984-04-07 三菱電機株式会社 Voltage reactive power control system
JPS6244028A (en) * 1985-08-20 1987-02-26 三菱電機株式会社 Voltage/reactive power controller
JPS63154024A (en) * 1986-12-16 1988-06-27 日新電機株式会社 Control system of reactive power compensator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298839A (en) * 1996-04-30 1997-11-18 Mitsubishi Electric Corp Double-motion controller
JP2013247785A (en) * 2012-05-25 2013-12-09 Mitsubishi Electric Corp Voltage reactive power control system

Similar Documents

Publication Publication Date Title
US5321598A (en) Three-phase active filter utilizing rotating axis transformation
EP3288170A1 (en) Cascaded multi-level inverter system and modulation method thereof, and controller
Tan et al. Design of series and shunt FACTS controller using adaptive nonlinear coordinated design techniques
CN104993533B (en) Energy equilibrium control method between modular multi-level converter bridge arm
CN108551271A (en) UPS three-phase PWMs voltage source inverter based on Active Disturbance Rejection Control and control method
CN114024309A (en) Island micro-grid system and interactive oscillation suppression method and system thereof
Lerm et al. Multi-parameter bifurcation analysis of power systems
Barzegar-Kalashani et al. Robust nonlinear sliding mode controllers for single-phase inverter interfaced distributed energy resources based on super twisting algorithms
Chang et al. Voltage quality enhancement with power electronics based devices
JPH02206331A (en) Method of controlling voltage and reactive power
CN103457501A (en) SVG modulating method based on PAM+PWM cascading multi-level inverter
Rizo et al. Voltage control architectures for the universal operation of DPGS
CN113363962A (en) Microgrid interconnection line power hierarchical control method, system, terminal and medium
Pendharkar A generalized input admittance criterion for resonance stability in electrical railway networks
Awad et al. Invariant-set design of robust switched trackers for bidirectional power converters in hybrid microgrids
Luor et al. Design of an output feedback variable structure thyristor-controlled series compensator for improving power system stability
DE4209305A1 (en) Field oriented control of asynchronous machines - having integrator for U delta -Uref, output with I eta subtracted and input to proportional amplifier to give Uref.
CN105322570B (en) A kind of cooperative control device and its control method of rural area photovoltaic generation cluster
Batarseh Analysis and design of high-order parallel resonant converters
CN110148951B (en) Double-target voltage coordination control method and control device for dynamic reactive power compensation device
CN203338189U (en) Three-phase silicon-controlled alternating-current voltage stabilizer
Dash et al. A neural network based feedback linearising controller for HVDC links
Tan et al. Stability enhancement using SMES and robust nonlinear control
Chen et al. Analysis of voltage stability enhancement by robust nonlinear STATCOM control
CN105391191A (en) Online power adjusting method applicable to two-way wireless power transmission system