JPH04178117A - Control system for voltage fluctuation suppressor - Google Patents

Control system for voltage fluctuation suppressor

Info

Publication number
JPH04178117A
JPH04178117A JP2304566A JP30456690A JPH04178117A JP H04178117 A JPH04178117 A JP H04178117A JP 2304566 A JP2304566 A JP 2304566A JP 30456690 A JP30456690 A JP 30456690A JP H04178117 A JPH04178117 A JP H04178117A
Authority
JP
Japan
Prior art keywords
voltage
control section
control
section
tcr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2304566A
Other languages
Japanese (ja)
Inventor
Hideki Yamamura
山村 英機
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2304566A priority Critical patent/JPH04178117A/en
Publication of JPH04178117A publication Critical patent/JPH04178117A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To improve response of AVR control system by providing a TCR control section with a continuous control section and a step control section so that the TCR control section can respond quickly even to a sporadic instantaneous overvoltage or low voltage, conducting priority control through the step control section at the time of compensation of sporadic voltage fluctuation and performing phase control of a thyristor based on a signal fed from the step control section. CONSTITUTION:When instantaneous voltage drop occurs in a step control section 18 additionally provided to a continuous control section 17 and the voltage Vl has dropped below 95% of system voltage, a comparator 29 functions to turn a relay X2 ON and a phase delay setting component 31 is added to an adder 19. Consequently, a phase delay component is added to the input of 9 to increase the firing angle betaof a thyristor at TCR section and thereby the current conducting through a reactor at the TCR section decreases thus boosting the system voltage. In similar manner, when an instantaneous voltage rise occurs and the Vl exceed over 105% of the system voltage, a comparator 28 functions to lower the system voltage. According to the system, transient power supply voltage fluctuation can be suppressed quickly by additionally providing a step control section.

Description

【発明の詳細な説明】 [M業主の利用分野] 本発明は交流回生車輌等を変動負荷とする電力系統の電
圧変動を抑制する目的で設置するサイリスタ制御リアク
トル方式による電圧変動抑制装置において電圧制御部を
連続制御部と段階制御部とで構成し、特に、瞬時過電圧
、低電圧のような突発的な電圧変動の補償に対しては段
階的制御が優先して制御する電圧変動抑制装置の制御方
式に関する。
[Detailed description of the invention] [Field of application for business owner M] The present invention provides voltage control in a voltage fluctuation suppressing device using a thyristor-controlled reactor system, which is installed for the purpose of suppressing voltage fluctuations in a power system that has variable loads such as AC regenerative vehicles. Control of a voltage fluctuation suppressing device, which comprises a continuous control section and a stepwise control section, and in particular, the stepwise control is given priority to compensate for sudden voltage fluctuations such as instantaneous overvoltage and undervoltage. Regarding the method.

[従来技術] 第3図は交流回生車輌等、変動する負荷に対する電力系
統の電圧安定のための自動電圧制御(以下ムVR制御)
方式の一例を示す。電源1に接続されるき電線3に負荷
される交流回生車輌等の負荷4に対応し、き電線3、も
しくは同一レベルの線路に、リアクトル13とサイリス
タを逆並列に接続したサイリスクスイッチ14を直列に
接続したサイリスタ制御リアクトル!2(以下701部
という)、これと並列に高調波フィルタ部I5が接続さ
れる。なお、2は電源側のパーセントインピーダンス(
%2)を示す。この%2は電圧変動分(ΔV)に比例す
る。
[Prior art] Figure 3 shows automatic voltage control (hereinafter referred to as VR control) for stabilizing the voltage of the power system against fluctuating loads such as AC regeneration vehicles.
An example of the method is shown below. Corresponding to the load 4 such as an AC regeneration vehicle loaded on the feeder line 3 connected to the power source 1, a thyrisk switch 14 in which a reactor 13 and a thyristor are connected in anti-parallel to the feeder line 3 or the same level track is installed. Thyristor-controlled reactors connected in series! 2 (hereinafter referred to as 701 section), and a harmonic filter section I5 is connected in parallel with this. Note that 2 is the percent impedance on the power supply side (
%2). This %2 is proportional to the voltage variation (ΔV).

前記701部12への点弧制御位相パルスを作るため、
き電線3または同一レベルの線路にPT5が接続され、
この二次側にき電電圧を検出する電圧検出器6が接続さ
れる。
To create the ignition control phase pulse to the 701 section 12,
PT5 is connected to feeder line 3 or the same level line,
A voltage detector 6 for detecting the feeding voltage is connected to this secondary side.

この種構成の回路においては、負荷4が無の状態でき電
線3が定格電圧を維持するように、この時、TCRIB
12はサイリスクスイッチ14を位相制御しりアクドル
!3に定格電流(遅相電流)が通電される状態に置かれ
、き電線が定格電圧に維持される。
In a circuit with this type of configuration, at this time, TCRIB
12 controls the phase of the cyrisk switch 14 and activates it! 3 is placed in a state where a rated current (slow phase current) is applied, and the feeder line is maintained at the rated voltage.

このため、前記負荷4が無い時、き電線3の定格電圧v
Lに基づく、検出電圧信号Vlに対応して等しい基準値
Vrefが設定され、電圧変動時加算器7によりその差
信号ΔVが求められ、その差信号ΔVはP!制御する調
節計8に入力し、その出力はファンクション回路9に入
力する。ファンクション回路9では、ΔVの変動をリア
クトル13の通電電流を変化させて補償するため、前記
通電電流を生じるサイリスタの点弧位相角相当の電圧信
号に変換され、出力し、次の制御パルス発生器10に入
力し、Pτ5に接続されている同期電源回路!6より同
期信号Sにより前記点弧制御位相角相当のサイリスタ位
相制御パルスを出力する。この制御パルスは変成器11
を介して、サイリスタ14のゲート端子に出力され、サ
イリスタはその位相制御角で点弧する。
Therefore, when there is no load 4, the rated voltage v of the feeder line 3
An equal reference value Vref is set corresponding to the detected voltage signal Vl based on L, and the difference signal ΔV is obtained by the voltage fluctuation adder 7, and the difference signal ΔV is P! The output is input to a controller 8 to be controlled, and its output is input to a function circuit 9. In the function circuit 9, in order to compensate for fluctuations in ΔV by changing the current flowing through the reactor 13, the voltage signal is converted into a voltage signal corresponding to the firing phase angle of the thyristor that generates the current, and is output to the next control pulse generator. Synchronous power supply circuit input to 10 and connected to Pτ5! 6, a thyristor phase control pulse corresponding to the ignition control phase angle is outputted by the synchronization signal S. This control pulse is applied to transformer 11
is output to the gate terminal of the thyristor 14 via the thyristor, which fires at its phase control angle.

このように、負荷4が無の状態から有となると、負荷の
無効電力が増加し、き電電圧が降下する。この時は加算
器7よりの出力は大きくなり、P!制御調節計8よりの
出力は増加し、ファンクシロン回路9への入力の増大に
より、パルス変成器11におけるサイリスタの点弧パル
スの位相は遅れることになり、従ってリアクトル13に
おける通電電流は減少し、電力系統から見たりアクドル
成分は負荷変動前と同容量となり、系統電圧を一定電圧
に制御することとなる。
In this way, when the load 4 changes from a non-existent state to a present state, the reactive power of the load increases and the feeding voltage drops. At this time, the output from adder 7 becomes large, and P! The output from the controller 8 increases, and due to the increase in the input to the funxilon circuit 9, the phase of the firing pulse of the thyristor in the pulse transformer 11 is delayed, so that the current flowing in the reactor 13 decreases, From the perspective of the power grid, the idle component has the same capacity as before the load change, and the grid voltage is controlled to a constant voltage.

[発明が解決しようとする課題] ところで、この榎負荷でのAVR制御系の制御定数は、
ループ定常偏差数%目標、ループ時定数0.1S程度が
制御系の安定動作領域であるので突発的な瞬時過電圧、
低電圧に対しては応答が遅れることは原理主色れること
は出来ない。
[Problem to be solved by the invention] By the way, the control constant of the AVR control system at this Enoki load is:
Since the loop steady-state deviation several percent target and the loop time constant of about 0.1S are the stable operating region of the control system, sudden instantaneous overvoltage,
In principle, it cannot be ruled out that the response to low voltages is delayed.

[課題を解決するための手段] 本発明は上記のような突発的な瞬時、過電圧、低電圧に
対しても速応できるように、TCR制御部に連続制御部
と段階制御部を用意し、上記突発的な電圧変動の補償に
対しては段階的制御部を優先制御し、この信号にてサイ
リスタを位相制御し、従来のAYR制御方式の応答性能
の向上を計るものである。
[Means for Solving the Problems] The present invention provides a continuous control section and a stepwise control section in the TCR control section so as to be able to quickly respond to sudden instantaneous, overvoltage, and low voltage as described above. To compensate for the sudden voltage fluctuation, the stepwise control section is prioritized and the phase of the thyristor is controlled using this signal, thereby improving the response performance of the conventional AYR control system.

以下第1図に示す本発明の回路ブロック例及び第1図の
詳細回路を示す第2図により、本発明を説明する。
The present invention will be explained below with reference to an example of a circuit block of the present invention shown in FIG. 1 and FIG. 2 showing a detailed circuit of FIG. 1.

第3図と同一部分は同一符号で示す。The same parts as in FIG. 3 are indicated by the same reference numerals.

第1図に示すように、電源1にき電線3が接続される。As shown in FIG. 1, a feeder wire 3 is connected to a power source 1.

このき電線3から回生車輌等の負荷4に電力が供給され
る。
Electric power is supplied from this feeder line 3 to a load 4 such as a regenerative vehicle.

き電線3、又は同一レベルの線路にサイリスタを逆並列
接続したサイリスクスイッチ!4とリアクトル13が直
列に接続されてTCR部I2を作り、またTCR部目と
並列に各高調波吸収のフィルタ部15が設置される。前
記TCR部12の通電制御を行うため、き電線3または
同一レベルの線路にPT5が接続され、PT5は電圧検
出器6に接続されるとともに同期電源回路IGに接続さ
れる。電圧検出器6は連続制御部17と段階的御部鳳8
と接続される。電圧検出器6で検出された電圧検出信号
(Vりは前記連続制御部17と段階制御部16に入力す
る。連続制御部17、段階制御部18の詳細については
第2図により後述するが、き電電圧がゆっくり変動する
場合は、連続制御部17よりの制御電圧信号が加算器1
9に入力し、ファンクシ1ン回路9で点弧位相負相相当
の制御の電圧信号に変換され、その出力は電源同期回路
16よりの基準信号によりパルス発生器10でサイリス
タの点弧位相角に変換されてパルスを発生する。この点
弧位相角パルスを増幅器21.パルストランス22を介
してサイリスクスイッチ13に送出し、サイリスタ制御
によるリアクトル!2の連続的な通電制御が行われる。
Thyrisk switch with thyristors connected in anti-parallel to feeder line 3 or the same level line! 4 and a reactor 13 are connected in series to form a TCR section I2, and filter sections 15 for absorbing each harmonic are installed in parallel with the TCR section. In order to control the energization of the TCR section 12, a PT5 is connected to the feeder line 3 or a line at the same level, and the PT5 is connected to the voltage detector 6 and to the synchronous power supply circuit IG. The voltage detector 6 has a continuous control section 17 and a stepwise control section 8.
connected to. The voltage detection signal (V) detected by the voltage detector 6 is input to the continuous control section 17 and step control section 16. Details of the continuous control section 17 and step control section 18 will be described later with reference to FIG. When the feeding voltage varies slowly, the control voltage signal from the continuous control section 17 is applied to the adder 1.
9, which is converted into a control voltage signal corresponding to the negative phase of the firing phase by the function circuit 9, and its output is converted to the firing phase angle of the thyristor by the pulse generator 10 according to the reference signal from the power supply synchronization circuit 16. converted and generates a pulse. This firing phase angle pulse is transmitted to amplifier 21. The reactor is sent via the pulse transformer 22 to the thyristor switch 13 and controlled by the thyristor! 2 continuous energization control is performed.

これに対し、突発的にき電電圧が瞬時変化した時は段階
制御部18が信号を出力し、この信号は加算器19にお
いて、連続制御部+7側の出力信号と合算されて出力し
、ファンクシコン回路9で点弧位相角相当の電圧信号に
変換され、前記説明のように、TCR部12の通電制御
が行われる。
On the other hand, when the feeding voltage suddenly changes instantaneously, the step control section 18 outputs a signal, and this signal is summed with the output signal from the continuous control section +7 side in the adder 19 and output. The voltage signal is converted into a voltage signal corresponding to the ignition phase angle by the switch circuit 9, and the energization of the TCR section 12 is controlled as described above.

以下第2図により連続制御部16と段階制御部17より
なる制御部について説明する。なお第1図と同一部分は
同一符号で示す。
The control section consisting of the continuous control section 16 and the stepwise control section 17 will be explained below with reference to FIG. Note that the same parts as in FIG. 1 are indicated by the same symbols.

電圧検出器6よりの変動するき電線電圧信号V!を入力
とし、基準値設定回路23よりの基準値Vref lと
Vlとの差電圧を加算器24で求め、この差出力をPI
m節計1?1を通して加算器!9に出力するのが連続的
制御部であり、このVlとVref2(1,05pu設
定)、又はVref3(0,95pu設定)と比較器2
8又は29で比較し、例えば瞬時電圧低下が発生し、v
Iが95%電圧以下(0,95pu)になった場合、比
較器29が動作し、十でオンする121Jレー(電子ス
イッチでも良い)がオンし、この接点すにて、Δ遅相設
定置(0,025Pu)31が加算器32を通じ、加算
器19に加算される。この結果、9の入力には遅相骨が
加算され、TCR部サイリスタの点弧角βは大となり、
TCR部のりアクドルの通電電流は減少し、系統電圧は
上昇するように制御される。
The fluctuating feeder line voltage signal V from the voltage detector 6! is input, the difference voltage between the reference value Vrefl and Vl from the reference value setting circuit 23 is determined by the adder 24, and this difference output is used as the PI
Adder through m-segment 1?1! 9 is a continuous control section, and this Vl and Vref2 (1,05pu setting) or Vref3 (0,95pu setting) and comparator 2
8 or 29, for example, an instantaneous voltage drop occurs and v
When I becomes 95% voltage or less (0.95 pu), the comparator 29 operates, and the 121J relay (an electronic switch may also be used), which turns on at 10, turns on. (0,025Pu)31 is added to the adder 19 via the adder 32. As a result, the slow phase bone is added to the input of 9, and the firing angle β of the TCR thyristor becomes large.
The current flowing through the accelerator of the TCR section is controlled to decrease and the grid voltage is increased.

同様にして瞬時電圧上昇が発生し、Vlが105%以上
(1,05pu)になった場合、比較器28が動作し、
十でオンするLIJレーがオンし、この接点aにて、Δ
進相設定置(0,025pu)30が加算器32を通じ
13に加算される。この結果、8の入力には進相分が加
算され、TCR部サイリスタの点弧角βは小となり、T
CR部のりアクドルの通電電流は増大し、系統電圧は低
下するように制御される。
Similarly, when an instantaneous voltage rise occurs and Vl becomes 105% or more (1.05 pu), the comparator 28 operates,
The LIJ relay that turns on at 10 turns on, and at this contact a, Δ
The phase advance setting (0,025 pu) 30 is added to 13 through an adder 32. As a result, the leading phase is added to the input of 8, the firing angle β of the TCR thyristor becomes small, and T
The current flowing through the CR section saddle increases and the system voltage is controlled to decrease.

前述Δ遅相設定分、Δ進相設定置を夫々、0.025p
uにした理由は、連続制御との協調制御及び段階制御で
のヒステリシス特性を考慮したものである。連続制御と
、段階制御の役割は、本例では35%〜105%の電圧
変動の抑制は連続制御系が優先し、35%以下及び10
5%以上の電圧変動に対しては段階制御が優先して制御
することとなる。
The aforementioned Δ slow phase setting and Δ advanced phase setting are each 0.025p.
The reason for selecting u is to consider the hysteresis characteristics in cooperative control with continuous control and stepwise control. The role of continuous control and stepwise control is that in this example, the continuous control system gives priority to suppressing voltage fluctuations of 35% to 105%, and the suppression of voltage fluctuations of 35% to 105%
For voltage fluctuations of 5% or more, step control is given priority.

[動作コ き電電圧が定格電圧よりゆっくり降下すれば、PI調節
計17!より制御信号が出力し、き電電圧は定格電圧の
方向に補正されるが、ここで急速な過渡的電圧変動があ
り、き電電圧が0.95v!を切ったときは、コンパレ
ータ29よりの立上り信号でレベル設定器(Δ遅相設定
)31より、リアクトル電流を0.025pu下げる制
御信号が加算器32に出力して、加算器19に入力する
[If the operating voltage drops slowly below the rated voltage, PI controller 17! A control signal is output, and the feeding voltage is corrected in the direction of the rated voltage, but there is a rapid transient voltage fluctuation, and the feeding voltage drops to 0.95V! When it is turned off, a control signal for lowering the reactor current by 0.025 pu is output from the level setter (Δ slow phase setting) 31 to the adder 32 in response to the rising signal from the comparator 29, and is input to the adder 19.

この状態でもき電電圧v1が更に降下すれば、PI調節
計171の出力が加算器19に遅相信号を加算する。即
ち連続制御系が後追いでき電電圧を0.95v!以上に
なる様に制御する。き電電圧が0.95V1以上(t 
、osvl以下)になれば前述コンパレータ29は不動
作となり、き電電圧はPI調節計!711即ち連続制御
系のみの制御動作となる。
Even in this state, if the feeding voltage v1 further drops, the output of the PI controller 171 adds a delayed phase signal to the adder 19. In other words, the continuous control system can follow the electric voltage by 0.95V! Control so that the above is achieved. Feeding voltage is 0.95V1 or more (t
, osvl or less), the aforementioned comparator 29 becomes inactive, and the feeding voltage changes to PI controller! 711, that is, the control operation is performed only in the continuous control system.

同様に、き電電圧が1.05v!以上になった時はコン
パレータ28よりの立上り信号でレベル設定器(Δ進相
設定)30より、リアクトル電流を0.025pu上げ
る制御信号が加算器32に出力して、加算器19に入力
する。
Similarly, the feeding voltage is 1.05v! When the value is above, a control signal for increasing the reactor current by 0.025 pu is output from the level setter (Δ advance setting) 30 to the adder 32 in response to the rising signal from the comparator 28, and is input to the adder 19.

この状態でもき電電圧V!が更に上昇すればP!調節計
171の出力が加算器19に進相信号を加算する。即ち
、連続制御系が後追いでき電電圧を1.05v1以下と
なる様に制御する。
Even in this state, the feeding voltage is V! If increases further, P! The output of the controller 171 adds a phase advance signal to the adder 19. That is, the continuous control system can follow and control the electric voltage to be 1.05v1 or less.

き電電圧が1.05Vj以下(0,95v!以上)にな
れば前述コンパレータ28は不動作となり、き電電圧は
PI311節計171.即ち連続制御系のみの制御動作
となる。段階制御系が優先制御する理由は、コンパレー
タ2B、 29には時間遅れがなく、連続制御系のPI
制御調節計171に時間要素を持たせる必要性があるか
らである。
When the feeding voltage becomes 1.05 Vj or less (0.95 V! or more), the aforementioned comparator 28 becomes inoperative, and the feeding voltage becomes PI311 Node 171. In other words, the control operation is performed only by the continuous control system. The reason why the stepwise control system performs priority control is that there is no time delay in comparators 2B and 29, and the PI of the continuous control system
This is because the controller 171 needs to have a time element.

第5図は第3図に示すTCHに対する従来の自動電圧制
御系による制御結果を示す。図示のように、例えば断路
器開閉サージ等による突発的な電圧変動はpH4節計1
7lの応答が遅く、速い変動分に応答しないので、突発
電圧を抑制することはできない。
FIG. 5 shows the control results of the conventional automatic voltage control system for the TCH shown in FIG. As shown in the figure, for example, sudden voltage fluctuations due to disconnector opening/closing surges, etc.
Since the response of 7l is slow and does not respond to fast fluctuations, sudden voltage cannot be suppressed.

これに対し、第4図は段階制御部を具備した制御方式に
よるき電電圧低下の場合の変動抑制例を示す。
On the other hand, FIG. 4 shows an example of suppressing fluctuations in the case of a decrease in the feeding voltage using a control method including a stepwise control section.

本発明における段階制御部の動作速度は、連続的制御部
の動作速度のl/10の速度であり、図は系統電圧の突
発的電圧変動に適応して電圧変動を抑制することができ
る。
The operating speed of the stepwise control section in the present invention is 1/10 of the operating speed of the continuous control section, and the figure shows that the voltage fluctuation can be suppressed by adapting to sudden voltage fluctuations in the grid voltage.

[発明の効果コ 以上説明したように、本発明の制御方式によれば、従来
の系統自動電圧制御の原理的な応答遅れを段階制御部を
付加することにより、過渡的な電源変動を高速に抑制す
ることができる。
[Effects of the Invention] As explained above, according to the control method of the present invention, by adding a stepwise control section to the response delay that is the principle of conventional system automatic voltage control, transient power fluctuations can be speeded up. Can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例をブロック図で示し、第2図は第
1図実施例の制御部をブロック図で示す。 第3図は従来のサイリスタ制御リアクトルを用いた系統
自動電圧制御装置をブロック図で示す。 第4図、第5図は、本発明および従来の制御方式におけ
る系統電圧抑制波形を示す。 1・・・電源、4・・・負荷、5・・・PT18・・・
電圧検出器、9・・・ファンクツ1フ回路、to・・・
パルス発生器、11・・・パルストランス、12・・・
TCR部、13・・・リアクトル、14・・・サイリス
クスイッチ、15・・・フィルタ部、18・・・電源同
期回路、17・・・連続制御部、!8・・・段階制御部
、23・・・基準値設定回路、28.29・・・コンパ
レータ、19.24.32・・・加算器、30.31・
・・設定器(へ進相、へ遅相)、171・・・PI調節
計。 ’141!1 /を圧1氏下した巻合j 1B5目
FIG. 1 shows an embodiment of the present invention in a block diagram, and FIG. 2 shows a control section of the embodiment in FIG. 1 in a block diagram. FIG. 3 shows a block diagram of an automatic system voltage control device using a conventional thyristor-controlled reactor. FIG. 4 and FIG. 5 show grid voltage suppression waveforms in the present invention and the conventional control system. 1...Power supply, 4...Load, 5...PT18...
Voltage detector, 9... Functs 1f circuit, to...
Pulse generator, 11... Pulse transformer, 12...
TCR section, 13...Reactor, 14...Sirisk switch, 15...Filter section, 18...Power synchronization circuit, 17...Continuous control section,! 8... Step control unit, 23... Reference value setting circuit, 28.29... Comparator, 19.24.32... Adder, 30.31.
...Setting device (phase leading, slowing), 171...PI controller. '141!1 / Rolling j 1B5 with pressure 1 degree lower

Claims (1)

【特許請求の範囲】[Claims] (1)系統に接続される変動負荷に対し、系統に設置さ
れるサイリスタ制御リアクトルにより前記負荷による系
統電圧変動を抑制する装置に対して、前記サイリスタ制
御リアクトルの通電制御を行うため、前記系統の変動電
圧を検出して、連続的にリアクトルの通電制御を行う制
御部に、前記系統の変動電圧を段階的に区分して検出し
て、段階的に前記リアクトルの通電制御を行う段階制御
部を付加し、前記系統電圧の過渡的な電圧変動を高速に
抑制する電圧変動抑制装置の制御方式。
(1) For a variable load connected to the grid, a thyristor-controlled reactor installed in the grid is used to control the energization of the thyristor-controlled reactor for a device that suppresses grid voltage fluctuations caused by the load. The control unit that detects the fluctuating voltage and continuously controls the energization of the reactor includes a step control unit that detects the fluctuating voltage of the system in stages and controls the energization of the reactor in a stepwise manner. and a control method for a voltage fluctuation suppressing device that quickly suppresses transient voltage fluctuations in the system voltage.
JP2304566A 1990-11-10 1990-11-10 Control system for voltage fluctuation suppressor Pending JPH04178117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2304566A JPH04178117A (en) 1990-11-10 1990-11-10 Control system for voltage fluctuation suppressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2304566A JPH04178117A (en) 1990-11-10 1990-11-10 Control system for voltage fluctuation suppressor

Publications (1)

Publication Number Publication Date
JPH04178117A true JPH04178117A (en) 1992-06-25

Family

ID=17934536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2304566A Pending JPH04178117A (en) 1990-11-10 1990-11-10 Control system for voltage fluctuation suppressor

Country Status (1)

Country Link
JP (1) JPH04178117A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023368A (en) * 2007-07-17 2009-02-05 Meidensha Corp Feeder voltage compensating device
JP2021170922A (en) * 2020-04-13 2021-10-28 トランスポーテーション アイピー ホールディングス,エルエルシー Power supply system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023368A (en) * 2007-07-17 2009-02-05 Meidensha Corp Feeder voltage compensating device
JP2021170922A (en) * 2020-04-13 2021-10-28 トランスポーテーション アイピー ホールディングス,エルエルシー Power supply system and method

Similar Documents

Publication Publication Date Title
JPH0965588A (en) Electric power storage system
US4472674A (en) Method of static reactive power compensation
CN110190604B (en) Bus voltage control method, system, equipment and storage medium
JPH04178117A (en) Control system for voltage fluctuation suppressor
JPH0527856A (en) Reactive power compensating device
JPS6132915B2 (en)
JP2792085B2 (en) Control method of reactive power compensator
JP3319307B2 (en) Self-excited reactive power compensator
JPH0744788B2 (en) Control system of reactive power compensator
JPH03222016A (en) Control system for reactive power compensator
JPH04372008A (en) Control system for reactive power compensator
JPH07212979A (en) Controller of flicker handling equipment
JP2763618B2 (en) Static type reactive power regulator
JPH0779600A (en) Automatic voltage regulator for diesel engine generator set
JPS63148831A (en) Controller of stational reactive power compensator
JPH04236132A (en) Method for controlling operation of loadleveling device
JPH08314557A (en) Controller for reactive power compensator
JPH0619012U (en) Control circuit of DC feeding voltage compensator
JPH03122705A (en) Static type reactive power compensating device
JPH0731301Y2 (en) Controller for reactive power compensator
JP2538728Y2 (en) Control method of reactive power compensator
JPS5833931A (en) Stationary reactive power compensator
JPH0584524B2 (en)
JPS5914024A (en) Method for suppressing reactive electric power
JPS6268022A (en) Controlling method for reactive power compensator