JPH03122705A - Static type reactive power compensating device - Google Patents

Static type reactive power compensating device

Info

Publication number
JPH03122705A
JPH03122705A JP1258818A JP25881889A JPH03122705A JP H03122705 A JPH03122705 A JP H03122705A JP 1258818 A JP1258818 A JP 1258818A JP 25881889 A JP25881889 A JP 25881889A JP H03122705 A JPH03122705 A JP H03122705A
Authority
JP
Japan
Prior art keywords
svc
voltage
control
dead zone
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1258818A
Other languages
Japanese (ja)
Inventor
Kikuo Takagi
喜久雄 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1258818A priority Critical patent/JPH03122705A/en
Publication of JPH03122705A publication Critical patent/JPH03122705A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To effectively secure the control capacity of the static type reactive volt-ampers compensating device (SVC) by providing the SVC with a control means for setting up a state expanding the width of a dead zone band only by the time sufficient for operating the voltage control of a voltage regulator other than an SVC to reduce the output of the SVC and then returning the width of the dead zone band to the width used for normal operation. CONSTITUTION:A variable non-sensitive band 14 is added to a deviation signal between a control object voltage Vref and an AC system voltage Vs. The dead zone band of the variable dead zone band 14 is normally set up to zero or a comparatively nallow value and the width is expanded periodically or based upon a control signal. In the normal operation state, the state (b) expanding the dead zone band from the zero state (a) is set up, the state (b) is held only by the time sufficient for operating the voltage control of the voltage regulator other than the SVC and then the deat zone band is returned to the zero state (c). Consequently, the control capactity of the SVC can be secured so that voltage variation can be suppressed at the time of suddenly changing a load by the reduction of the current of the SVC.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は電圧調整器を線路上に設けた系統に設置する静
止形無効電力補償装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Field of Industrial Application)] The present invention relates to a static var power compensator installed in a system in which a voltage regulator is provided on a railway line.

(従来の技術) 第5図(a)、 (bL (c)は電圧調整器を線路上
に設けた周知の電力系統の単線結線図と電圧調整器の機
能説明図である。第5図(a)の単線結線図は、変電所
101に接続された線路104に負荷103a。
(Prior Art) Figures 5(a) and 5(c) are a single-line diagram of a well-known power system in which a voltage regulator is installed on the line and a functional explanatory diagram of the voltage regulator. In the single line diagram a), a load 103a is connected to a line 104 connected to a substation 101.

103b、 103c、 104d、 103eがあり
、各負荷端子の電圧を調整するためLこ電圧調整器10
2a、 102bが設けられている電力系統例を示すも
のである。一般に、電力系統では負荷端子の端子電圧を
規定の電圧変動以内にするために、線路のインピーダン
スや負荷の大きさにより適切な線路上の位置に電圧調整
器を設けている。電圧調整器が無い場合の線路上の各部
の電圧は、第5図(b)に示すように変電所から11荷
a・負荷b・負荷C−負荷d・負荷eと順次負荷をとる
ことによって負荷eに近づくにつれ電圧が低下していく
が、電圧調整器が有る場合の線路上の各部の電圧は、第
5図(C)に示すように電圧調整器の設置されていると
ころで電圧が持ち上げられ、負荷eの端子などでも電圧
が変電所端子に近い電圧に維持されるものである。
103b, 103c, 104d, and 103e, and an L voltage regulator 10 to adjust the voltage of each load terminal.
2a and 102b are shown. Generally, in a power system, a voltage regulator is provided at an appropriate position on the line depending on the impedance of the line and the size of the load in order to keep the terminal voltage of the load terminal within a specified voltage fluctuation range. If there is no voltage regulator, the voltage at each point on the line can be determined by sequentially taking loads from the substation as load a, load b, load C, load d, and load e, as shown in Figure 5 (b). The voltage decreases as it approaches the load e, but when there is a voltage regulator, the voltage at each part of the line increases where the voltage regulator is installed, as shown in Figure 5 (C). The voltage at the terminals of the load e, etc., is maintained at a voltage close to that at the substation terminals.

一方、急激な負荷変動をするような大容量負荷が線路に
接続された場合、線路の電圧変動も大きくなるが、一般
に、急激な電圧変動に対する電圧調整には従来形の電圧
調整器の動作時間では追従できないため、近年、静止形
無効電力補償装置(以下、SvCと言う)の設置が行な
われている。
On the other hand, when a large capacity load that undergoes sudden load fluctuations is connected to a line, voltage fluctuations on the line will also increase, but in general, the operating time of conventional voltage regulators is required to adjust the voltage against sudden voltage fluctuations. In recent years, static var power compensators (hereinafter referred to as SvC) have been installed.

第6図はSVCの概略構成図と制御ブロックを示すもの
で、特にサイリスタの逆並列接続からなるサイリスタ装
置により、リアクトルに流れる電流を制御する構成例を
示すものである。SvCは交流系統8に接続される変圧
器1、変圧器1に直列接続されるリアクトル2、リアク
トル2に直列接続されるサイリスタ装置3、変圧器1に
直列でリアクトル2に並列接続されるフィルタ4、交流
系統電圧Vsを検出する計器用変圧器5、SVCの出力
電流Isを検出する変流器6、SvCを交流系統8に接
続するSvC用開開開閉器9ィルタ4をSvC母線7に
接続するフィルタ用開閉器10を備えている。
FIG. 6 shows a schematic configuration diagram and a control block of the SVC, and particularly shows a configuration example in which a thyristor device consisting of anti-parallel connections of thyristors is used to control the current flowing through the reactor. SvC includes a transformer 1 connected to an AC system 8, a reactor 2 connected in series to the transformer 1, a thyristor device 3 connected in series to the reactor 2, and a filter 4 connected in series to the transformer 1 and in parallel to the reactor 2. , an instrument transformer 5 that detects the AC system voltage Vs, a current transformer 6 that detects the SVC output current Is, an SvC switch 9 that connects the SvC to the AC system 8, and a filter 4 connected to the SvC bus 7. A filter switch 10 is provided.

サイリスタ装置3は順方向サイリスタU及び逆方向サイ
リスタXで構成される。
The thyristor device 3 is composed of a forward thyristor U and a reverse thyristor X.

第7図において八にはサイリスタ装置3の電極間電圧、
Iu、Ixは夫々サイリスタ装置3の順。
In FIG. 7, 8 indicates the voltage between the electrodes of the thyristor device 3;
Iu and Ix are in the order of the thyristor device 3, respectively.

逆方向サイリスタU、Xに流れる正、負電流の各波形で
ある。
These are the waveforms of the positive and negative currents flowing through the reverse direction thyristors U and X.

サイリスタ装置3の点弧角αU、αXの大きさによりサ
イリスタU、Xの通電電流Iu、Ixの大きさが制御さ
れる。
The magnitudes of the firing angles αU and αX of the thyristor device 3 control the magnitudes of the currents Iu and Ix flowing through the thyristors U and X.

第6図はかかるSvCに適用される従来のSvC装置の
制御ブロック図も示している。制御目標電圧Vref、
交流検出電圧Vs 、係数器11により、SvC出力電
流Isに係数に1を掛けて得られた値から電圧偏差信号
ΔVが ΔV=Vs −Vref 十に1 − Is  −−−
−−−(1)なる式に基づいて演算される。補償態動電
力決定回路12は、この電圧偏差信号ΔVが零になるよ
うにSvCの補償すべき無効電力Qを決定し、第8図の
特性図に示すようなV−1特性を得る。補償無効電力Q
を出力するために、サイリスタ装置3の点弧角αを無効
電力/点弧角変換回路13によって決定する。以上のよ
うにして、SvCはその接続点において交流電圧の調整
を行なう。
FIG. 6 also shows a control block diagram of a conventional SvC device applied to such SvC. Control target voltage Vref,
The voltage deviation signal ΔV is calculated from the AC detection voltage Vs and the value obtained by multiplying the SvC output current Is by 1 using the coefficient multiplier 11.
--- Calculated based on the formula (1). The compensation state dynamic power determining circuit 12 determines the reactive power Q to be compensated for in the SvC so that this voltage deviation signal ΔV becomes zero, and obtains the V-1 characteristic as shown in the characteristic diagram of FIG. Compensated reactive power Q
In order to output , the firing angle α of the thyristor device 3 is determined by the reactive power/firing angle conversion circuit 13 . As described above, the SvC adjusts the AC voltage at its connection point.

第9図に急激な負荷変動をするような大容量負荷が線路
に接続され、その負荷の影響による電圧変動をSvCで
抑制する場合の電力系統の単線結線図を示す。第9図で
は、第5図の線路の末端に急激な負荷変動をするような
大容量負荷である急変負荷105があり、急変負荷と並
列または近傍に5VC106を設けた構成である。
FIG. 9 shows a single-line diagram of a power system in which a large capacity load that undergoes rapid load fluctuations is connected to a line, and voltage fluctuations due to the influence of the load are suppressed by SvC. In FIG. 9, there is a sudden change load 105, which is a large capacity load that causes sudden load changes, at the end of the line in FIG. 5, and a 5VC 106 is provided in parallel with or near the sudden change load.

(発明が解決しようとする課題) 急変負荷以外の一般負荷についても、時間的には遅い変
化ではあるが負荷変動がある。SvCは他の電圧調整器
に比較して制御応答が早いなめ、この一般負荷の変動に
よる電圧変動についてもSvCが動作してしまい、Sv
C以外の電圧調整器が機能せず、SvCの装置容量は急
変負荷以外の負荷を含めた電圧変動を抑制する容量とす
る必要があった。
(Problem to be Solved by the Invention) General loads other than sudden changing loads also have load fluctuations, although the changes are slow in terms of time. Since SvC has a faster control response than other voltage regulators, SvC operates even when voltage fluctuations occur due to general load fluctuations, and SvC
Voltage regulators other than C did not function, and the SvC device capacity needed to be able to suppress voltage fluctuations including loads other than sudden changes.

言い替えれば、急変負荷のみを考慮してSvCの容量を
決定した場合、SvCが急変負荷以外の負荷の変動によ
る電圧変動を抑制するためにも動作し、急変負荷の負荷
変動時にSvC容量が不足する問題があった。
In other words, if the SvC capacity is determined by considering only the suddenly changing load, the SvC will also operate to suppress voltage fluctuations due to changes in loads other than the suddenly changing load, and the SvC capacity will be insufficient when the sudden changing load changes. There was a problem.

本発明は上記問題点を解決するためになされたものであ
り、急変負荷の負荷変動時に、電圧変動が抑制できるよ
うSVCの制御容量を確保するように制御する静止形無
効電力補償装置を提供することを目的としている。
The present invention has been made to solve the above-mentioned problems, and provides a static var power compensator that performs control to ensure the control capacity of the SVC so as to suppress voltage fluctuations during sudden load changes. The purpose is to

[発明の構成] (課題を解決するための手段) 本発明は、SvCの制御目標電圧Vrefと交流系統電
圧Vsの偏差信号に不感帯を設け、SvC以外の電圧調
整器の電圧制御を動作させるのに十分な時間だけ、不感
帯の幅を広げた状態としてSvCの出力を減少させた後
に、また不感帯の幅を常時運転時の幅に戻す制御手段を
備えた。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a dead zone in the deviation signal between the control target voltage Vref of the SvC and the AC system voltage Vs, and operates the voltage control of a voltage regulator other than the SvC. The control means is provided for reducing the output of the SvC with the width of the dead zone widened for a sufficient period of time, and then returning the width of the dead zone to the width during constant operation.

(作 用) 上記手段により本発明のSvC装置は、急変負荷の負荷
変動時に、電圧変動が抑制できるようSvCの制御容量
を確保することを可能としている。
(Function) With the above means, the SvC device of the present invention makes it possible to secure the control capacity of SvC so that voltage fluctuation can be suppressed when the load fluctuates suddenly.

(実施例) 以下、図面を参照しながら本発明の実施例を説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係るSvC装置の制御ブロ
ック図である。
FIG. 1 is a control block diagram of an SvC device according to an embodiment of the present invention.

第1図を従来技術で示した第6図の制御ブロック図と比
較すると、V refと交流系統電圧Vsの偏差信号に
可変不感帯14を追加している。可変不惑帯14の不感
帯幅の変化とSvCのV−I特性の変化を第2図に示す
。可変不感帯14の不感帯幅は、常時は零または比絞的
狭く設定しておき、周期的または制御信号とともに幅を
広げるようにする。
Comparing FIG. 1 with the control block diagram of FIG. 6 which shows the prior art, a variable dead zone 14 is added to the deviation signal between V ref and AC system voltage Vs. FIG. 2 shows changes in the width of the dead zone of the variable dead zone 14 and changes in the V-I characteristic of SvC. The dead band width of the variable dead band 14 is normally set to zero or relatively narrow, and is increased periodically or with a control signal.

第2図の不感帯の状態は、常時運転状態で不感帯幅が零
の状態aから、不感帯幅を広げた状態b、状態すをSv
C以外の電圧調整器の電圧制御を動作させるのに十分な
時間だけ保持した後、不感帯幅が零の状BCに戻すこと
を示している。SvCの状態を不感帯の状態の変化にあ
わせて説明すると、状態aでSvCノ動作点はsVcの
V−1特性トSVCが接続される回路の電圧特性Vs 
 (OLD )の交点として決定されている。状態すで
不感帯の幅を広げることによりSvCのV−I特性は図
のように階段状になり、状態すの上図のSvCの動作点
が示すようにSvCの出力を減少させSVCが設けられ
た受電端電圧が低下し、受電端電圧が低下すれば、送電
端から受電端までの線路の電圧も低下し、線路上に設け
られたSvC以外の電圧i+q整器の設置端子の電圧が
低下する。状態すをSvC以外の電圧調整器の電圧制御
を動作させるのに十分な時間だけ継続すると、SVC以
外の電圧調整器の電圧制御を動作し、状態すの下図が示
すようにSvCが接続される回路の電圧特性がVS  
(OLD > ipうVs  (NEW )に変化し、
SVCの動作点が変化してSvCの出力を減少する。状
Yr!ACで不感帯の幅を状態aと同じに戻すと、SV
Cの出力電流は状態aと比較して減少する。
The states of the dead zone in Fig. 2 range from state a where the dead zone width is zero under constant operation, state b where the dead zone width is widened, and state Sv.
It is shown that after holding for a sufficient time to operate the voltage control of the voltage regulators other than C, the dead band width returns to the state BC where it is zero. To explain the state of SvC according to changes in the state of the dead zone, in state a, the operating point of SvC is the V-1 characteristic of sVc and the voltage characteristic Vs of the circuit to which SVC is connected.
(OLD). By widening the width of the dead zone, the V-I characteristic of the SvC becomes step-like as shown in the figure, and as shown by the operating point of the SvC in the figure above, the output of the SvC is reduced and the SVC is installed. If the receiving end voltage decreases, the voltage on the line from the transmitting end to the receiving end also decreases, and the voltage at the installation terminal of the voltage i + q regulator other than SvC installed on the line decreases. do. If the state is continued long enough to activate the voltage control of the voltage regulator other than SvC, the voltage control of the voltage regulator other than SVC will be activated and the SvC will be connected as shown in the diagram below. The voltage characteristics of the circuit are VS
Changes to (OLD > ip Vs (NEW),
The operating point of the SVC changes to reduce the output of the SvC. Condition Yr! When the width of the dead zone is returned to the same as in state a with AC, SV
The output current of C decreases compared to state a.

したがって、SvC電流の減少により、急変負荷の負荷
変動時に電圧変動が抑制できるようSvCの制御容量を
確保したことになる。
Therefore, by reducing the SvC current, the control capacity of the SvC is secured so that voltage fluctuations can be suppressed when the load fluctuates suddenly.

他の実施例として、第3図は第1図に示した第1の実施
例の制御ブロックに負荷105の無効分電流を検出する
無効分電流検出回路15を追加し、負荷の無効分電流I
Q(10^D)をSvC出力電流Isに加えるようにし
たものである。この実施例では、第4図の不感帯及びS
vCの状態が示すように、SvCの出力を自端の負荷の
力率は補償しながら、SvC以外電圧調整器の活用を促
す場合に適用される。
As another embodiment, FIG. 3 adds a reactive current detection circuit 15 for detecting the reactive current of the load 105 to the control block of the first embodiment shown in FIG.
Q(10^D) is added to the SvC output current Is. In this embodiment, the dead zone and S
As shown by the state of vC, this is applied to encourage the use of voltage regulators other than SvC while compensating for the power factor of the load at its own end of the SvC output.

[発明の効果] 以上説明したように、本発明によればSvCのVref
と交流系統電圧Vsの偏差信号に不@帯を設け、SVC
以外の電圧調整器の電圧制御を動作させるのに十分な時
間だけ、不感帯の幅を広げた状態としてSvCの出力を
減少させた後に、また不感帯の幅を常時運転時の幅に戻
す制御手段としたので、急変負荷の負荷変動時に電圧変
動が抑制できるようSVCの制御容量を確保することを
可能としたSvC装置を提供することができる。
[Effects of the Invention] As explained above, according to the present invention, the SvC Vref
By providing a dead band in the deviation signal of AC system voltage Vs and AC system voltage Vs, SVC
control means that reduces the output of the SvC with the width of the dead zone widened for a sufficient period of time to operate the voltage control of a voltage regulator other than the above, and then returns the width of the dead zone to the width during constant operation; Therefore, it is possible to provide an SvC device that can secure the control capacity of the SVC so that voltage fluctuations can be suppressed during sudden load changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るSvC装置の制御ブロ
ック図、第2図はSVC装置の不感帯とSvCの状態を
示す図、第3図は本発明の第2の実施例に係るSvC装
置の制御ブロック図、第4図は第2の実施例に係るSv
C装置の不感帯とSVCの状態を示す図、第5図は電圧
調整器を線路上に設けた周知の電力系統の東線結線図と
電圧調整器の機能説明図、第6図は周知のSvCの概略
構成図及び周知のSvC装置の制御ブロック図、第7図
はサイリスタ装置の電極間電圧及びサイリスタ装置の順
、逆方向サイリスタに流れる正、負電流の各波形図、第
8図はSvC装置のV−1特性図、第9図は急激な負荷
変動をするような大容量負荷が線路に接続され、その負
荷の影響による電圧変動をSvCで抑制する場合の電力
系統の単線結線図である。 1・・・変圧器      2・・・リアクトル3・・
・サイリスタ    4・・・フィルタ5・・・計器用
変圧器   6・・・変流器7・・・SVC母線   
  8・・・交流系統9・・・SvC開閉器    1
0・・・フィルタ用開閉器11・・・係数器 12・・・補償無効電力決定回路 13・・・無効電力/点弧角変換回路 14・・・可変不感帯回路
FIG. 1 is a control block diagram of an SvC device according to an embodiment of the present invention, FIG. 2 is a diagram showing a dead zone of the SVC device and the state of SvC, and FIG. 3 is a control block diagram of an SvC device according to a second embodiment of the present invention. The control block diagram of the device, FIG. 4 is the Sv according to the second embodiment.
A diagram showing the dead zone of the C device and the state of SVC, Figure 5 is an east line connection diagram of a well-known power system with a voltage regulator installed on the line and a functional explanatory diagram of the voltage regulator, and Figure 6 is a diagram showing the well-known SvC A schematic configuration diagram and a control block diagram of a well-known SvC device, FIG. 7 is a diagram of the interelectrode voltage of the thyristor device, the order of the thyristor device, and each waveform diagram of positive and negative currents flowing through the reverse direction thyristor. FIG. 8 is a diagram of the SvC device Figure 9 is a single-line diagram of a power system in which a large-capacity load with sudden load fluctuations is connected to the line, and voltage fluctuations due to the influence of the load are suppressed by SvC. . 1...Transformer 2...Reactor 3...
・Thyristor 4... Filter 5... Instrument transformer 6... Current transformer 7... SVC bus
8...AC system 9...SvC switch 1
0...Filter switch 11...Coefficient unit 12...Compensated reactive power determination circuit 13...Reactive power/firing angle conversion circuit 14...Variable dead band circuit

Claims (1)

【特許請求の範囲】[Claims] 負荷端の端子電圧を規定範囲内となるよう制御するため
に線路に設けた電圧調整器に対して同一線路上に接続さ
れた静止形無効電力補償装置において、静止形無効電力
補償装置の制御目標電圧と交流系統電圧との偏差信号を
入力するために設けた可変不感帯回路と、前記可変不感
帯回路の不感帯幅を静止形無効電力補償装置以外の電圧
調整器を動作させるのに必要な時間だけ広げて前記静止
形無効電力補償装置の出力を減少させた後、常時運転時
の幅に戻すよう制御する制御回路を備えたことを特徴と
する静止形無効電力補償装置。
In a static var compensator connected on the same line as a voltage regulator installed on the line to control the terminal voltage at the load end within a specified range, the control objective of the static var compensator is A variable dead band circuit provided for inputting a deviation signal between the voltage and the AC system voltage, and the dead band width of the variable dead band circuit are widened by the time necessary to operate the voltage regulator other than the static reactive power compensator. 1. A static reactive power compensator comprising: a control circuit that reduces the output of the static reactive power compensator and then controls the output to return to a constant operating level.
JP1258818A 1989-10-05 1989-10-05 Static type reactive power compensating device Pending JPH03122705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1258818A JPH03122705A (en) 1989-10-05 1989-10-05 Static type reactive power compensating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1258818A JPH03122705A (en) 1989-10-05 1989-10-05 Static type reactive power compensating device

Publications (1)

Publication Number Publication Date
JPH03122705A true JPH03122705A (en) 1991-05-24

Family

ID=17325469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1258818A Pending JPH03122705A (en) 1989-10-05 1989-10-05 Static type reactive power compensating device

Country Status (1)

Country Link
JP (1) JPH03122705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008165499A (en) * 2006-12-28 2008-07-17 Toshiba Corp Reactive power compensation device and method
JP2010158111A (en) * 2008-12-26 2010-07-15 Brother Ind Ltd Power supply apparatus and image forming apparatus equipped with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008165499A (en) * 2006-12-28 2008-07-17 Toshiba Corp Reactive power compensation device and method
JP2010158111A (en) * 2008-12-26 2010-07-15 Brother Ind Ltd Power supply apparatus and image forming apparatus equipped with the same

Similar Documents

Publication Publication Date Title
US5666275A (en) Control system for power conversion system
US4251736A (en) Method for controlling power flow between an electrochemical cell and a power grid
US4897593A (en) Reactive power compensator for electric power system
JPH03122705A (en) Static type reactive power compensating device
JP3343711B2 (en) Static var compensator
US4250542A (en) Method for controlling operating conditions of D.C. transmission line and control device for effecting same
JPS6132915B2 (en)
JPH0715875A (en) Controller for reactive power compensator
JP2708246B2 (en) Control device for self-excited power converter
JPH09140164A (en) Controller for suppressing anhysteresis and power conversion system employing it
JPH08149694A (en) Stationary reactive power compensator
JPH0744788B2 (en) Control system of reactive power compensator
EP0419217B1 (en) Thyristor converter system with higher harmonics suppression
JP2763618B2 (en) Static type reactive power regulator
JPH0626457B2 (en) Control system of reactive power compensator
JP2523793B2 (en) Power control device
JPS6043720A (en) Static reactive power compensating device
JPH0635556A (en) Controller for synchronous rotary phase modifier
JPS6352639A (en) Reactive power compensator
JPS6154823A (en) Controller of power system stabilizer
JPH08214459A (en) Controller of reactive power compensating equipment
JPH0642183B2 (en) Coordinated operation control system of reactive power compensator
JPH04178117A (en) Control system for voltage fluctuation suppressor
JPH04265631A (en) Reactive power compensator
JPH0215893B2 (en)