JPH0270234A - Reactive power compensator - Google Patents

Reactive power compensator

Info

Publication number
JPH0270234A
JPH0270234A JP63221257A JP22125788A JPH0270234A JP H0270234 A JPH0270234 A JP H0270234A JP 63221257 A JP63221257 A JP 63221257A JP 22125788 A JP22125788 A JP 22125788A JP H0270234 A JPH0270234 A JP H0270234A
Authority
JP
Japan
Prior art keywords
output
current
circuit
transformer
svc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63221257A
Other languages
Japanese (ja)
Inventor
Kimihiro Hoshi
公弘 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63221257A priority Critical patent/JPH0270234A/en
Publication of JPH0270234A publication Critical patent/JPH0270234A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

PURPOSE:To stabilize a power system while preventing overload of a transformer by providing a limiter for limiting the output current from a reactive power compensator below a current level for causing overload of the transformer. CONSTITUTION:A voltage detecting circuit 7 and a current detecting circuit 10 detect the system voltage V and the output current are Isvc from a reactive power compensator (SVC) respectively, then an operating unit 9-2 takes the difference between the difference V of a set voltage Vref and the system voltage V and the output current Isvc multiplied by a constant K, thereafter a command for bringing the difference to zero is fed through a proportional integrator 12 to a firing angle determining circuit 13 thus controlling the SVC. If the detected current exceeds over the allowable load of transformer, an output for cancelling the excessive portion is provided from a negative value pass circuit 17 or a positive value pass circuit 18 and added to the output from the proportional integrator 12 through primary delays 19-1, 19-2.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は電力系統の安定を計るために使用される無効電
力補償装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a reactive power compensator used for stabilizing a power system.

(従来の技術) 無効電力補償装置(以下SVCと記す)はサイリスタな
どの半導体スイッチを利用した無効電力供給装置でその
出力量を調整して電力系統の電圧の安定化や安定度の向
上を計るものである。
(Prior art) A reactive power compensator (hereinafter referred to as SVC) is a reactive power supply device that uses semiconductor switches such as thyristors to stabilize the voltage of the power system and improve its stability by adjusting its output amount. It is something.

第3図にSVCの一構成例であるサイリスタ制御リアク
トル(以下TCRと記す)とコンデンサを組み合せたS
VCと従来の制御装置の一構成例を示す。
Figure 3 shows an SVC that combines a thyristor-controlled reactor (hereinafter referred to as TCR) and a capacitor, which is an example of an SVC configuration.
An example of a configuration of a VC and a conventional control device is shown.

まず構成について説明する。First, the configuration will be explained.

1−1.1−2はサイリスタ、2はリアクトル、3はコ
ンデンサ、4は変圧器、5は計器用変成器(以下PTと
記す)、6は計器用変流器(以下CTと記す)である。
1-1.1-2 is a thyristor, 2 is a reactor, 3 is a capacitor, 4 is a transformer, 5 is a potential transformer (hereinafter referred to as PT), and 6 is a potential current transformer (hereinafter referred to as CT). be.

次に7は系統電圧を計測するための電圧検出回路、8は
基準電圧設定器、9−1.9−2は減算器、10はSv
Cの出力電流を検出する電流検出回路で進み電流は負、
遅れ電流は正で出力される。11は比例回路、12はリ
ミッタ付比例積分回路(以下PI回路と記す)、13は
PI回路12の出力であるTCR電流(ITCR)が出
力されるようなサイリスタ1−1.1−2の点弧角αを
決定する点弧角決定回路、14は系統電圧に同期をとり
なから点弧角αとなるようなサイリスタ1−1.1−2
へのゲートパルスを発生するゲートパルス発生回路(以
下PG回路と記す)である。
Next, 7 is a voltage detection circuit for measuring the system voltage, 8 is a reference voltage setter, 9-1.9-2 is a subtracter, and 10 is Sv
In the current detection circuit that detects the output current of C, the leading current is negative,
The lagging current is output as positive. 11 is a proportional circuit, 12 is a proportional-integral circuit with a limiter (hereinafter referred to as PI circuit), and 13 is a point of thyristor 1-1.1-2 from which TCR current (ITCR), which is the output of PI circuit 12, is output. A firing angle determining circuit 14 determines the firing angle α, and 14 is a thyristor 1-1.1-2 that is configured to set the firing angle α without being synchronized with the grid voltage.
This is a gate pulse generation circuit (hereinafter referred to as a PG circuit) that generates a gate pulse to the PG circuit.

次にその作用について説明する。Next, its effect will be explained.

電力系統に接続されたPT5と電圧検出回路7により系
統電圧■が検出され、基準電圧設定器8の示す基準電圧
Vrerとの差である誤差電圧ΔVが減算器9−1で検
出される。
The grid voltage (2) is detected by the PT 5 and the voltage detection circuit 7 connected to the power grid, and the error voltage ΔV, which is the difference between it and the reference voltage Vrer indicated by the reference voltage setter 8, is detected by the subtracter 9-1.

次にCT6と電流検出回路10でSVCの出力電流l5
VOが検出され比例回路でKs倍されたKS・l5vc
が先はどの誤差電圧△Vとの差(△V−に−Isvc)
を減亦器9−2でとり、次にPI回路12に入力される
。PI回路12の出力はΔV−K・l5vcが零になる
ようなTCRの電流ITORを出力してくる。TCRが
この1丁ORを出力するような点弧角αを点弧角決定回
路13で決定され、次のPG回路14により点弧角αを
もったゲートパルスがサイリスタ1−1.1−2に与え
られTCRはP1回路12の示すITORと同じ電流を
電力系統に供給する。
Next, the output current l5 of the SVC is determined by CT6 and the current detection circuit 10.
KS・l5vc where VO is detected and multiplied by Ks in the proportional circuit
Which error voltage △V is the difference between (△V- to -Isvc)
is taken by the reducer 9-2 and then input to the PI circuit 12. The PI circuit 12 outputs a TCR current ITOR such that ΔV-K·l5vc becomes zero. The firing angle determination circuit 13 determines the firing angle α such that the TCR outputs this one OR, and the next PG circuit 14 outputs a gate pulse with the firing angle α to the thyristor 1-1.1-2. TCR supplies the same current as ITOR indicated by P1 circuit 12 to the power system.

第4図はこのように制御装置によってつくられるSVC
の電圧−電流特性(以下V−1特性と記す)の−例であ
る。
Figure 4 shows the SVC created by the control device in this way.
This is an example of voltage-current characteristics (hereinafter referred to as V-1 characteristics) of .

′lIl軸は系統電圧Vを横軸はSVCの出力電流l5
vcを示している。ここで実線O−■−■−〇で示した
Vi特性は基準電圧■refを0.9puに設定した場
合で一点鎖線O−0〜■−■で示したV−1特性は基準
電圧Vrefを1.1pLIに設定した場合のものでお
る。なあ■−0および0−[F]の傾き(スロープ)の
大きさは比例回路110ゲインKsによって決定される
'lIl axis is grid voltage V, horizontal axis is SVC output current l5
VC is shown. Here, the Vi characteristics shown by the solid line O-■-■-○ are when the reference voltage ■ref is set to 0.9 pu, and the V-1 characteristics shown by the dashed-dotted lines O-0 to ■-■ are when the reference voltage Vref is set to 0.9pu. This is the case when the value is set to 1.1 pLI. The magnitude of the slope of -0 and 0-[F] is determined by the gain Ks of the proportional circuit 110.

(発明が解決しようとする課題) ここで変圧器4が過負荷になる電流を仮りに進み(−)
、遅れ(+)電流とも1puとすると基準電圧Vrer
を0.9puのように低く設定すると0点のような普通
の電圧でもSvCは遅れ電流を多借に出力して変圧器が
過負荷になる。逆に基準電圧Vref= 1.1puの
ように高めに52定すると逆に0点のようなかなり高い
電圧でも進み電流を最大限出力しようとするので電圧が
高いだけ進み電流も大きくなり変圧器にとっては過負荷
になる。
(Problem to be solved by the invention) Here, transformer 4 temporarily advances the current that causes overload (-)
, and the delay (+) current are both 1pu, the reference voltage Vrer
If the voltage is set as low as 0.9 pu, even at a normal voltage such as the 0 point, the SvC will output a large amount of delayed current and the transformer will be overloaded. On the other hand, if you set the reference voltage Vref = 1.1 pu to a higher value, it will try to output the maximum current even at a fairly high voltage such as the 0 point, so the higher the voltage, the larger the current will be, which is bad for the transformer. becomes overloaded.

本発明の目的とするところは、SVCが変圧器の過負荷
防止のため系統から切り離されることのないようにSV
Cの出力をい< 、!”、ん11す限して変圧器の過負
荷を防止しつつなおSVCが系統に接続され系統の安定
化に寄与するような過負荷防止回路を持つSVCを提供
することにある。
The purpose of the present invention is to prevent the SVC from being disconnected from the grid to prevent overloading of the transformer.
The output of C<,! ``The object of the present invention is to provide an SVC having an overload prevention circuit that prevents overload of the transformer while still being connected to the grid and contributing to the stabilization of the grid.

(発明の構成〕 (課題を解決するための手段) 本発明を構成りるための手段は変圧器が過負荷となる電
流値をSVCの出力電流が越えないような過負荷防止リ
ミッタ−をSvCの出力電流制御回路に具備する。
(Structure of the Invention) (Means for Solving the Problems) The means for structuring the present invention is to provide an overload prevention limiter to the SVC so that the output current of the SVC does not exceed a current value at which the transformer is overloaded. is included in the output current control circuit.

(作 用) 本発明の作用はSVCの出力電流が変圧器の過負荷電流
を越えないように過負荷防止リミッタ−がSVCの出力
電流を制限する。
(Function) The function of the present invention is that the overload prevention limiter limits the output current of the SVC so that the output current of the SVC does not exceed the overload current of the transformer.

(実施例) 第1図は本発明の一実施例を示した構成図で点線で囲ま
れた部分が本発明部分に相当し、第3図で示した従来例
に追加されたものである。
(Embodiment) FIG. 1 is a block diagram showing an embodiment of the present invention, and the portion surrounded by dotted lines corresponds to the portion of the present invention, which is added to the conventional example shown in FIG. 3.

従来例で使用した番号と同一番号のものは同一機能を有
する。9−3.9−4.9−5 、9−6は減算器、1
5は変圧器4の進み電流の過負荷値を示す設定器で例え
ば+1.Opuを示す。16は変圧器4の遅れ電流の過
負荷伯を示す設定器で例えば+1.0puを示す。17
はSvCの出力電流が進み−1,Opu以上でない場合
リミッタ−にJ:る制限がかからないようにするための
負の値のみ通過させる負値通過回路でおる。18はSV
Cの出力電流が遅れ+1.OPU以上でない場合リミッ
タ−による制限がかからないようにするめだの正の値の
み通過させる正値通過回路でおる。
Items with the same numbers as those used in the conventional example have the same functions. 9-3.9-4.9-5, 9-6 is a subtracter, 1
5 is a setting device that indicates the overload value of the lead current of the transformer 4, for example, +1. Indicates Opu. Reference numeral 16 denotes a setting device indicating the overload ratio of the lagging current of the transformer 4, which indicates, for example, +1.0 pu. 17
is a negative value passing circuit that allows only negative values to pass in order to prevent the limiter from being limited by J: when the output current of SvC is not greater than -1, Opu. 18 is SV
The output current of C is delayed +1. If the value is not more than OPU, there is a positive value passing circuit that allows only the positive value of the medallion to pass so as not to be limited by the limiter.

19−1.19−2はゲインK、時定数Tの1次遅れ回
路である。19−1.19−2が1次遅れ回路である理
由は変圧器の過負荷曲線は変圧器に流入する電流が設定
器15.16の示ず+1 puを越えると即度圧器が破
壊されるものではなく短時間ならもつと大きな電流にも
耐えられるからである。1次遅れ回路19−1.19−
2のゲインにと時定数丁は変圧器の過負荷曲線に適する
ように選定する。
19-1 and 19-2 are first-order delay circuits with a gain K and a time constant T. 19-1. The reason why 19-2 is a first-order lag circuit is that the overload curve of the transformer is such that if the current flowing into the transformer exceeds +1 pu, which is not indicated by the setting device 15.16, the transformer will be immediately destroyed. This is because they can withstand large currents for short periods of time rather than for long periods of time. First-order delay circuit 19-1.19-
The gain of 2 and the time constant are chosen to suit the overload curve of the transformer.

本実施例の作用について説明するが、従来例で説明した
部分は省略する。
The operation of this embodiment will be explained, but the parts explained in the conventional example will be omitted.

第4図のVref= 1.1puの時のV−1特性(0
−0−[F]−■)について考えると0点の進み電流−
1,1puとすると変圧器4の進み電流の限界−1゜O
puを越えている。これは第1図において電流検出回路
10は−1,lpuを検出している。設定器15の示す
−1,0puと減算器9−3で差がとられ−o、ipu
が算出される。
V-1 characteristic (0
−0−[F]−■), the leading current at 0 point−
1.1 pu, the limit of the lead current of transformer 4 is -1°O
It exceeds pu. This is because the current detection circuit 10 detects -1, lpu in FIG. The difference between -1,0pu indicated by the setter 15 and the subtractor 9-3 is taken, and -o,ipu
is calculated.

次の負値通過回路17を通過して1次遅れ回路19−1
に入力される。1次遅れ回路19−1のゲインKが大き
いとリミッタ−の効果が大きい。つまり即座にSVCの
出力電流を−1,Opu以下の進み電流にしようとする
After passing through the next negative value passing circuit 17, the first-order lag circuit 19-1
is input. When the gain K of the first-order lag circuit 19-1 is large, the effect of the limiter is large. In other words, the SVC output current is immediately set to a leading current of -1, Opu or less.

本説明では仮りにに= 1.0とする。In this explanation, it is assumed that ni=1.0.

第4図の0点においてP1回路12の出力はTCRの出
力すべきITORはOであるがTCRの出力すべき電流
がOになるとコンデンサ3の出力する進み電流が変圧器
4の過負荷値でおる−1.0puよりo、ipu多すぎ
て耐えられない。よって1次遅れ回路19−1は仮りに
に= 1.0としたのでしばらくしてその出力は−0,
1四が出力され減算器9−5でP1回路12の出力op
uに1次遅れ回路19−1の出力−0,19uが極性を
反転して加算され減算器9−5の出力は0.1puとな
る。一方減算器19−2の負側入力は次のような理由で
Oであるので減ね器9−6の出力は+0.1puとなる
。減算器9−4の入力は−1,lpuで設定器16の示
すi、 Opuとの差をとると−2,1p1.lとなる
が正値通過回路18の出力はOlよって1次遅れ回路1
9−2の出力はOである。先はど説明したように減算器
9−6の出力は+〇、 lpuであるのでTCRは遅れ
電流を0.1pu出力することになりコンデンサ3の出
力電流−1,1puと合わせてSVCの出ツノ電流は−
1、0ptjとなり変圧器4は過負荷とならない。仮り
に1次遅れ回路19−1のゲインKが1以上であっても
進み電流が−1,Opuより小さくなることはない。
At point 0 in FIG. 4, the output of the P1 circuit 12 is O, which is the ITOR that the TCR should output, but when the current that the TCR should output becomes O, the lead current output from the capacitor 3 is the overload value of the transformer 4. Oru - 1.0 pu more o, ipu is too much to bear. Therefore, since the first-order delay circuit 19-1 temporarily sets = 1.0, its output becomes -0,
14 is output and the subtracter 9-5 outputs the output of the P1 circuit 12 op.
The output -0, 19u of the first-order lag circuit 19-1 is added to u with the polarity inverted, and the output of the subtracter 9-5 becomes 0.1 pu. On the other hand, since the negative input of the subtracter 19-2 is O for the following reason, the output of the subtracter 9-6 is +0.1 pu. The input of the subtractor 9-4 is -1,lpu, and when the difference from i, Opu indicated by the setter 16 is taken, -2,1p1. However, the output of the positive value passing circuit 18 is the first-order lag circuit 1 due to O.
The output of 9-2 is O. As explained earlier, the output of the subtracter 9-6 is +〇, lpu, so the TCR outputs a delayed current of 0.1pu, and together with the output current of the capacitor 3 -1.1pu, the output of the SVC. The horn current is −
1,0ptj, and the transformer 4 is not overloaded. Even if the gain K of the first-order lag circuit 19-1 is 1 or more, the lead current will not become smaller than -1, Opu.

ゲインKが大きいほどリミッタ−の効果が早くなる。The larger the gain K is, the faster the limiter effect becomes.

次にSvCの出力電流が遅れ+i、opu以上の時につ
いて説明する。
Next, the case where the output current of SvC is equal to or greater than delay+i, opu will be explained.

第4図のV−I特性においてもし過負荷防止リミッタ−
が無かった時板りに[F]点を+1.1Pυとすると変
圧器4の限度である。+1.Opuを越えてしまう。
In the V-I characteristic shown in Figure 4, if the overload prevention limiter
If there is no point [F] on the board and +1.1Pυ, this is the limit of transformer 4. +1. It goes beyond Opu.

この場合SVCの制御回路は第1図において電流検出回
路10が+1.1pUを検出する。
In this case, the current detection circuit 10 of the SVC control circuit in FIG. 1 detects +1.1 pU.

次に設定器16の示す+1.Opuとの差が減算器9−
4で算出され+〇、1puが出力される。次にSVCの
出力電流が遅れ+1.Opu以上の時のみリミッタ−が
効果を有するだめの正値通過回路18を通過して1次遅
れ回路19−2に入力される。
Next, +1 indicated by the setting device 16. The difference from Opu is the subtractor 9-
4 is calculated and +〇, 1pu is output. Next, the SVC output current lags +1. The signal passes through the positive value pass circuit 18, which has a limiter effect only when it is equal to or greater than Opu, and is input to the first-order lag circuit 19-2.

この1次遅れ回路19−2のゲインを仮りにに=1、O
とするとその出力はしばらくして+0.1puとなる。
Assuming that the gain of this first-order lag circuit 19-2 is 1, O
Then, the output becomes +0.1 pu after a while.

一方1次遅れ回路19−1の負側入力は次のような理由
でOである。電流検出回路10の出力は+1.1puで
あるから設定器15の示す−1,Opuとの減算により
減算器9−3の出力は+2.1puであるが負値通過回
路17の出力は01よって1次遅れ回路19−1の出力
はOである。よって減算器9−6の出力はP1回路12
の出力から1次遅れ回路19−2の出力を引いた値とな
る。PI回路12の出力はPI回路のリミッタ−上限で
ある[F]点の出力電流1.1puを指示している。
On the other hand, the negative side input of the first-order lag circuit 19-1 is O for the following reason. Since the output of the current detection circuit 10 is +1.1 pu, the output of the subtracter 9-3 is +2.1 pu by subtraction with -1 and Opu indicated by the setter 15, but the output of the negative value passing circuit 17 is 01. The output of the first-order delay circuit 19-1 is O. Therefore, the output of the subtracter 9-6 is the P1 circuit 12.
It is the value obtained by subtracting the output of the first-order lag circuit 19-2 from the output of the first-order delay circuit 19-2. The output of the PI circuit 12 indicates an output current of 1.1 pu at point [F], which is the limiter upper limit of the PI circuit.

1次遅れ回路19−2の出力+〇、1pLlとの差を減
算器9−6でとってSVCの出力電流が+1.Opuと
なるTCR電流が減算器9−6で出力される。osvc
の出力電流が遅れ+i、opuとなれば変圧器4にとっ
て過負荷電流とならない。
The difference between the output of the first-order lag circuit 19-2 and 1 pLl is taken by the subtracter 9-6, and the output current of the SVC is +1. The TCR current that becomes Opu is output from the subtracter 9-6. osvc
If the output current becomes delay +i, opu, no overload current will occur for the transformer 4.

以上説明したように本実施例を使用すれば変圧器がSV
Cの出力電流によって過負荷となりSVCを系統から切
り離す事態をさけることができる。
As explained above, if this embodiment is used, the transformer becomes SV
It is possible to avoid a situation where the SVC is overloaded by the output current of C and the SVC is disconnected from the grid.

第2図は本発明の他の実施例を示す図である。FIG. 2 is a diagram showing another embodiment of the present invention.

従来例および第1図で使用した番号と同一番号のものは
同一機能を有する。
Components having the same numbers as those used in the conventional example and FIG. 1 have the same functions.

20−1.20−2は積分器である。20-1.20-2 is an integrator.

SvCの出力電流が第4図の0点で仮りに進み−1,1
puとすると設定器15の示す−1,Opuとの差を減
算器9−3でとりその出力は一〇、1puとなる。積分
機20−1はその出力−0,1plJを入力として積分
する。積分器20−1の出力は負なので負値通過回路1
7を通過してその出力は減算器9−5においてPI回路
12の出力に極性を反転して加算される。0点ではP1
回路12の出力はOつまりTCR電流をOにしようとし
ているが負値通過回路17の出力が減算器9−5で極性
を反転して加算されるので丁CR電流を増加する方向に
なる。これはSVC電流が進み−1,0pu以下になる
まで積分器20−1の効果は続く。
Suppose that the output current of SvC advances at the 0 point in Figure 4 by -1,1.
If it is pu, the difference between -1 and Opu indicated by the setter 15 is taken by the subtractor 9-3, and the output is 10.1 pu. The integrator 20-1 integrates the output -0, 1 plJ as input. Since the output of the integrator 20-1 is negative, the negative value passing circuit 1
7 and its output is added to the output of the PI circuit 12 with its polarity inverted in a subtracter 9-5. P1 at 0 points
The output of the circuit 12 is trying to bring the TCR current to O, but since the output of the negative value passing circuit 17 is added with the polarity reversed by the subtracter 9-5, the CR current is increased. The effect of the integrator 20-1 continues until the SVC current advances and becomes less than -1.0 pu.

次にSVCの出力電流が遅れ+1.Opu以上の場合に
ついて説明する。SVCの出力電流が第4図の仮りに[
F]点とすると電流検出回路10の出力は+1.1pu
て必る。設定器16の示す1.Opuとの差を減算器9
−4でとりその出力は十〇、 lpuとなる。これを入
力として積分器20−2は積分する。積分器20−2の
出力は正値なので正値通過回路18を通過して減算器9
−6へ送られる。減算器9−6では、正値通過回路18
の出力はTCP電流を減少させる方向に働く。
Next, the SVC output current lags +1. A case where the number is equal to or larger than Opu will be explained. Assuming that the SVC output current is [
F] point, the output of the current detection circuit 10 is +1.1 pu
It is necessary. 1 indicated by the setting device 16. Subtractor 9 for the difference with Opu
-4, the output will be 10, lpu. The integrator 20-2 integrates this as input. Since the output of the integrator 20-2 is a positive value, it passes through the positive value passing circuit 18 and is sent to the subtracter 9.
-6. In the subtracter 9-6, a positive value passing circuit 18
The output of works in the direction of decreasing the TCP current.

これはSVCの出力電流が遅れ+1.0pu以下になる
まで続く。
This continues until the SVC output current falls below +1.0 pu.

(発明の効果〕 以上説明したように本発明を使用すればSVCの出力電
流による変圧器の過負荷を防止しつつSvCは無効電力
を系統に供給し続は電力系統の安定化に寄与できる。
(Effects of the Invention) As explained above, by using the present invention, the SVC can supply reactive power to the grid while preventing the overload of the transformer due to the output current of the SVC, thereby contributing to the stabilization of the power grid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示ずブロック図、第2図は
本発明の他の実施例を示すブロック図、第3図は従来装
置のブロック図、第4図は従来装置の電圧−電流特性図
である。 1−1.1−2・・・サイリスタ、  2・・・1ノア
クトル、3・・・コンデンサ、     4・・・変圧
器、5・・・計器用変成器、   6・・・計器用変流
器、7・・・電圧検出回路、   8・・・基準電圧設
定器、9−1〜9−6・・・減算器、  10・・・電
流検出回路、1・・・比例回路、 2・・・リミッタ付比例積分回路、 3・・・点弧角決定回路、 4・・・ゲートパルス発生回路、 5.16・・・設定器、    17・・・負値通過回
路、8・・・正値通過回路、 19−1.19−2・・・1次遅れ回路。 代理人 弁理士 則 近 憲 イも 同  第子丸 健 第 図
Fig. 1 is a block diagram showing one embodiment of the present invention, Fig. 2 is a block diagram showing another embodiment of the invention, Fig. 3 is a block diagram of a conventional device, and Fig. 4 is a voltage diagram of the conventional device. - It is a current characteristic diagram. 1-1.1-2...thyristor, 2...1 noactor, 3...capacitor, 4...transformer, 5...instrument transformer, 6...instrument current transformer , 7... Voltage detection circuit, 8... Reference voltage setter, 9-1 to 9-6... Subtractor, 10... Current detection circuit, 1... Proportional circuit, 2... Proportional integral circuit with limiter, 3... Firing angle determining circuit, 4... Gate pulse generation circuit, 5.16... Setting device, 17... Negative value passing circuit, 8... Positive value passing Circuit, 19-1.19-2...1st order lag circuit. Agent: Patent Attorney: Nori Chika, Kenichi Daishimaru

Claims (1)

【特許請求の範囲】[Claims] 変圧器を介して電力系統に連系される無効電力補償装置
において、前記無効電力補償装置の出力により前記変圧
器が過負荷にならないように前記無効電力補償装置の出
力に制限を課す過負荷防止リミッタを具備したことを特
徴とする無効電力補償装置。
In a reactive power compensator connected to a power grid via a transformer, overload prevention imposes a limit on the output of the reactive power compensator so that the transformer is not overloaded by the output of the reactive power compensator. A reactive power compensator characterized by comprising a limiter.
JP63221257A 1988-09-06 1988-09-06 Reactive power compensator Pending JPH0270234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63221257A JPH0270234A (en) 1988-09-06 1988-09-06 Reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63221257A JPH0270234A (en) 1988-09-06 1988-09-06 Reactive power compensator

Publications (1)

Publication Number Publication Date
JPH0270234A true JPH0270234A (en) 1990-03-09

Family

ID=16763936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63221257A Pending JPH0270234A (en) 1988-09-06 1988-09-06 Reactive power compensator

Country Status (1)

Country Link
JP (1) JPH0270234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305041A (en) * 2007-06-06 2008-12-18 Chugoku Electric Power Co Inc:The Over-loading prevention device for static reactive power compensation device
JP2012075292A (en) * 2010-09-30 2012-04-12 Hitachi Ltd Reactive power compensation device and method of controlling the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725014A (en) * 1980-07-22 1982-02-09 Toshiba Corp Control system of reactive power compensating device
JPS6080726A (en) * 1983-10-07 1985-05-08 Hamamatsu Photonics Kk Photon detecting apparatus capable of selecting spectral sensitivity
JPS637140A (en) * 1986-06-25 1988-01-13 株式会社東芝 Reactive power compensator
JPS6380726A (en) * 1986-09-22 1988-04-11 株式会社東芝 Battery power storage
JPS63154024A (en) * 1986-12-16 1988-06-27 日新電機株式会社 Control system of reactive power compensator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725014A (en) * 1980-07-22 1982-02-09 Toshiba Corp Control system of reactive power compensating device
JPS6080726A (en) * 1983-10-07 1985-05-08 Hamamatsu Photonics Kk Photon detecting apparatus capable of selecting spectral sensitivity
JPS637140A (en) * 1986-06-25 1988-01-13 株式会社東芝 Reactive power compensator
JPS6380726A (en) * 1986-09-22 1988-04-11 株式会社東芝 Battery power storage
JPS63154024A (en) * 1986-12-16 1988-06-27 日新電機株式会社 Control system of reactive power compensator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305041A (en) * 2007-06-06 2008-12-18 Chugoku Electric Power Co Inc:The Over-loading prevention device for static reactive power compensation device
JP2012075292A (en) * 2010-09-30 2012-04-12 Hitachi Ltd Reactive power compensation device and method of controlling the same

Similar Documents

Publication Publication Date Title
JPH0191671A (en) System linkage inverter device
US4639848A (en) Method and system for controlling an AC-DC converter system
JP3992679B2 (en) Power converter
US8452462B2 (en) System stabilizing device
JPH0270234A (en) Reactive power compensator
JP2888605B2 (en) Reactive power compensator
JP2588954B2 (en) Control circuit for static var compensator
JPS6132915B2 (en)
JP2001025171A (en) Controller and phase detection circuit for self-excited ac-dc converter
JP2580746B2 (en) Control method of suburban power compensator
JP2992749B2 (en) Control device for private power generator
JPS61156320A (en) Static reactive power compensator
JPH0923585A (en) Control of reactive power compensation
JPH0731301Y2 (en) Controller for reactive power compensator
JPH0295172A (en) Uninterruptible power supply
JPH0350489B2 (en)
JP2981604B2 (en) Control device for private power generator
JP2624837B2 (en) Static var compensator
JPH0635556A (en) Controller for synchronous rotary phase modifier
JPS63146113A (en) Reactive power controller
JPH0731562B2 (en) Power system power factor correction device
JPH02181209A (en) Controller of reactive power compensating device
JP3180999B2 (en) Inverter device
JPH03203404A (en) Excess load current control circuit for active filter
JPH0310126B2 (en)