JPH0731562B2 - Power system power factor correction device - Google Patents

Power system power factor correction device

Info

Publication number
JPH0731562B2
JPH0731562B2 JP58007593A JP759383A JPH0731562B2 JP H0731562 B2 JPH0731562 B2 JP H0731562B2 JP 58007593 A JP58007593 A JP 58007593A JP 759383 A JP759383 A JP 759383A JP H0731562 B2 JPH0731562 B2 JP H0731562B2
Authority
JP
Japan
Prior art keywords
reactive power
power
power factor
grid
adjusted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58007593A
Other languages
Japanese (ja)
Other versions
JPS59132725A (en
Inventor
総一郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58007593A priority Critical patent/JPH0731562B2/en
Publication of JPS59132725A publication Critical patent/JPS59132725A/en
Publication of JPH0731562B2 publication Critical patent/JPH0731562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Description

【発明の詳細な説明】 この発明は、電力系統の力率改善を自動的に行う装置に
関する。
The present invention relates to a device for automatically improving the power factor of a power system.

需要家電力系統における力率改善は、従来より自動力率
制御あるいは自動無効電力制御によって行なわれている
が、系統に大きな遅相無効電力を供給する必要のある負
荷(例えばサイリスタ変換装置)が接続される場合、コ
ンデンサバンクの投入引外しが高頻度に行なわれてしま
う。また制御方式を変えるためにはその都度制御装置を
交換しなければならないなどの問題があった。
Conventionally, power factor improvement in a customer power system has been performed by automatic power factor control or automatic reactive power control, but a load (for example, a thyristor converter) that needs to supply large lag reactive power to the system is connected. In such a case, the tripping of the capacitor bank is frequently performed. Further, there is a problem that the control device must be replaced each time to change the control method.

この発明は上述の欠点を除去して、電力系統に与えるじ
ょう乱を極力抑え、制御方式についても単に力率設定を
変えることによって、同じ装置で力率制御,無効電力制
御のいずれの方式も行なうことの出来る力率改善装置を
提供することを目的とする。
The present invention eliminates the above-mentioned drawbacks, suppresses the disturbance given to the electric power system as much as possible, and also performs the power factor control and the reactive power control by the same device by simply changing the power factor setting. It is an object of the present invention to provide a power factor correction device capable of doing so.

以下この発明を図示実施例に基づき説明する。第1図は
この発明の実施例を示すもので、許容無効電力演算回路
1には力率設定器2から与えられる目標の設定力率(Pf
s)と系統から検出した系統電力(W3φ)が入力され、
設定力率に対応する無効電力を許容無効電力(VarS)と
して演算している。又、系統無効電力演算回路3には、
系統から検出した系統力率(Pf)と系統電力(W3 φ)が
入力され、常時系統無効電力(Var)を演算している。
さらに系統力率(Pf)は、極性安定回路4にも入力さ
れ、遅れ,進み力率の判定を行なっていて、極性が遅相
であれば、信号選択スイッチ9の接点lagが閉じ、調整
無効電力演算回路5から系統無効電力(Var)と許容無
効電力(Vars)との差として演算された調整無効電力
(ΔVar)が不感帯判定回路6に入力される。そして調
整無効電力(ΔVar)が不感帯設定値(ΔSC)を超えた
場合に、コンデンサ運転テーブル7から適当なコンデン
サバンクの組合せが選択され、各バンク毎に投入,引外
し指令として出力される。極性判定回路4で進相力率と
判定された場合には、今度は接点leadが閉じ、系統無効
電力(Var)がコンデンサ運転テーブル7に入力され、
この無効電力を減ずるようにコンデンサバンクの組合せ
が選択され、各バンク毎に投入,引外し指令として出力
される。また特に投入指令側には、不感帯判定回路8が
介挿されており、これによりコンデンサバンクの高頻度
な投入引外しを抑制している。なおコンデンサ運転テー
ブル7には、常時コンデンサの運転状態,故障状態が入
力され、あらかじめ運転テーブルに読み込まれているデ
ータ内容を更新している。また前記不感帯判定回路6,8
には不感帯設定器10が対応しており、ここで不感帯幅の
上限,下限が設定される。
The present invention will be described below based on illustrated embodiments. FIG. 1 shows an embodiment of the present invention. The allowable reactive power computing circuit 1 is provided with a target set power factor (Pf
s) and the grid power (W3φ) detected from the grid is input,
The reactive power corresponding to the set power factor is calculated as the allowable reactive power (VarS). In addition, the system reactive power calculation circuit 3
The system power factor (Pf) detected from the system and the system power (W 3 φ ) are input and the system reactive power (Var) is constantly calculated.
Further, the system power factor (Pf) is also input to the polarity stabilizing circuit 4 to determine the delay or advance power factor. If the polarity is delayed, the contact lag of the signal selection switch 9 is closed and the adjustment is invalid. The adjusted reactive power (ΔVar) calculated as the difference between the system reactive power (Var) and the allowable reactive power (Vars) is input from the power calculation circuit 5 to the dead zone determination circuit 6. When the adjusted reactive power (ΔVar) exceeds the dead zone setting value (ΔSC), an appropriate combination of capacitor banks is selected from the capacitor operation table 7 and output as a closing / tripping command for each bank. When the polarity determination circuit 4 determines that the power factor is the advance power factor, the contact lead is closed this time, and the grid reactive power (Var) is input to the capacitor operation table 7.
A combination of capacitor banks is selected so as to reduce the reactive power, and output for each bank as a closing / closing command. In particular, the dead zone determination circuit 8 is inserted on the closing command side, thereby suppressing frequent closing and tripping of the capacitor bank. It should be noted that the capacitor operating table 7 is constantly input with the operating and failure states of the capacitor, and the data contents read in advance in the operating table are updated. In addition, the dead zone determination circuit 6,8
Corresponds to the dead zone setting device 10, where the upper and lower limits of the dead zone width are set.

次に上記構成による力率改善の制御動作について述べ
る。
Next, the control operation for improving the power factor by the above configuration will be described.

まず自動力率制御方式を採用する場合には、力率設定器
2で設定力率(Pfs)を1以外の所望の値に設定すると
ともに、不感帯設定値(ΔSC)を例えば最小コンデンサ
バンク容量の60%程度に選んで設定する。これにより第
2図に示すように設定力率(Pfs)(Pfs≠1)と不感帯
幅(ΔSC)とで決まる斜線で示した帯状範囲に収まるよ
うに電力系統の自動力率制御が行われる。
First, when the automatic power factor control method is adopted, the set power factor (Pfs) is set to a desired value other than 1 by the power factor setting device 2, and the dead zone setting value (ΔSC) is set to, for example, the minimum capacitor bank capacity. Select and set about 60%. As a result, as shown in FIG. 2, automatic power factor control of the electric power system is carried out so that the power factor falls within the band-shaped range indicated by the diagonal line determined by the set power factor (Pfs) (Pfs ≠ 1) and the dead band width (ΔSC).

一方、上記の自動力率制御運転から自動無効電力制御運
転に切換えるには、力率設定器2の設定力率を1に設定
するとともに、不感帯設定幅(ΔSC)を例えば第2図に
おける設定幅の2倍に選定する。これにより第3図に示
すように斜線の帯状範囲内に収まるように自動無効電力
制御が行われることになる。しかも第2図および第3図
のいずれの方式でも、不感帯ΔSCの設定により、コンデ
ンサバンクが高頻度に投入,引外し操作されるのを防ぐ
ことができる。
On the other hand, in order to switch from the above-mentioned automatic power factor control operation to automatic reactive power control operation, the set power factor of the power factor setting device 2 is set to 1 and the dead zone setting width (ΔSC) is set to, for example, the setting width in FIG. Select twice as many. As a result, as shown in FIG. 3, the automatic reactive power control is performed so that it falls within the diagonal band range. Moreover, in either of the systems shown in FIGS. 2 and 3, the dead zone ΔSC can be set to prevent the capacitor bank from being frequently turned on and off.

以上述べたように、この発明によれば、従来では力率制
御と無効電力制御のいずれか一方しか行なえない装置構
成であったものを、同じ装置で単に力率設定を変えるこ
とによって、力率制御、無効電力制御、あるいは両制御
方式の併用制御も可能となる。しかも不感帯を設定する
ことによって、コンデンサバンクの高頻度の投入引外し
を抑え、系統に過渡的なじょう乱を与えないようにする
ことができ、その実用的効果は極めて大である。
As described above, according to the present invention, the power factor control can be performed by simply changing the power factor setting in the same device from the device configuration that can perform only one of the power factor control and the reactive power control in the related art. Control, reactive power control, or combined control of both control methods is also possible. Moreover, by setting the dead zone, it is possible to suppress high-frequency tripping and tripping of the capacitor bank and prevent transient disturbances in the system, and its practical effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例の構成を示すブロック図、第
2図および第3図はそれぞれ第1図による自動力率制御
および自動無効電力制御の制御特性図である。 1……許容無効電力演算回路、2……力率設定器、3…
…系統無効電力演算回路、4……極性判定回路、5……
調整無効電力演算回路、6,8……不感帯判定回路、7…
…コンデンサ運転テーブル、9……信号選択スイッチ。
FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention, and FIGS. 2 and 3 are control characteristic diagrams of automatic power factor control and automatic reactive power control according to FIG. 1, respectively. 1 ... Allowable reactive power calculation circuit, 2 ... Power factor setting device, 3 ...
… System reactive power calculation circuit, 4 …… Polarity judgment circuit, 5 ……
Adjustment reactive power calculation circuit, 6,8 ... Dead band judgment circuit, 7 ...
… Capacitor operation table, 9… Signal selection switch.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】力率の目標値を設定する力率設定手段と、
この設定手段に設定された設定力率と系統から検出した
系統電力とから許容無効電力を演算する許容無効電力演
算手段と、系統から検出した系統力率と前記系統電力と
から系統無効電力を演算する系統無効電力演算手段と、
前記許容無効電力演算手段により求められた許容無効電
力と前記系統無効電力演算手段により求められた系統無
効電力とを比較して調整無効電力を演算する調整無効電
力演算手段と、この調整無効電力演算手段により求めら
れた調整無効電力にもとづいて力率改善用コンデンサバ
ンクの投入、引外し指令を発生する運転用コンデンサテ
ーブルと、前記調整無効電力演算手段により求められた
調整無効電力が予め設定された不感帯設定値を越えたと
き前記調整無効電力を前記運転用コンデンサテーブルに
与える不感帯判定手段とで構成したことを特徴とする電
力系統の力率改善装置。
1. A power factor setting means for setting a target value of the power factor,
A permissible reactive power calculating means for calculating permissible reactive power from the set power factor set in the setting means and the grid power detected from the grid, and grid reactive power from the grid power factor detected from the grid and the grid power. A system reactive power calculation means for
Adjusting reactive power calculating means for calculating adjusted reactive power by comparing the allowable reactive power calculated by the allowable reactive power calculating means with the system reactive power calculated by the grid reactive power calculating means, and the adjusting reactive power calculating means Based on the adjusted reactive power calculated by the means, the operating capacitor table for generating and tripping the power factor improving capacitor bank, and the adjusted reactive power calculated by the adjusted reactive power calculating means are preset. A power factor improving device for a power system, comprising: dead zone determination means for applying the adjusted reactive power to the operating capacitor table when the dead zone set value is exceeded.
JP58007593A 1983-01-20 1983-01-20 Power system power factor correction device Expired - Lifetime JPH0731562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58007593A JPH0731562B2 (en) 1983-01-20 1983-01-20 Power system power factor correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58007593A JPH0731562B2 (en) 1983-01-20 1983-01-20 Power system power factor correction device

Publications (2)

Publication Number Publication Date
JPS59132725A JPS59132725A (en) 1984-07-30
JPH0731562B2 true JPH0731562B2 (en) 1995-04-10

Family

ID=11670097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58007593A Expired - Lifetime JPH0731562B2 (en) 1983-01-20 1983-01-20 Power system power factor correction device

Country Status (1)

Country Link
JP (1) JPH0731562B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2621212B2 (en) * 1987-08-26 1997-06-18 三菱電機株式会社 Automatic power factor adjustment device
JP5324982B2 (en) * 2009-03-27 2013-10-23 メタウォーター株式会社 Automatic power factor control device and automatic power factor control method
JP6280634B2 (en) * 2013-03-30 2018-02-14 エッジ エレクトロンズ リミテッド Algorithm for Passive Power Factor Compensation Method with Differential Capacitor Switching and Line Transient Noise Reduction

Also Published As

Publication number Publication date
JPS59132725A (en) 1984-07-30

Similar Documents

Publication Publication Date Title
US5900723A (en) Voltage based VAR compensation system
US3900792A (en) Method and apparatus for generating reactive power
JPH0731562B2 (en) Power system power factor correction device
US4546303A (en) Static reactive-power compensation apparatus
JP3525107B2 (en) Control method and control device for voltage control device of distribution system
JPS5967834A (en) Reactive power controller
JPH0612501B2 (en) Voltage-reactive power control method
JPS61177517A (en) Stationary type reactive power compensating device
JPS6315606B2 (en)
JPS6043720A (en) Static reactive power compensating device
JPH0231413B2 (en)
JPH08214459A (en) Controller of reactive power compensating equipment
JPS60174026A (en) Control circuit of reactive power compensator
JPS5956826A (en) Reactive power compensator
JPS62277029A (en) Operation control of solar generating system
JPH0443286B2 (en)
JPH0744788B2 (en) Control system of reactive power compensator
JPH0270234A (en) Reactive power compensator
JPS6315822B2 (en)
JPH03122705A (en) Static type reactive power compensating device
JPH04372008A (en) Control system for reactive power compensator
JPS59175340A (en) Stationary reactive power compensating device
JPH0310126B2 (en)
JPS6194124A (en) Hybrid static reactive power compensator
JPS62221823A (en) Automatic power factor controller