JPS6194124A - Hybrid static reactive power compensator - Google Patents

Hybrid static reactive power compensator

Info

Publication number
JPS6194124A
JPS6194124A JP59214221A JP21422184A JPS6194124A JP S6194124 A JPS6194124 A JP S6194124A JP 59214221 A JP59214221 A JP 59214221A JP 21422184 A JP21422184 A JP 21422184A JP S6194124 A JPS6194124 A JP S6194124A
Authority
JP
Japan
Prior art keywords
reactive power
voltage
reactor
capacitor
power compensator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59214221A
Other languages
Japanese (ja)
Inventor
Mitsutoshi Yamamoto
山本 光俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59214221A priority Critical patent/JPS6194124A/en
Publication of JPS6194124A publication Critical patent/JPS6194124A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To attain high-speed control accordant with the control responsiveness by using a controller for phase control of a reactor and using the voltage deviation signal for control of the make/break of a capacitor bank. CONSTITUTION:A reactive power compensator contains two capacitor banks and a reactor 2 and controls a thyristor switch 4 by the deviation given from a transformer 5, a voltage detector 6, etc. through an ignition angle controller 12 and a synchronizing arithmetic circuit 14. Thus the reactive power compensation is performed. This device detects the actual value of the system voltage through the transformer 5 and the detector 6 and applies the voltage deviation DELTAV obtained by adding 8a said actual voltage value to the set value 7 to a controller 9 to obtain the reactive power command value. The phase of the switch 4 of the reactor 2 is controlled via a nonlinear correcting circuit 11 and the controller 12. Thus the delayed reactive power is controlled. Furthermore said deviation DELTAV is added 8b to the output of a bias circuit 10. Then the capacitor bank is made nad broken via a level detector (bank selector) 13.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、コンデンサ開閉式静止形無動電力補償装置
(TSC)とリアクトル位相制御式静止形無効電力補償
装置(TCR)とを組み合わせた、いわゆるハイブリッ
ド式静止形無効電力補償装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention combines a capacitor switching type static static power compensator (TSC) and a reactor phase control type static reactive power compensator (TCR). The present invention relates to a so-called hybrid static var power compensator.

〔従来の技術〕[Conventional technology]

このよ5な無効電力補償装置として、出願人は既に下記
の如き装置を提案している(特願昭59−71018号
)。第2図はかへる無効電力補償装置を示す構成図であ
り、これは、コンデンサバンクが2パンク、リアクトル
が1バンクの例である。
As such a reactive power compensator, the applicant has already proposed the following device (Japanese Patent Application No. 71018/1982). FIG. 2 is a block diagram showing a reactive power compensator, which is an example in which there are two capacitor banks and one reactor bank.

同図において、1,5はトランス、2はリアクトル、3
はコンデンサ、4はサイリスタスインチ、6は電圧検出
器、7は電圧設定器、8a、8bは加算器、9は電圧調
節器(PI調節器)、10はバイアス回路、11は非線
形補正回路、12は点弧角調整器、16はバンク選択器
(レベル検出器)、14は同期演算回路である。
In the same figure, 1 and 5 are transformers, 2 is a reactor, and 3
is a capacitor, 4 is a thyristor inch, 6 is a voltage detector, 7 is a voltage setter, 8a, 8b are adders, 9 is a voltage regulator (PI regulator), 10 is a bias circuit, 11 is a nonlinear correction circuit, 12 is a firing angle adjuster, 16 is a bank selector (level detector), and 14 is a synchronization calculation circuit.

すなわち、トランス(PT)5および電圧検出器6によ
って系統電圧を検出し、この系統電圧と設定器7からの
系統電圧設定1直とにより加算器8aを介して系統電圧
偏差Δ■を検出し、この電圧偏差呟Δ■を比例−積分調
節器(PI調節器)9に入力し、その出力から電圧偏差
に応じた無効電力指令1直を求める。そして、この無効
電力指令値から、必要とされるコンデンサバンクをバン
ク選択器(レベル検出器)16により選択し、同期演算
回路14を介して所定のコンデンサバンクを電力系統に
投入する。このとき、コンデンサバンクの投入による無
効電力の調整は段階的に行なわれるので、系統に必要な
無効電力を完全には補償できず、殆んどの場合において
過不足分(残留偏差)が残ることになる。そこで、コン
デンサバンクを投入する一方、上記無効電力指令値から
、既に系統に投入されているコンデンサ容量に比例した
信号を出力するバイアス回路10の出力を減算すること
により、加算器8bの出力はコンデンサバンクの投入に
よっては制御できない無効電力指令値を出力する。した
がって、この出力値に見合ったサイリスタ点弧角を演算
する非線形補正回路11を介して点弧角調整器12によ
りサイリスタスイッチ4を位相制御して、上記過不足分
を補償するようにしている。なお、同期演算回路14は
、サイリスタスイッチ4をオンにしたときの突入電流を
抑制するために、コンデンサ電圧と系統電圧との差が最
小となる時点に同期させてスイッチ4に投入指苓を与え
るために設けられる。
That is, the system voltage is detected by the transformer (PT) 5 and the voltage detector 6, and the system voltage deviation Δ■ is detected by the system voltage and the system voltage setting 1 from the setting device 7 via the adder 8a. This voltage deviation Δ■ is input to a proportional-integral regulator (PI regulator) 9, and a reactive power command corresponding to the voltage deviation is determined from its output. Then, from this reactive power command value, a required capacitor bank is selected by a bank selector (level detector) 16, and a predetermined capacitor bank is introduced into the power system via a synchronous calculation circuit 14. At this time, the adjustment of reactive power by adding capacitor banks is done in stages, so the reactive power required for the grid cannot be completely compensated, and in most cases, an excess or deficiency (residual deviation) remains. Become. Therefore, by adding the capacitor bank and subtracting from the reactive power command value the output of the bias circuit 10 that outputs a signal proportional to the capacitance of the capacitors that have already been added to the system, the output of the adder 8b is Outputs a reactive power command value that cannot be controlled by turning on the bank. Therefore, the phase of the thyristor switch 4 is controlled by the firing angle adjuster 12 via the nonlinear correction circuit 11 which calculates the thyristor firing angle commensurate with this output value, thereby compensating for the excess or deficiency. In addition, in order to suppress the inrush current when the thyristor switch 4 is turned on, the synchronization calculation circuit 14 applies a switching signal to the switch 4 in synchronization with the time when the difference between the capacitor voltage and the grid voltage becomes the minimum. established for the purpose of

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

すなわち、コンデンサバンクの開閉による無効電力補償
は、コンデンサバンク投入時の突入電流を抑制すべ(、
コンデンサ電圧と系統(電源)電圧の差が最小となる位
相でコンデンサを投入するが如き同期投入方式が採られ
ているため、コンデンサバンクによる無効電力補償はリ
アクトル位相制御による無効電力補償よりも制御遅れが
生じるととシてなる。したがって、系統の電圧変動発生
時に、電力系統に対して外乱を与えることなく無効電力
補償を行なうためには、PI調節器9の制御定数は、コ
ンデンサ開閉方式による無効電力補償の場合の同期投入
に伴う制御応答特性を基準にして決定する必要がある。
In other words, reactive power compensation by opening and closing the capacitor bank should suppress the inrush current when the capacitor bank is turned on.
Since a synchronized closing method is adopted in which the capacitor is turned on at the phase where the difference between the capacitor voltage and the grid (power supply) voltage is the smallest, reactive power compensation using a capacitor bank has a control delay compared to reactive power compensation using reactor phase control. When something happens, I get angry. Therefore, in order to perform reactive power compensation without causing disturbance to the power system when voltage fluctuations occur in the power system, the control constants of the PI controller 9 must be adjusted to match the synchronization input when reactive power compensation is performed using the capacitor switching method. It is necessary to decide based on the accompanying control response characteristics.

このため、制御応答が比較的速いリアクトル位相制御に
よる無効電力補償もコンデンサ開閉式無効電力補償と同
じ制御遅れを生じ、充分な特徴を発揮できないという問
題点が残されていることになる。
Therefore, reactive power compensation using reactor phase control, which has a relatively fast control response, causes the same control delay as capacitor switching type reactive power compensation, and the problem remains that sufficient characteristics cannot be exhibited.

〔問題点を解決するための手段および作用〕コンデンサ
バンクを開閉することにより進み無効電力を制御するコ
ンデンサ開閉式無効電力補償装置と、リアクトルを位相
制菌することにより遅れ無効電力を制御するリアクトル
位相制御式無効電力補償装置とを組み合わせたハイブリ
ッド式無効電力補償装置において、系統電圧偏差直と設
定値との偏差を検出する電圧偏差検出器と、とのr([
L圧偏差からリアクトル位相制御式無効電力補償装置が
吸収すべき無効電力指令値を演算する調節器とによって
リアクトルの制御を行なうとともに、系統に既に投入さ
れているコンデンサ容量に比例した信号を出力するバイ
アス回路と、該バイアス回路出力と上記電圧偏差とを加
算する加算器と、この加算値が所定のレベルを越えたこ
とを検出するレベル検出器とによってコンデンサパンク
ツ増。
[Means and actions for solving the problem] A capacitor opening/closing type reactive power compensator that controls advanced reactive power by opening and closing a capacitor bank, and a reactor phase that controls delayed reactive power by phase-sterilizing the reactor. In a hybrid type reactive power compensator combined with a controlled type reactive power compensator, a voltage deviation detector detects the deviation between the system voltage deviation value and a set value;
The reactor is controlled by a regulator that calculates the reactive power command value to be absorbed by the reactor phase control type reactive power compensator based on the L pressure deviation, and a signal proportional to the capacitor capacity already input to the system is output. The capacitor puncture is increased by a bias circuit, an adder that adds the output of the bias circuit and the voltage deviation, and a level detector that detects when this added value exceeds a predetermined level.

減を制御することにより、リアクトルの位相制御による
無効電力制御を従来よりも速い応答で実現し得るように
したものである。
By controlling the reduction, reactive power control by phase control of the reactor can be realized with a faster response than before.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の実施例を示す構成図である。 FIG. 1 is a block diagram showing an embodiment of the present invention.

なお、この実施例もコンデンサバンクが2バンク、リア
クトルが1バンクの例である。
Note that this embodiment is also an example in which there are two capacitor banks and one reactor bank.

同図からも明らかなように、この実施例において用いら
れる各種機器は第2図と同様であるが、調節器9および
加算器8bならびにバイアス回路10の設置位置がそれ
ぞれ異なっている。すなわち、こ〜では系統に接続され
たトランス(I’T)5と電圧検出器6とによって系統
電圧実際値を検出し、この系統電圧実際値と設定値とを
加算器8aで図示の如き極性で加算して得られる電圧偏
差(ΔV)は調節器9に入力され、リアクトルにて補償
すべき無効電力指令匝が検出される。この指令匝は非線
形補正回路11および点弧角調整器12を介してサイリ
スクスイッチ4に入力され、これによってリアクトルに
流れる遅れ無効電力が制御される。一方、加算器8aを
介して得られる電圧偏差ΔVとバイアス回路’I Oか
らの出力、つまり、既に系統に投入されているコンデン
サ容量に比例した出力とが加算器8bにて加算される。
As is clear from the figure, the various devices used in this embodiment are the same as those in FIG. 2, but the installation positions of the regulator 9, adder 8b, and bias circuit 10 are different. That is, in this ~, the actual value of the grid voltage is detected by the transformer (I'T) 5 connected to the grid and the voltage detector 6, and the actual value of the grid voltage and the set value are added to the polarity as shown in the figure by the adder 8a. The voltage deviation (ΔV) obtained by addition is input to the regulator 9, and the reactive power command value to be compensated for by the reactor is detected. This command signal is input to the risk switch 4 via the nonlinear correction circuit 11 and the firing angle regulator 12, thereby controlling the delayed reactive power flowing to the reactor. On the other hand, the voltage deviation ΔV obtained via the adder 8a and the output from the bias circuit 'IO, that is, the output proportional to the capacitance of the capacitor already input to the system, are added together by the adder 8b.

レベル検出器16はこの加算器8bからの出力を監視し
、これが所定のレベルを越えて成る一定時間以上継続し
たときはコンデンサバンクの追加投入を行ない、また所
定のレベル以下で成る一定時間以上継続したときはコン
デンサバンクの遮断を行な5゜〔発明の効果〕 この発明によれば、リアクトルの位相制御に対しては調
節器を用いる一方、コンデンサバンクの投入、遮断には
電圧偏差信号を用いるようにしたので、リアクトルの位
相制御だけで補償し得る系統変動に対してはリアクトル
の制御応答性に合わせて高速制御が可能になるとともに
、リアクトルの位相制御だけでは制御不可能な変動が生
じた場合にも速やかにコンデンサバンクの投入、遮断を
行なうことができる利点がもたらされる。
The level detector 16 monitors the output from this adder 8b, and when the output exceeds a predetermined level and continues for a certain period of time, additional capacitor bank is added, and when the output continues to exceed a predetermined level for a certain period of time or below. [Effects of the Invention] According to the present invention, a regulator is used to control the phase of the reactor, while a voltage deviation signal is used to turn on and cut off the capacitor bank. As a result, it is possible to perform high-speed control in accordance with the control response of the reactor for system fluctuations that can be compensated for by reactor phase control alone, and also for fluctuations that cannot be controlled by reactor phase control alone. In this case, there is an advantage that the capacitor bank can be quickly turned on and off.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す構成図、第2図はハイ
ブリッド式静止形無効電力補償装置の従来例を示す構成
図である。 符号説明 1.5・・・・・・トランス、2・・・・・・リアクト
ル、3・・・・・・コンデンサ、4・・・・・・サイリ
スタスイッチ、6・・・・・・電圧検出器、7・・・・
・・電圧設定器、8a、8b・・・・・・加算器、9・
・・・・・調節器、10・・・・・・バイアス回路、1
1・・・・・・非線形補正回路、12・・・・・・点弧
角調整器、13・・・・・・レベル検出器(バンク選択
器、)、14・・・・・・同期演算回路。 第1図 第2図
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a block diagram showing a conventional example of a hybrid static var power compensator. Symbol explanation 1.5...Transformer, 2...Reactor, 3...Capacitor, 4...Thyristor switch, 6...Voltage detection Vessel, 7...
...Voltage setting device, 8a, 8b... Adder, 9.
...Adjuster, 10...Bias circuit, 1
1... Nonlinear correction circuit, 12... Firing angle adjuster, 13... Level detector (bank selector), 14... Synchronous calculation circuit. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 複数のコンデンサバンクを所定のスイツチ素子を用いて
開閉することにより進み無効電力を段階的に制御するコ
ンデンサ開閉式無効電力補償装置と、リアクトルの投入
位相を所定のスイツチ素子にて制御することにより遅れ
無効電力を連続的に制御するリアクトル位相制御式無効
電力補償装置とを組み合わせて電力系統の無効電力を補
償するハイブリツド式静止形無効電力補償装置であつて
、電力系統の電圧実際値とその設定値との偏差を検出す
る電圧偏差検出器と、該電圧偏差からリアクトル位相制
御式無効電力補償装置にて補償すべき無効電力指令値を
演算する調節器と、電力系統に既に投入されているコン
デンサバンクの容量に比例した信号を出力するバイアス
回路と、該バイアス回路出力と前記電圧偏差とを加算す
る加算器と、該加算値が所定のレベルを越えたか否かを
検出するレベル検出器とを備え、前記調節器出力にもと
づいてリアクトルの位相制御を行なうとともに、前記レ
ベル検出器出力にもとづいてコンデンサバンクの投入、
遮断を決定することを特徴とするハイブリツド式静止形
無効電力補償装置。
A capacitor switching type reactive power compensator that controls advanced reactive power step by step by opening and closing multiple capacitor banks using predetermined switch elements, and a capacitor switching type reactive power compensator that controls reactive power in stages by opening and closing multiple capacitor banks using predetermined switch elements, and a capacitor switching type reactive power compensator that controls reactive power in stages by opening and closing multiple capacitor banks using predetermined switch elements. This is a hybrid static type reactive power compensator that compensates for reactive power in a power system by combining a reactor phase control type reactive power compensator that continuously controls reactive power. a voltage deviation detector that detects the deviation between a bias circuit that outputs a signal proportional to the capacitance of the bias circuit, an adder that adds the output of the bias circuit and the voltage deviation, and a level detector that detects whether the added value exceeds a predetermined level. , performing phase control of the reactor based on the output of the regulator, and turning on the capacitor bank based on the output of the level detector;
A hybrid static type reactive power compensator characterized by determining a cutoff.
JP59214221A 1984-10-15 1984-10-15 Hybrid static reactive power compensator Pending JPS6194124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59214221A JPS6194124A (en) 1984-10-15 1984-10-15 Hybrid static reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59214221A JPS6194124A (en) 1984-10-15 1984-10-15 Hybrid static reactive power compensator

Publications (1)

Publication Number Publication Date
JPS6194124A true JPS6194124A (en) 1986-05-13

Family

ID=16652212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59214221A Pending JPS6194124A (en) 1984-10-15 1984-10-15 Hybrid static reactive power compensator

Country Status (1)

Country Link
JP (1) JPS6194124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054479A (en) * 2015-09-08 2017-03-16 エルエス産電株式会社Lsis Co., Ltd. Static reactive power compensation device and operation method therefor
US9777483B2 (en) 2013-10-25 2017-10-03 Svh Energie Sunshade comprising a fixed part and a motorized moving part, both parts being equipped with photovoltaic cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9777483B2 (en) 2013-10-25 2017-10-03 Svh Energie Sunshade comprising a fixed part and a motorized moving part, both parts being equipped with photovoltaic cells
JP2017054479A (en) * 2015-09-08 2017-03-16 エルエス産電株式会社Lsis Co., Ltd. Static reactive power compensation device and operation method therefor
US9912230B2 (en) 2015-09-08 2018-03-06 Lsis Co., Ltd. Static VAR compensator apparatus and operating method thereof

Similar Documents

Publication Publication Date Title
JPS6194124A (en) Hybrid static reactive power compensator
JP2008165499A (en) Reactive power compensation device and method
JPH0527856A (en) Reactive power compensating device
JP2008312370A (en) Reactive power compensating device and control method therefor
JP2000032764A (en) Inverter device, inverter controller and inverter system
JP2672621B2 (en) Static var compensator
JPH06335169A (en) Controller of inverter for single operation and linked operation
JPS61177517A (en) Stationary type reactive power compensating device
JP2792085B2 (en) Control method of reactive power compensator
JPH0731301Y2 (en) Controller for reactive power compensator
JPS60216723A (en) Hybrid stationary reactive power compensator
JPS61107411A (en) Static type reactive power compensating
JPS61156320A (en) Static reactive power compensator
JP2768848B2 (en) Control device for static var compensator
JPH036606A (en) Control method for static reactive power compensator
JPH07160346A (en) Stationary reactive power compensator
JPH08214459A (en) Controller of reactive power compensating equipment
JPH07107795A (en) Apparatus and method for excitation control for synchronous machine
JP2022045067A (en) Reactive power compensator
JPH01307812A (en) Controller for system voltage stabilizing equipment
JPH08126396A (en) Exciter for synchronous machine
JPH0626457B2 (en) Control system of reactive power compensator
JPS6367612A (en) Reactive power compensator
JPS58224599A (en) Automatic voltage controller for generator
JPH04372008A (en) Control system for reactive power compensator