JPH0741447U - 蛍光x線分析用の粉体試料調製装置 - Google Patents

蛍光x線分析用の粉体試料調製装置

Info

Publication number
JPH0741447U
JPH0741447U JP7471693U JP7471693U JPH0741447U JP H0741447 U JPH0741447 U JP H0741447U JP 7471693 U JP7471693 U JP 7471693U JP 7471693 U JP7471693 U JP 7471693U JP H0741447 U JPH0741447 U JP H0741447U
Authority
JP
Japan
Prior art keywords
sample
powder sample
filter paper
powder
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7471693U
Other languages
English (en)
Inventor
正道 森
興毅 山田
Original Assignee
理学電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理学電機工業株式会社 filed Critical 理学電機工業株式会社
Priority to JP7471693U priority Critical patent/JPH0741447U/ja
Publication of JPH0741447U publication Critical patent/JPH0741447U/ja
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

(57)【要約】 【目的】微量の粉体試料を定量分析に適した形状とする
調製を、容易、且つ迅速に行える蛍光X線分析用の粉体
試料調製装置を提供する 【構成】粉体試料7が載置されるろ紙5上に、粉体試料
7が充填される上下に貫通した充填部61を有する試料
ガイド6を載置する。この充填部61内に、振動供給機
8により振動しながら粉体試料7を供給して、粉体試料
7をほぼ均一に分散して載置する。真空発生装置3によ
り、ろ紙5をその下面から真空引きして、充填部61内
の粉体試料7をろ紙5上に吸着する。それにより、粉体
試料7を充填部61の内部全体にわたって隙間なくに充
填する。すり切り手段84を試料ガイド6の上面に沿っ
て移動させて、充填部61内に供給された粉体試料7を
すり切る。それにより、粉体試料7を、充填部61の内
径に正確に一致する一定の表面積と、試料ガイド6の厚
みに正確に一致する均一な厚みとを有する形状に調製で
きる。

Description

【考案の詳細な説明】
【0001】
【産業上の利用分野】
本考案は、粉体試料が微量である場合に適した蛍光X線分析用の粉体試料調製 装置に関するものである。
【0002】
【従来の技術】
蛍光X線分析装置は、試料にX線のような放射線を照射して、試料から発生し た蛍光X線を測定することにより、試料の元素分析を行う装置である。従来、こ の種の蛍光X線分析装置を用いて粉体試料の定量分析を行うに際して、分析すべ き粉体試料を、加圧成形して所定の定形(バルク試料)としている。そのため、 粉体試料の定量分析を行うには、数g程度の試料量を必要としている。
【0003】
【考案が解決しようとする課題】
ところが、上述のような蛍光X線分析にあたって、磨耗金属粉の分析のように 、試料が入手しにくいことから、提供される試料の量が極めて微量(0.1g程 度)である場合がある。こうした場合、周知の蛍光X線分析FP(ファンダメン タル・パラメータ)法を用いれば、定量分析が可能である。そのためには、粉体 試料が一定の表面積と均一な厚みを有する形状であることが要求される。
【0004】 そこで、従来では、粉体試料を水で溶いた試料溶液をろ紙上に吸引ろ過して、 試料溶液中の沈殿物である試料を、ろ紙上に薄く均一に分散付着させ、その後、 乾燥させて、ろ紙上に薄膜状に付着した粉体試料を定量分析に用いている。しか し、このような湿式方法による微量な粉体試料の調製では、ろ紙上に粉体試料を 薄い均一な厚みに付着させるために、高い精密度を要する極めて煩雑な調製工程 を経なければならない。しかも、乾燥工程を必要とするので、粉体試料を定量分 析に適した形態とするまでに時間がかかる欠点がある。
【0005】 そこで本考案は、微量の粉体試料を定量分析に適した形状とする調製を、容易 に、且つ迅速に行える蛍光X線分析用の粉体試料調製装置を提供することを目的 とするものである。
【0006】
【課題を解決しようとするための手段】
上記目的を達成するために、本考案に係る蛍光X線分析用の粉体試料調製装置 は、粉体試料が載置されるろ紙と、粉体試料が充填される上下に貫通した充填部 を有し上記ろ紙上に載置される試料ガイドと、振動しながら上記充填部に粉体試 料を供給する振動供給機と、試料ガイドの上面に沿って移動して、上記充填部に 供給された粉体試料をすり切るすり切り手段と、上記ろ紙をその下面から真空引 きする真空発生装置とを備えている。
【0007】
【作用】
ろ紙上に載置した試料ガイドにおける上下に貫通した充填部内に、振動供給機 により粉体試料を振動しながら供給する。この振動によって、粉体試料は、充填 部内に極少量ずつ落下されて、ろ紙上における充填部内全体にわたりほぼ均一に 分散されて載置されていく。このとき、真空発生装置によりろ紙がその下面から 真空引きされているので、粉体試料は、ろ紙の上面に吸着されて、充填部から周 囲に飛散することが極力防止されながら、充填部内に隈なく充填される。さらに 、すり切り手段により、充填部内の粉体試料は、その上面が試料ガイドの上面と 面一になるようすり切られる。したがって、粉体試料は、充填部の内径に正確に 一致する一定の表面積と、試料ガイドの厚みに正確に一致する均一厚みとを有す る形状となる。予め充填部の内径と厚みが異なる複数の試料ガイドを用意するこ とにより、微量な粉体試料を、その量に応じて、蛍光X線分析FP法に適した形 状に容易に且つ正確に調製できる。また、従来の湿式方法による試料調製と比較 して、乾式方法であることから、短時間で調製を完了できる。
【0008】
【実施例】
以下、本考案の好適な実施例について図面を参照しながら説明する。 図1は本考案の一実施例の概略構成図を示す。 図1において、真空室1は、接続パイプ2を介して真空ポンプ3に接続されて いる。この真空室1に、セラミックのような多孔質材料からなる円柱形の多孔質 台4がその上面を真空室1の外部に露呈させて気密状態に装着されている。この 多孔質台4上に、たとえばメンブランフィルター(ポアサイズ0.45μm、材 質セルロース)からなる円形のろ紙5が載置されている。さらに、ろ紙5上に、 厚みの薄いリング状の試料ガイド6が載置されている。この試料ガイド6の中空 部が、粉体試料7の充填される上下に貫通した充填部61になっている。
【0009】 振動供給機8は、振動しながら充填部61内に粉体試料7を供給するもので、 バイブレータ81と、このバイブレータ81により駆動されて振動する振動体8 2とからなる。振動体82は、断面L字形状(U字形状またはV字形状でもよい )になっており、この屈曲内方側の試料供給面83の表面には、微細な溝が形成 されている。
【0010】 つぎに、上記粉体試料調製装置を用いた粉体試料7の調製について、説明する 。 図1に示すように、真空室1に装着した多孔質台4上に、ろ紙5を重合状態に 位置決めして載置し、さらに、このろ紙5上に、試料ガイド6を位置決めして載 置する。そして、真空ポンプ3を作動させると、ろ紙5および試料ガイド6が多 孔質台4の上面に吸着される。粉体試料7は、たとえば75ミクロン程度のもの で、手作業により、振動供給機8の振動体82における試料供給面83上に載せ られる。バイブレータ81の駆動により振動体82が振動するので、試料供給面 83上の粉体試料7は、ゆすられて試料供給面83への付着が防止されながら、 試料供給面83上をこれのエッジ部84に向かって移送されていき、エッジ部8 4から試料ガイド6の充填部61内のろ紙5上に落下する。
【0011】 このとき、試料供給面83上には微細な溝が形成されているので、粉体試料7 は、試料供給面83上での滑りが極力防止されながら、エッジ部84から充填部 61にほぼ均等な極少量ずつ供給されていく。したがって、粉体試料7は、充填 部61内におけるろ紙5上の全体にわたってほぼ均一に載置される。また、ろ紙 5の下面が多孔質台4を通じ真空引きされているので、粉体試料7は、充填部6 1内に供給される際にろ紙5の上面に吸着されて、充填部61の外部に飛散する のが防止されながら、充填部61内に隙間なく充填される。
【0012】 粉体試料7が、図2に示すように、充填部61の容積以上に供給されると、振 動体82における試料供給面83とは反対側の平坦面85で、充填部61の上端 開口より溢れ出ている粉体試料7を押さえるようにしながら均(なら)す。この とき、振動体82の振動が、粉体試料7に対してその粉体粒子を浮かせるよう作 用する。そのため、粉体試料7は、真空引きによりろ紙5の上面に吸着されてい るにもかかわらず、充填部61内で流動して、その上面をほぼ均一に均される。 また、粉体試料7は、一般に微粉であるが、振動体82が振動していることによ って平坦面85に付着しない。
【0013】 最後に、図3に示すように、振動体82のエッジ部84を試料ガイド6の上面 に沿って摺動させて、粉体試料7を、その上面が試料ガイド6の上面と面一にな るようすり切る。その後に、試料ガイド6を粉体試料7から抜き出す。粉体試料 7は、真空引きによってろ紙5に吸着されていることにより、図4に示すように 、充填部61に対応した形状を保持する。
【0014】 すなわち、粉体試料7は、充填部61の内径に正確に一致する一定の表面積と 、試料ガイド6の厚みに正確に一致する均一な厚みとを有する形状に調製される 。したがって、予め充填部61の内径と厚みが異なる複数の試料ガイド6を用意 することにより、微量な粉体試料7を、その量に応じて、蛍光X線分析FP法に よる定量分析に適した形状に正確に調製できる。また、この試料調製装置を用い ることにより、従来の湿式方法による試料調製と比較して、煩雑な調製工程を経 ることなく極めて容易に調製することができる。しかも、乾式方法であることか ら、時間のかかる乾燥作業が不要なので、短時間で調製を完了できる。
【0015】 図5は、上記実施例で調製した粉体試料7を蛍光X線分析する蛍光X線分析装 置の概略構成図を示す。 同図において、放射線源であるX線管10は、放射線の一種である一次X線B 1を出射して、ろ紙5上の粉体試料7に一次X線B1を照射する。上記粉体試料 7に照射された一次X線B1は、粉体試料7の原子を励起して、その元素特有の 蛍光X線B2を発生させる。試料7からの蛍光X線B2は、視野制限スリット1 1および第1のソーラスリット12を通過し、分光結晶13に入射角θで入射し 、ブラッグの式を満足する所定の波長の蛍光X線B2のみが、入射角θと同一の 回折角θで回折される。回折された蛍光X線B2は、第2のソーラスリット14 を通過した後、蛍光X線検出器15に入射して検出される。この検出値に基づい て、粉体試料7の元素分析、さらには、蛍光X線分析FP法による定量分析がな される。
【0016】
【表1】
【0017】 上記の表1は、本考案の粉体試料調製装置を用いて乾式方法で調製した微量な 粉体試料と、従来の湿式方法により調製した微量な粉体試料とを、それぞれ蛍光 X線分析FP法により定量分析した実測結果を示す。粉体試料7として、100 mgのNIST91(ガラス粉末を約200メッシュ以下に粉砕したものであっ て、一定量における成分の分量比が既知であるガラス標準試料)を用意し、この 粉体試料7を、本考案の粉体試料調製装置を用いた乾式方法および従来の湿式方 法によって、それぞれ均一な厚みで直径30mmの形状になるようろ紙5(フイ ルタ)に付着させた。標準値は、化学分析により求められた既知の正しい値であ る。本考案に係る試料調製手段としての乾式方法および従来の試料調製手段とし ての湿式方法の双方にそれぞれ示したXRFは、何れも蛍光X線分析FP法によ り定量分析した分析値である。Diffは、各々の上記分析値と標準値との差を 示している。
【0018】 この表1から明らかなように、上記粉体試料7に含有された酸化シリコン(Si O2)、三酸化アルミナ(A1O3)、三酸化鉄(Fe2O)、酸化亜鉛(ZnO )、酸化カ ルシウム(CaO )、酸化カリウム(KaO )、酸化ナトリウム(Na2O)およびフッ 素(F)の何れの成分についても、本考案の粉体試料調製装置により調製した粉 体試料7の分析値は、従来の湿式方法により調製した粉体試料の分析値とほぼ同 程度の高い精度が得られた。なお、本考案の粉体試料調製装置による粉体試料7 の調製において、一定量の粉体試料7に対し、その表面積を小さくして厚みを大 きくするよりも、厚みを可及的に小さくして表面積を大きくした方が、蛍光X線 B2の強度が大きくなって、分析精度が向上することが判明した。
【0019】
【考案の効果】
以上説明したように、本考案の蛍光X線分析用の粉体試料調製装置によると、 充填部内におけるろ紙上に、粉体試料をほぼ均一に分散して載置できるとともに 、充填部内の粉体試料を、ろ紙の上面に吸着して、充填部の内部全体にわたって 均等な密度に充填でき、さらに、充填部内の粉体試料を、その上面が試料ガイド の上面と面一になるようすり切れる。したがって、粉体試料を、充填部の内径に 正確に一致する一定の表面積と、試料ガイドの厚みに正確に一致する均一な厚み とを有する形状に調製できる。そのため、充填部の内径と厚みが異なる複数の試 料ガイドを用意することにより、微量な粉体試料を、その量に応じて、蛍光X線 分析FP法による定量分析に適した形状に、極めて容易に調製できる。しかも、 乾式方法であることから、迅速に調製できる。
【図面の簡単な説明】
【図1】本考案の実施例の概略構成図である。
【図2】同上実施例におけ粉体試料の上部を均す状態を
示す断面図である。
【図3】同上実施例における粉体試料を均一な厚みにす
り切る状態を示す断面図である。
【図4】(a)は同上実施例により調製した粉体試料の
平面図、(b)はその側面図である。
【図5】一般的な蛍光X線分析装置の概略構成図であ
る。
【符号の説明】
3…真空ポンプ(真空発生装置)、5…ろ紙、6…試料
ガイド、61…充填部、7…粉体試料、8…振動供給
機、84…エッジ部(すり切り手段)。

Claims (1)

    【実用新案登録請求の範囲】
  1. 【請求項1】 粉体試料が載置されるろ紙と、 粉体試料が充填される上下に貫通した充填部を有し、上
    記ろ紙上に載置される試料ガイドと、 振動しながら上記充填部に粉体試料を供給する振動供給
    機と、 試料ガイドの上面に沿って移動して、上記充填部に供給
    された粉体試料をすり切るすり切り手段と、 上記ろ紙をその下面から真空引きする真空発生装置とを
    備えた蛍光X線分析用の粉体試料調製装置。
JP7471693U 1993-12-27 1993-12-27 蛍光x線分析用の粉体試料調製装置 Pending JPH0741447U (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7471693U JPH0741447U (ja) 1993-12-27 1993-12-27 蛍光x線分析用の粉体試料調製装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7471693U JPH0741447U (ja) 1993-12-27 1993-12-27 蛍光x線分析用の粉体試料調製装置

Publications (1)

Publication Number Publication Date
JPH0741447U true JPH0741447U (ja) 1995-07-21

Family

ID=13555231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7471693U Pending JPH0741447U (ja) 1993-12-27 1993-12-27 蛍光x線分析用の粉体試料調製装置

Country Status (1)

Country Link
JP (1) JPH0741447U (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172636A1 (ja) * 2011-06-14 2012-12-20 日立造船株式会社 灰中の重金属濃度の自動計測装置
JP2013083638A (ja) * 2011-09-30 2013-05-09 Jx Nippon Mining & Metals Corp 試料分析方法、及び試料分析システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172636A1 (ja) * 2011-06-14 2012-12-20 日立造船株式会社 灰中の重金属濃度の自動計測装置
JP5657112B2 (ja) * 2011-06-14 2015-01-21 日立造船株式会社 灰中の重金属濃度の自動計測装置
JP2013083638A (ja) * 2011-09-30 2013-05-09 Jx Nippon Mining & Metals Corp 試料分析方法、及び試料分析システム

Similar Documents

Publication Publication Date Title
CA2713383C (en) Apparatus and method for x-ray fluorescence analysis of a mineral sample
DE10251757B4 (de) Vorrichtung zur Bestimmung der Konzentration von in einer zu untersuchenden Probe enthaltenen Liganden
DE2650106C2 (ja)
DE2853836A1 (de) Verfahren und einrichtung zum bestimmen einer immunreaktionskomponente
DE102007062272A1 (de) Vorrichtung und Verfahren zum Analysieren von Verunreinigungen auf einem Wafer
Misra et al. Total reflection X-ray fluorescence: a technique for trace element analysis in materials
DE112009000004B4 (de) Vorrichtung zur Röntgenfluoreszenzanalyse und deren Verwendung
JPH0741447U (ja) 蛍光x線分析用の粉体試料調製装置
JP2002257756A (ja) ガラス製品の製造方法及び製造装置
CN114878617A (zh) 液体中痕量重金属元素的富集检测方法和装置
US11255757B2 (en) Apparatus and method for analysing a solid specimen material
JP7102746B2 (ja) 液体試料の蛍光x線分析法
JPH06235688A (ja) 蛍光x線分析用の分析試料の作成方法
JP2736141B2 (ja) 蛍光x線分析方法及び蛍光x線分析装置
Jurczyk et al. XRF analysis of microsamples of semiconductor type multielement materials by the thin layer method. Determination of Cr, Co, Ni, Cu, Zn, Ga, Se, Sb, Yb
JP7135582B2 (ja) キャピラリホルダおよびx線回折測定方法
US4788700A (en) Fluorescent X-ray analyzing method of solution specimen and specimen sampler used for the method
JP2010019607A (ja) 較正用標準試料の生成方法および装置、並びにレーザー誘起プラズマ分光分析方法および装置
JPS57157139A (en) Method for feeding liquid sample to dry analizing material
JPH09166589A (ja) 鉄鋼スラグの迅速分析方法
JP2010117202A (ja) 赤外分光法で定量分析するための検量線の作成方法および赤外分光法による定量方法
JP3569711B2 (ja) X線分析方法
GB2080516A (en) X-ray fluorescence analysis
JPH08152378A (ja) 光ファイバーの検査方法および装置
JPS6145958A (ja) 螢光x線分析方法