JPH0738344B2 - Soft magnetic thin film - Google Patents

Soft magnetic thin film

Info

Publication number
JPH0738344B2
JPH0738344B2 JP1070853A JP7085389A JPH0738344B2 JP H0738344 B2 JPH0738344 B2 JP H0738344B2 JP 1070853 A JP1070853 A JP 1070853A JP 7085389 A JP7085389 A JP 7085389A JP H0738344 B2 JPH0738344 B2 JP H0738344B2
Authority
JP
Japan
Prior art keywords
iron
thickness
layer
thin film
iron carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1070853A
Other languages
Japanese (ja)
Other versions
JPH02249210A (en
Inventor
徹 堀
謙一 藤井
正樹 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1070853A priority Critical patent/JPH0738344B2/en
Publication of JPH02249210A publication Critical patent/JPH02249210A/en
Publication of JPH0738344B2 publication Critical patent/JPH0738344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Magnetic Heads (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気ヘッドや磁気抵抗素子等に用いられる軟
磁性薄膜、特に高保持力の高密度磁気記録用の媒体に対
して優れた記録再生特性を有する軟磁性薄膜、およびこ
れを用いた磁気ヘッドに関するものである。
The present invention relates to a soft magnetic thin film used for a magnetic head, a magnetoresistive element, and the like, and particularly to excellent recording / reproducing characteristics for a medium for high-density magnetic recording with high coercive force. And a magnetic head using the same.

従来の技術 従来磁気ヘッドの材料としては、金属酸化物のフェライ
トが広く使われてきた。近年はそれよりも飽和磁束密度
の高いパーマロイ(ニッケル−鉄系合金)やセンダスト
(鉄−アルミニウム−シリコン系合金)も使われてい
る。
2. Description of the Related Art Conventionally, ferrite, which is a metal oxide, has been widely used as a material for magnetic heads. In recent years, permalloy (nickel-iron-based alloy) and sendust (iron-aluminum-silicon-based alloy) having higher saturation magnetic flux density than that have been used.

さらに最近では、飽和磁束密度が1.0〜1.4テスラのアモ
スファス材料(コバルト−ジルコニウム系非晶質合金)
が開発され、8ミリVTRなどのメタルテープ対応ヘッド
用に使われ始めている。
More recently, Amosface materials with a saturation magnetic flux density of 1.0 to 1.4 Tesla (cobalt-zirconium amorphous alloy)
Has been developed and is beginning to be used for metal tape compatible heads such as 8 mm VTR.

記録密度向上の要求に応えて、このような飽和磁束密度
の高い磁性材料が次々に登場してきたが、媒体の方の進
歩も目覚ましく、メタルテープの出現によって従来の酸
化物テープの保持力600〜700eに対して1500〜2000
eの保磁力を持つ媒体が得られるようになった。
In response to the demand for higher recording density, magnetic materials with high saturation magnetic flux densities have been introduced one after another, but the progress of media has been remarkable, and the advent of metal tape has made it possible to maintain the conventional oxide tape with a holding power of 600 ~. 1500-2000 for 700e
A medium having a coercive force of e has been obtained.

次世代の大容量磁気記録媒体ではさらに大きな保持力を
持つ媒体も開発中であり、このような高保持力の磁気記
録媒体に十分記録させるためには1.5テスラ以上の飽和
磁束密度を有する磁気ヘッドコア用磁性材料が必要であ
るといわれている〔例えば『日立』第49巻第6号8〜9
ページ〕。
In the next-generation large-capacity magnetic recording media, media with even greater coercive force are under development, and a magnetic head core having a saturation magnetic flux density of 1.5 Tesla or more is required to sufficiently record on such high coercive force magnetic recording media. It is said that a magnetic material for use is required [for example, "Hitachi" Vol. 49, No. 6, 8-9].
page〕.

飽和磁束密度の高い物質としては、2.2テスラという純
鉄がある。ところが純鉄は透磁率が低いため、そのまま
では磁気ヘッド材料として使えない。そこで炭化鉄系多
層膜が研究され、高い飽和磁束密度と透磁率を兼ね備え
た軟磁性薄膜が報告されている〔例えばジャーナル オ
ブ アポライド フィジックス(Journal of Applied P
hysics)』Vol.63,No.8,April,1988,pp.3203〜3205『日
本応用磁気学会』Vol.12,No.3,1988,pp.460〜464〕。し
かし耐蝕性などの点で問題があり、実用化されるまでに
は至っていない。また一方では高い耐蝕性を持つ高飽和
磁束密度の窒化鉄薄膜の研究が報告されている〔例えば
『日本応用磁気学会第11回学術講演概要集』3pB−13,19
87〕。しかし上記薄膜は高い透磁率は持っていない。
A material with a high saturation magnetic flux density is pure iron of 2.2 Tesla. However, since pure iron has a low magnetic permeability, it cannot be used as a magnetic head material as it is. Therefore, iron carbide-based multilayer films have been studied, and soft magnetic thin films having high saturation magnetic flux density and magnetic permeability have been reported [for example, Journal of Applied Physics].
hysics) ”, Vol. 63, No. 8, April, 1988, pp. 3203-3205,“ Japan Society for Applied Magnetics, ”Vol. 12, No. 3, 1988, pp. 460-464]. However, there is a problem in terms of corrosion resistance, etc., and it has not been put to practical use. On the other hand, research on iron nitride thin films with high corrosion flux and high saturation magnetic flux density has been reported [for example, "The 11th Annual Meeting of the Applied Magnetics Society of Japan" 3pB-13, 19
87]. However, the thin film does not have high magnetic permeability.

発明が解決しようとする課題 上記のように飽和磁束密度が1.5テスラ以上の磁性材料
では、これまで高い耐久性と透磁率を兼ね備えたものが
得られないという課題があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention As described above, a magnetic material having a saturation magnetic flux density of 1.5 tesla or more has a problem that a material having both high durability and magnetic permeability cannot be obtained so far.

本発明は上記課題に鑑み、高い耐久性と透磁率を兼ね備
えた、飽和磁束密度の高い軟磁性薄膜、およびこれを用
いた磁気ヘッドを提供するものである。
In view of the above problems, the present invention provides a soft magnetic thin film having both high durability and magnetic permeability and high saturation magnetic flux density, and a magnetic head using the same.

課題を解決するための手段 上記課題を解決するために本発明の軟磁性薄膜は、C濃
度がモル百分率で3〜20%の炭化鉄の層と、γFe4Nを主
成分とする窒化鉄の層とが交互に配置され、かつ炭化鉄
の単層の厚さが0.5〜1500nm、窒化鉄の単層の厚さが0.5
〜1000nmであるという構成を備えたものである。
Means for Solving the Problems In order to solve the above problems, the soft magnetic thin film of the present invention comprises a layer of iron carbide having a C concentration of 3 to 20% by mole percentage, and an iron nitride containing γFe 4 N as a main component. The layers are interleaved and the thickness of the iron carbide monolayer is 0.5-1500 nm, the thickness of the iron nitride monolayer is 0.5.
It has a structure of ~ 1000 nm.

作用 本発明は、上記した構成によって炭化鉄の層の高透磁率
と窒化鉄の層の高耐久性とが互いに補い合って、1.5テ
スラ以上の飽和磁束密度の高い透磁率と耐久性とを兼ね
備えた軟磁性薄膜を提供することとなる。
Action The present invention has a high magnetic permeability of the iron carbide layer and a high durability of the iron nitride layer by the above-described configuration, which complement each other, and has a high magnetic permeability and a high saturation magnetic flux density of 1.5 Tesla or more. A soft magnetic thin film is provided.

実施例 以下本発明の第1の一実施例の軟磁性薄膜について、図
面を参照しながら説明する。
Example A soft magnetic thin film according to a first example of the present invention will be described below with reference to the drawings.

第1図は本発明の第1および第2の実施例の軟磁性薄膜
における炭化鉄と窒化鉄との層状構造を示した断面図で
ある。第1図において、11は炭化鉄、12は窒化鉄であ
る。
FIG. 1 is a sectional view showing a layered structure of iron carbide and iron nitride in the soft magnetic thin films of the first and second embodiments of the present invention. In FIG. 1, 11 is iron carbide and 12 is iron nitride.

本実施例の軟磁性薄膜は、3ターゲット式の高周波マグ
ネトロンスパッタ装置を用いて制作し、各層の膜厚はス
パッタ時間によって制御し、また各層の膜厚によらず全
膜厚が2μm程度になるように層数を調節してある。ま
た本実施例の全ての軟磁性薄膜は、成膜後320℃で1時
間アニールしてある。
The soft magnetic thin film of this embodiment was produced by using a 3-target type high frequency magnetron sputtering apparatus, the film thickness of each layer was controlled by the sputtering time, and the total film thickness was about 2 μm regardless of the film thickness of each layer. The number of layers is adjusted so that Further, all the soft magnetic thin films of this example were annealed at 320 ° C. for 1 hour after the film formation.

以上のような構成を持った軟磁性薄膜について、以上第
1表,第2表および第3図から第13図を用いてその特徴
を説明する。
The characteristics of the soft magnetic thin film having the above structure will be described with reference to Tables 1 and 2 and FIGS.

まず第1表は、窒化鉄層の膜厚が5nm、炭化鉄層の膜厚
が60nm、窒化鉄層の窒素濃度がモル百分率で22%、炭化
鉄層の炭素濃度がモル百分率で12%の本実施例の軟磁性
薄膜と、窒素濃度がモル百分率で16%の窒化鉄の単層膜
および炭素濃度がモル百分率でそれぞれ12%と25%の炭
化鉄単層膜との特性を比較した表である。
First, Table 1 shows that the iron nitride layer has a thickness of 5 nm, the iron carbide layer has a thickness of 60 nm, the nitrogen concentration of the iron nitride layer is 22% in mole percentage, and the carbon concentration of the iron carbide layer is 12% in mole percentage. A table comparing the characteristics of the soft magnetic thin film of the present example, a monolayer film of iron nitride having a nitrogen concentration of 16% by mole percentage and an iron carbide single layer film having a carbon concentration of 12% and 25% by mole percentage, respectively. Is.

第1表において、比透磁率は20MHzにおける値であり、
耐候性は3%塩水噴霧中に200時間放置した後の薄膜の
飽和磁束密度の放置前の飽和磁束密度との比で表してあ
る。
In Table 1, the relative permeability is the value at 20MHz,
The weather resistance is represented by the ratio of the saturation magnetic flux density of the thin film after standing for 200 hours in a 3% salt spray to the saturation magnetic flux density before standing.

第1表から明らかなように本実施例では、単層膜では得
ることのできない、高い飽和磁束密度と透磁率と耐久性
とを兼ね備えた軟磁性薄膜を実現することができる。
As is clear from Table 1, in this embodiment, it is possible to realize a soft magnetic thin film having high saturation magnetic flux density, magnetic permeability and durability which cannot be obtained by a single layer film.

第2表は、窒化鉄層の膜厚が5nm、炭化鉄層の膜厚が60n
mて炭化鉄層の炭素濃度がモル百分率で12%の軟磁性薄
膜において、窒化鉄層の窒素濃度をモル百分率で22%、
窒素濃度がモル百分率で4.7%から22.0%まで変化させ
た場合の軟磁性特性と耐候性とを示した表である。
Table 2 shows that the iron nitride layer has a thickness of 5 nm and the iron carbide layer has a thickness of 60 n.
In a soft magnetic thin film in which the carbon concentration of the iron carbide layer is 12% by mole percentage, the nitrogen concentration of the iron nitride layer is 22% by mole percentage,
9 is a table showing soft magnetic characteristics and weather resistance when the nitrogen concentration is changed from 4.7% to 22.0% in terms of molar percentage.

第2表において、耐候性は3%塩水噴霧中に200時間放
置した後の薄膜の飽和磁束密度と放置前の飽和磁束密度
との比で表してある。
In Table 2, the weather resistance is represented by the ratio between the saturation magnetic flux density of the thin film after standing for 200 hours in a 3% salt water spray and the saturation magnetic flux density before standing.

第2表から明らかなように、膜厚が5nmの窒化鉄層と、
膜厚が60nmの炭素濃度がモル百分率で12%の炭化鉄層の
多層膜においては、窒化鉄層の結晶構造がγFe4Nを主成
分とする場合に良好な軟磁気特性を備えた磁性薄膜を実
現することができる。
As is clear from Table 2, an iron nitride layer having a film thickness of 5 nm,
In a multilayer film of an iron carbide layer having a carbon concentration of 60% and a carbon concentration of 12% in terms of mol percentage, a magnetic thin film having good soft magnetic properties when the crystal structure of the iron nitride layer is mainly composed of γFe 4 N. Can be realized.

第3図,第4図および第5図はそれぞれ、窒化鉄層の厚
さを5nmに固定して炭化鉄層の膜厚を0.7nm〜5000nmまで
変化させた場合の飽和磁束密度、保磁力および20MHzで
の比透磁率の変化を示した図である。このとき窒化鉄層
の結晶構造はγFe4Nを主成分とし、炭化鉄層中の炭素濃
度はモル百分率で12%である。
3, 4, and 5 show the saturation magnetic flux density, the coercive force, and the coercive force when the thickness of the iron nitride layer was fixed to 5 nm and the thickness of the iron carbide layer was changed from 0.7 nm to 5000 nm, respectively. It is the figure which showed the change of relative permeability in 20MHz. At this time, the crystal structure of the iron nitride layer contains γFe 4 N as a main component, and the carbon concentration in the iron carbide layer is 12% in terms of molar percentage.

第3図,第4図および第5図から明らかなように、γFe
4Nを主成分とし、膜厚が5nmの窒化鉄層と、炭素濃度が
モル百分率で12%の炭化鉄層とを積層した場合、炭化鉄
層の膜厚が2nmより大きく、1100nmより小さい時に良好
な軟磁気特性を備えた磁性薄膜を実現することができ
る。
As is clear from FIGS. 3, 4, and 5, γFe
When an iron nitride layer having a thickness of 5 nm and containing 4 N as a main component and an iron carbide layer having a carbon concentration of 12% in terms of mole percentage are laminated and the thickness of the iron carbide layer is larger than 2 nm and smaller than 1100 nm. It is possible to realize a magnetic thin film having excellent soft magnetic characteristics.

第6図,第7図および第8図はそれぞれ、炭化鉄層の厚
さを60nmに固定して窒化鉄層の膜厚を0.5nm〜4000nmま
で変化させた場合の飽和磁束密度、保磁力および20MHz
での比透磁率の変化を示した図である。このとき窒化鉄
層の結晶構造はγFe4Nを主成分とし、炭化鉄層中の炭素
濃度はモル百分率で12%である。
Figures 6, 7, and 8 show the saturation magnetic flux density, coercive force, and coercive force when the thickness of the iron nitride layer was fixed to 60 nm and the thickness of the iron nitride layer was changed from 0.5 nm to 4000 nm, respectively. 20MHz
It is a figure showing change of relative permeability in. At this time, the crystal structure of the iron nitride layer contains γFe 4 N as a main component, and the carbon concentration in the iron carbide layer is 12% in terms of molar percentage.

第6図,第7図および第8図から明らかなように、膜厚
が60nmで炭素濃度がモル百分率で12%の炭化鉄層と、γ
Fe4Nを主成分とした窒化鉄の層とを積層した場合、窒化
鉄層の膜厚が0.5nm大きく、200nmより小さい時に良好な
軟磁気特性を備えた磁性薄膜を実現することができる。
As is clear from FIG. 6, FIG. 7 and FIG. 8, an iron carbide layer having a film thickness of 60 nm and a carbon concentration of 12% in molar percentage,
When a layer of iron nitride containing Fe 4 N as a main component is laminated, a magnetic thin film having good soft magnetic characteristics can be realized when the thickness of the iron nitride layer is larger than 0.5 nm and smaller than 200 nm.

第9図,第10図および第11図はそれぞれ、γFe4Nを主成
分とする窒化鉄層の厚さを5nm炭化鉄層の厚さを60nmに
固定して、炭化鉄層の炭素濃度をモル百分率で1.5%〜3
7%まで変化させた場合の飽和磁束密度、保持力および2
0MHzでの比透磁率の変化を示した図である。
Fig. 9, Fig. 10 and Fig. 11 show that the carbon concentration of the iron carbide layer was fixed by fixing the thickness of the iron nitride layer containing γFe 4 N as the main component to 5 nm and the thickness of the iron carbide layer to 60 nm. 1.5% to 3% by mole
Saturation magnetic flux density, coercive force and 2 when changed to 7%
It is a figure showing change of relative permeability at 0 MHz.

第9図,第10図および第11図から明らかなように、膜厚
が60nmの炭化鉄層と、膜厚が5nmでγFe4Nを主成分とす
る窒化鉄の層とを積層した場合、炭化鉄層の炭素濃度が
モル百分率で4%より大きく、29%より小さい時に良好
な軟磁気特性を備えた磁性薄膜を実現することができ
る。
As is clear from FIGS. 9, 10, and 11, when an iron carbide layer having a thickness of 60 nm and an iron nitride layer having a thickness of 5 nm and containing γFe 4 N as a main component are laminated, When the carbon concentration of the iron carbide layer is more than 4% and less than 29% in terms of molar percentage, it is possible to realize a magnetic thin film having good soft magnetic characteristics.

第12図は、モル百分率で12%の炭素濃度の炭化鉄層の厚
さを5nmに固定して、γFe4Nを主成分とした窒化鉄層の
膜厚を0.5nm〜4000nmまで変化させたそれぞれの薄膜
を、3%塩水噴霧中に200時間放置して、放置前の各薄
膜の飽和磁束密度と放置後のそれぞれの飽和磁束密度と
の比を表した図である。
FIG. 12 shows that the thickness of the iron carbide layer having a carbon concentration of 12% in terms of mole percentage was fixed to 5 nm, and the thickness of the iron nitride layer containing γFe 4 N as a main component was changed from 0.5 nm to 4000 nm. FIG. 3 is a diagram showing the ratio of the saturation magnetic flux density of each thin film before standing and each saturation magnetic flux density after standing by allowing each thin film to stand in a 3% salt water spray for 200 hours.

第12図から明らかなように、膜厚が5nmでモル百分率で1
2%の炭素濃度の炭化鉄層と、γFe4Nを主成分とした窒
化鉄層とを積層した場合、窒化鉄層の膜厚が3nm以上の
場合に良好な耐候性を備えた磁性薄膜を実現することが
できる。
As is clear from FIG. 12, the film thickness is 5 nm and the molar percentage is 1
When an iron carbide layer having a carbon concentration of 2% and an iron nitride layer containing γFe 4 N as a main component are laminated, a magnetic thin film having good weather resistance is formed when the iron nitride layer has a thickness of 3 nm or more. Can be realized.

第13図は、炭化鉄層の厚さを60nmに、γFe4Nを主成分と
した窒化鉄層の膜厚を5nmに固定して、炭化鉄層の炭素
濃度をモル百分率で1.5〜37%まで変化させたそれぞれ
の薄膜を、3%塩水噴霧中に200時間放置して、放置前
の各薄膜の飽和磁束密度と放置後のそれぞれの飽和磁束
密度との比を表した図である。
Fig. 13 shows that the iron carbide layer has a thickness of 60 nm and the iron nitride layer mainly composed of γFe 4 N is fixed at a thickness of 5 nm, and the carbon concentration of the iron carbide layer is 1.5 to 37% in terms of molar percentage. FIG. 6 is a diagram showing the ratio of the saturation magnetic flux density of each thin film before standing and each saturation magnetic flux density after standing by allowing each of the thin films changed to 3% salt water spray for 200 hours.

第13図から明らかなように、膜厚が60nmの炭化鉄層と、
膜厚が5nmでγFe4Nを主成分とした窒化鉄層とを積層し
た場合、炭化鉄層の炭素濃度がモル百分率で10%以上の
場合に良好な耐候性を備えた磁性薄膜を実現することが
できる。
As is clear from FIG. 13, an iron carbide layer having a film thickness of 60 nm,
When a film thickness of 5 nm and an iron nitride layer containing γFe 4 N as a main component are laminated, a magnetic thin film with good weather resistance is realized when the carbon concentration of the iron carbide layer is 10% or more by mole percentage. be able to.

以上の結果から、C濃度がモル百分率で4〜35%の炭化
鉄の層と、γFe4Nを主成分とする窒化鉄の層が交互に配
置され、かつ炭化鉄の単層の厚さが3〜1000nm、窒化鉄
の単層の厚さが0.6〜2000nmに設定することにより、高
い耐久性と透磁率を兼ね備えた、飽和磁束密度の高い軟
磁性薄膜を提供することができる。
From the above results, layers of iron carbide having a C concentration of 4 to 35% by mole percentage and layers of iron nitride containing γFe 4 N as a main component are alternately arranged, and the thickness of a single layer of iron carbide is By setting the thickness of the iron nitride single layer to 3 to 1000 nm and the thickness of the iron nitride single layer to 0.6 to 2000 nm, it is possible to provide a soft magnetic thin film having both high durability and magnetic permeability and a high saturation magnetic flux density.

以下本発明の第2の一実施例の磁気ヘッドについて、図
面を参照しながら説明する。
A magnetic head according to a second embodiment of the present invention will be described below with reference to the drawings.

第14図は、本発明の第2の実施例の磁気ヘッドの一部の
断面図である。第14図において31は表面を充分に研磨・
洗浄したセラミック基板である。32は本発明の軟磁性薄
膜で、膜厚が60nmで炭素濃度がモル百分率で12%の炭化
鉄層と、膜厚が5nmでγFe4Nを主成分とする窒化鉄の層
とを積層したもので、積層数は炭化鉄層が46層、窒化鉄
層が45層である。
FIG. 14 is a sectional view of a part of the magnetic head of the second embodiment of the present invention. In FIG. 14, numeral 31 indicates that the surface is sufficiently polished.
It is a cleaned ceramic substrate. Reference numeral 32 is a soft magnetic thin film of the present invention, in which an iron carbide layer having a thickness of 60 nm and a carbon concentration of 12% in terms of mole percentage and an iron nitride layer having a thickness of 5 nm and containing γFe 4 N as a main component are laminated. The number of laminated layers is 46 for iron carbide layers and 45 for iron nitride layers.

なお軟磁性薄膜32はセラミック基板31上全面にスパッタ
リング方によって形成された後、イオンミリング法ある
いはウエットエッチング法などにより所定の磁気コア形
状にパターニングする。33,34,35はそれぞれSiO2などの
ギャップ材・有機絶縁層、導体コイルであり、順次スパ
ッタリング法などの成膜法により全面に体積された後、
イオンミリング法あるいはウエットエッチング法などに
より所定の形状にパターニングしたものである。36は31
と同じ軟磁性薄膜を同じ層数だけ形成したものである。
37は保護膜でAl2O3などの絶縁層を全面に堆積させたも
のである。
The soft magnetic thin film 32 is formed on the entire surface of the ceramic substrate 31 by a sputtering method, and then patterned into a predetermined magnetic core shape by an ion milling method or a wet etching method. 33, 34, and 35 are gap materials such as SiO 2 , organic insulating layers, and conductor coils, which are sequentially deposited on the entire surface by a film-forming method such as a sputtering method.
It is patterned into a predetermined shape by an ion milling method or a wet etching method. 36 is 31
The same soft magnetic thin film is formed by the same number of layers.
37 is a protective film, which is an insulating layer such as Al 2 O 3 deposited on the entire surface.

以上のように構成された第14図に示す堆積物を所定の形
状に切り出し、ヘッド先端側39を研磨して磁気ギャップ
38を形成して、一つの薄膜磁気ヘッドとする。
The deposit shown in FIG. 14 configured as described above is cut into a predetermined shape, and the head tip side 39 is polished to remove the magnetic gap.
38 is formed to form one thin film magnetic head.

上記磁気ヘッドの磁気特性を、同一条件で別の基板上に
形成した薄膜によって測定した結果、飽和磁束密度は1.
87テスラ、磁化困難方向の保持力は0.24Oe、20MHzにお
ける比透磁率は4100と優れた特性を示すことが確認され
た。
The magnetic characteristics of the above magnetic head were measured by a thin film formed on another substrate under the same conditions, and the saturation magnetic flux density was 1.
It was confirmed that 87 Tesla, the coercive force in the hard-to-magnetize direction was 0.24 Oe, and the relative permeability at 20 MHz was 4100, showing excellent characteristics.

また上記ヘッドの電磁変換特性を従来のコバルト系非晶
質合金薄膜ヘッドをと比較すると、再生出力が約25%向
上することを確認した。また摂氏60℃、相対湿度90%の
恒温恒湿槽中で、従来のコバルト系非晶質合金薄膜を用
いたヘッドの再生出力が30%ダウンするまで放置したと
ころ、本実施例の磁気ヘッドの再生出力にはほとんど変
化がみられなかった。
Also, when the electromagnetic conversion characteristics of the above head were compared with those of a conventional cobalt-based amorphous alloy thin film head, it was confirmed that the reproduction output was improved by about 25%. Further, the magnetic head of this example was left in a constant temperature and humidity chamber of 60 ° C. and a relative humidity of 90% until the reproducing output of the head using a conventional cobalt-based amorphous alloy thin film was reduced by 30%. There was almost no change in the playback output.

以上のように本実施例によれば、本発明の軟磁性薄膜を
透磁層に使用することにより、飽和磁束密度が1.87テス
ラと高く、かつ高い透磁率と耐蝕性とを兼ね備えた磁気
ヘッドを提供することができる。
As described above, according to the present embodiment, by using the soft magnetic thin film of the present invention for the magnetic permeable layer, the saturation magnetic flux density is as high as 1.87 Tesla, and a magnetic head having both high magnetic permeability and corrosion resistance is obtained. Can be provided.

以下本発明の第3の一実施例の軟磁性薄膜について、図
面を参照しながら説明する。
A soft magnetic thin film according to a third embodiment of the present invention will be described below with reference to the drawings.

第2図は本発明の第3の実施例の軟磁性薄膜における炭
化鉄と窒化鉄と酸化珪素などの非磁性体の層との層状構
造を示した断面図である。第2図において、21は炭化
鉄、22は窒化鉄、23は酸化珪素などの非磁性体である。
FIG. 2 is a sectional view showing a layered structure of iron carbide, iron nitride, and a layer of a nonmagnetic material such as silicon oxide in the soft magnetic thin film of the third embodiment of the present invention. In FIG. 2, 21 is iron carbide, 22 is iron nitride, and 23 is a non-magnetic material such as silicon oxide.

本実施例においては、膜厚が60nmで炭素濃度がモル百分
率で12%の炭化鉄層と、γFe4Nを主成分として膜厚が5n
mの窒化鉄の層と、膜厚が3nmの酸化珪素の層とをそれぞ
れ45層ずつ積層したもので、第2の実施例と全く同様の
薄膜磁気ヘッドを形成し、電磁変換特性を第2の実施例
の薄膜ヘッドをと比較すると、高周波領域で再生出力が
さらに20%向上することを確認した。
In this example, an iron carbide layer having a film thickness of 60 nm and a carbon concentration of 12% in terms of molar percentage, and a film thickness of 5 n with γFe 4 N as a main component were used.
An iron nitride layer of m and a layer of silicon oxide having a thickness of 3 nm are laminated by 45 layers, respectively, and a thin film magnetic head exactly the same as that of the second embodiment is formed, and the electromagnetic conversion characteristics are It was confirmed that the reproduction output was further improved by 20% in the high frequency region when compared with the thin film head of the example.

また摂氏60℃、相対湿度90%の恒温恒湿槽中で、従来の
コバルト系非晶質合金薄膜を用いたヘッドの再生出力が
30%ダウンするまで放置したところ、本実施例の磁気ヘ
ッドも、第2の実施例のヘッドと同様に再生出力にはほ
とんど変化がみられなかった。
In addition, the reproduction output of the head using a conventional cobalt-based amorphous alloy thin film is maintained in a constant temperature and humidity chamber at 60 ° C and 90% relative humidity.
When the magnetic head of this example was left to stand until it was lowered by 30%, the reproduction output of the magnetic head of this example showed almost no change as in the head of the second example.

発明の効果 以上のように本発明は、C濃度がモル百分率で4〜35%
の炭化鉄の層と、γFe4Nを主成分とする窒化鉄の層とが
交互に配置され、かつ炭化鉄の単層の厚さが3〜1000n
m、窒化鉄の単層の厚さが0.6〜200nmであるという構成
を備えることにより、炭化鉄の層の高透磁率と窒化鉄の
層の高耐久性とが互いに補い合って、1.5テスラ以上の
飽和磁束密度と高い透磁率と耐久性とを兼ね備えた軟磁
性薄膜を提供することができる。
EFFECTS OF THE INVENTION As described above, in the present invention, the C concentration is 4 to 35% in terms of molar percentage.
Iron carbide layers and iron nitride layers containing γFe 4 N as a main component are alternately arranged, and the thickness of the iron carbide single layer is 3 to 1000 n.
m, by providing a structure in which the thickness of a single layer of iron nitride is 0.6 to 200 nm, the high permeability of the iron carbide layer and the high durability of the iron nitride layer complement each other, and It is possible to provide a soft magnetic thin film having a saturated magnetic flux density, a high magnetic permeability and durability.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例の軟磁性薄膜における炭
化鉄と純鉄との層状構造を示した断面図、第2図は本発
明の第1の実施例の軟磁性薄膜における炭化鉄と純鉄と
の層状構造を示した断面図、第3図は窒化鉄層の厚さを
固定したときの、炭化鉄層の膜厚と飽和磁束密度との関
係を示したグラフ、第4図は窒化鉄層の厚さを固定した
ときの炭化鉄層の膜厚と保磁力との関係を示したグラ
フ、第5図は窒化鉄層の厚さを固定したときの炭化鉄層
の膜厚と比透磁率の変化を示したグラフ、第6図は炭化
鉄層の厚さを固定したときの窒化鉄層の膜厚と飽和磁束
密度との関係を示したグラフ、第7図は炭化鉄層の厚さ
を固定したときの窒化鉄層の膜厚と保磁力との関係を示
したグラフ、第8図は炭化鉄層の厚さを固定したときの
窒化鉄層の膜厚と20MHzでの比透磁率との関係を示した
グラフ、第9図は炭化鉄層中の炭素濃度を変化させた場
合の膜厚60nmの炭化鉄層と、膜厚5nmの窒化鉄層との積
層膜の、炭化鉄層中の炭素濃度と、飽和磁束密度との関
係を示したグラフ、第10図は炭化鉄層中の炭素濃度を変
化させた場合の膜厚60nmの炭化鉄層と、膜厚5nmの窒化
鉄層との積層膜の、炭化鉄層中の炭素濃度と、保磁力と
の関係を示したグラフ、第11図は炭化鉄層中の炭素濃度
を変化させた場合の膜厚60nmの炭化鉄層と、膜厚5nmの
窒化鉄層との積層膜の、炭化鉄層中の炭素濃度と、比透
磁率との関係を示したグラフ、第12図は窒化鉄層の膜厚
を変化させた薄膜を、3%塩水噴霧中に200時間放置し
て、放置前の各薄膜の飽和磁束密度と放置後のそれぞれ
の飽和磁束密度との比と、窒化鉄層の膜厚と、の関係を
表したグラフ、第13図は炭化鉄層の炭素濃度を変化させ
た薄膜を、3%塩水噴霧中に200時間放置して、放置前
の各薄膜の飽和磁束密度と放置後のそれぞれの飽和磁束
密度との比と、炭化鉄層の炭素濃度と、の関係を表した
グラフ、第14図は本発明の第2の実施例の磁気ヘッドの
一部の断面図である。 11……炭化鉄、12……窒化鉄、21……炭化鉄、22……窒
化鉄、23……酸化珪素などの非磁性体、31……セラミッ
ク基板、32……本発明の軟磁性薄膜、33……ギャップ
材、34……有機絶縁層、35……導体コイル、36……32と
同じ軟磁性薄膜、37……保護膜、38……磁気ギャップ、
39……ヘッド先端。
FIG. 1 is a sectional view showing a layered structure of iron carbide and pure iron in the soft magnetic thin film of the first embodiment of the present invention, and FIG. 2 is carbonization in the soft magnetic thin film of the first embodiment of the present invention. FIG. 4 is a cross-sectional view showing a layered structure of iron and pure iron, FIG. 3 is a graph showing the relationship between the film thickness of the iron carbide layer and the saturation magnetic flux density when the thickness of the iron nitride layer is fixed. The graph shows the relationship between the film thickness of the iron carbide layer and the coercive force when the thickness of the iron nitride layer is fixed, and Fig. 5 is the film of the iron carbide layer when the thickness of the iron nitride layer is fixed. FIG. 6 is a graph showing the relationship between the film thickness of the iron nitride layer and the saturation magnetic flux density when the thickness of the iron carbide layer is fixed, and FIG. 7 is a graph showing the change in thickness and relative permeability. A graph showing the relationship between the thickness of the iron nitride layer and the coercive force when the thickness of the iron layer is fixed. Fig. 8 shows the thickness of the iron nitride layer when the thickness of the iron carbide layer is fixed and 20MH. Fig. 9 is a graph showing the relationship with the relative magnetic permeability at z, Fig. 9 is a lamination of an iron carbide layer with a thickness of 60 nm and an iron nitride layer with a thickness of 5 nm when the carbon concentration in the iron carbide layer is changed. Graph showing the relationship between the carbon concentration in the iron carbide layer and the saturation magnetic flux density of the film, Fig. 10 shows the iron carbide layer with a film thickness of 60 nm when the carbon concentration in the iron carbide layer was changed, and the film A graph showing the relationship between the carbon concentration in the iron carbide layer and the coercive force of a laminated film with a 5 nm thick iron nitride layer, Fig. 11 shows the film thickness when the carbon concentration in the iron carbide layer was changed. A graph showing the relationship between the carbon concentration in the iron carbide layer and the relative magnetic permeability of a laminated film of an iron carbide layer of 60 nm and an iron nitride layer of 5 nm in thickness, and Fig. 12 shows the thickness of the iron nitride layer. The thin film with the changed value is left standing in a 3% salt water spray for 200 hours, the ratio of the saturation magnetic flux density of each thin film before being left to the respective saturation magnetic flux density after being left, and the film thickness of the iron nitride layer, Table of relationships The graph in Fig. 13 shows the saturation magnetic flux density of each thin film before standing and the saturation magnetic flux density of each thin film in which the carbon concentration of the iron carbide layer was changed, left for 200 hours in 3% salt spray. FIG. 14 is a cross-sectional view of a part of the magnetic head according to the second embodiment of the present invention, which is a graph showing the relationship between the ratio of and the carbon concentration of the iron carbide layer. 11 …… iron carbide, 12 …… iron nitride, 21 …… iron carbide, 22 …… iron nitride, 23 …… non-magnetic material such as silicon oxide, 31 …… ceramic substrate, 32 …… soft magnetic thin film of the present invention , 33 ... Gap material, 34 ... Organic insulating layer, 35 ... Conductor coil, 36 ... Same soft magnetic thin film as 32, 37 ... Protective film, 38 ... Magnetic gap,
39 …… Head tip.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−285406(JP,A) 特開 昭60−132305(JP,A) 特開 昭63−297569(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 62-285406 (JP, A) JP 60-132305 (JP, A) JP 63-297569 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C濃度がモル百分率で4〜35%の炭化鉄の
層と、γFe4Nを主成分とする窒化鉄の層とが交互に配置
され、かつ炭化鉄の単層の厚さが3〜1000nm、窒化鉄の
単層の厚さが0.6〜200nmであることを特徴とする軟磁性
薄膜。
1. An iron carbide layer having a C concentration of 4 to 35% in terms of mole percentage and an iron nitride layer containing γFe 4 N as a main component are alternately arranged, and the thickness of a single iron carbide layer. Is 3 to 1000 nm, and the thickness of the iron nitride single layer is 0.6 to 200 nm.
【請求項2】C濃度がモル百分率で8〜25%の炭化鉄の
層と、γFe4Nを主成分とする窒化鉄の層とが交互に配置
され、かつ炭化鉄の単層の厚さが10〜150nm、窒化鉄の
単層の厚さが1〜10nmであることを特徴とする軟磁性薄
膜。
2. An iron carbide layer having a C concentration of 8 to 25% in terms of mole percentage and an iron nitride layer containing γFe 4 N as a main component are alternately arranged, and the thickness of a single iron carbide layer. Is 10 to 150 nm, and the thickness of the iron nitride single layer is 1 to 10 nm.
【請求項3】透磁層の少なくとも一部に請求項(1)ま
たは(2)のいずれかに記載の軟磁性薄膜を使用するこ
とを特徴とする磁気ヘッド。
3. A magnetic head using the soft magnetic thin film according to claim 1 or 2 for at least a part of a magnetic permeable layer.
【請求項4】請求項(1)または(2)のいずれかに記
載の軟磁性薄膜中に非磁性層を挿入したことを特徴とす
る請求項(3)記載の磁気ヘッド。
4. A magnetic head according to claim 3, wherein a non-magnetic layer is inserted in the soft magnetic thin film according to either claim (1) or (2).
JP1070853A 1989-03-23 1989-03-23 Soft magnetic thin film Expired - Fee Related JPH0738344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1070853A JPH0738344B2 (en) 1989-03-23 1989-03-23 Soft magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1070853A JPH0738344B2 (en) 1989-03-23 1989-03-23 Soft magnetic thin film

Publications (2)

Publication Number Publication Date
JPH02249210A JPH02249210A (en) 1990-10-05
JPH0738344B2 true JPH0738344B2 (en) 1995-04-26

Family

ID=13443542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1070853A Expired - Fee Related JPH0738344B2 (en) 1989-03-23 1989-03-23 Soft magnetic thin film

Country Status (1)

Country Link
JP (1) JPH0738344B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132305A (en) * 1983-12-21 1985-07-15 Hitachi Ltd Iron-nitrogen laminated magnetic film and magnetic head using the same
JPS62285406A (en) * 1986-06-03 1987-12-11 Nec Home Electronics Ltd Composite soft magnetic thin film
JPS63297569A (en) * 1987-05-29 1988-12-05 Matsushita Electric Ind Co Ltd Manufacture of thin film

Also Published As

Publication number Publication date
JPH02249210A (en) 1990-10-05

Similar Documents

Publication Publication Date Title
US5264981A (en) Multilayered ferromagnetic film and magnetic head employing the same
US5068147A (en) Soft magnetic thin film comprising alternate layers of iron carbide with either iron, iron nitride or iron carbon-nitride
JPH0922512A (en) Composite thin film magnetic head and its production
US5227940A (en) Composite magnetic head
EP0531514B1 (en) A magnetic head for high-frequency, high-density recording
JPH06318516A (en) Soft magnetic multilayer film and magnetic head using same
JPH07105027B2 (en) Perpendicular magnetic recording medium
JPH01124108A (en) Thin-film magnetic head
KR100296731B1 (en) Magnetic recording method
JPH0624044B2 (en) Composite type magnetic head
JPH0738344B2 (en) Soft magnetic thin film
JPS61179509A (en) Magnetic material
JP2775770B2 (en) Method for manufacturing soft magnetic thin film
EP0585930A2 (en) Thin film magnetic head
JPH0242702A (en) Soft magnetic thin film and magnetic head using such thin film
JP2629328B2 (en) Magnetic head and method of manufacturing the same
JP2798315B2 (en) Composite magnetic head
JP2531145B2 (en) Thin film magnetic head
JP2702997B2 (en) Thin film magnetic head and magnetic disk device
JPS6015807A (en) Magnetic head
US20020044378A1 (en) Thin film magnetic head
JPH0555036A (en) Soft magnetic thin film and its manufacture, soft magnetic multilayer film and its manufacture as well as magnetic head
JPH0522283B2 (en)
JP3452594B2 (en) Manufacturing method of magnetic head
JP3214716B2 (en) Magnetic head and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees