JPS63297569A - Manufacture of thin film - Google Patents

Manufacture of thin film

Info

Publication number
JPS63297569A
JPS63297569A JP13518087A JP13518087A JPS63297569A JP S63297569 A JPS63297569 A JP S63297569A JP 13518087 A JP13518087 A JP 13518087A JP 13518087 A JP13518087 A JP 13518087A JP S63297569 A JPS63297569 A JP S63297569A
Authority
JP
Japan
Prior art keywords
substrate
thin film
voltage
power source
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13518087A
Other languages
Japanese (ja)
Inventor
Kenichi Fujii
謙一 藤井
Toru Hori
徹 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13518087A priority Critical patent/JPS63297569A/en
Publication of JPS63297569A publication Critical patent/JPS63297569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)
  • Inorganic Insulating Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To improve the characteristic of various thin films by simple operations, by applying a voltage to a substrate holder and controlling the incident energy of ions to be applied to a substrate. CONSTITUTION:An electric power source 3 is connected to a conductive substrate-holding stand 2, and the incident energy of ions in ECR plasma from an ion-leading window 12 to be applied to a substrate 1 is controlled by means of the electric power source 3. The frequency of a microwave oscillator 9 is regulated, and then, hydrogen and nitrogen are introduced from an ionizing gas-introducing hole 10 and a reactant gas is introduced from a reactant gas- introducing hole 11 so as to form a thin film on the substrate 1. By this method, the characteristics of an iron-carbide film, etc., such as magnetic properties and corrosion resistance, can be easily improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種機能材料として、広く用いられる金属薄
膜、半導体薄膜、または絶縁体薄膜等の薄膜製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing thin films such as metal thin films, semiconductor thin films, and insulator thin films, which are widely used as various functional materials.

従来の技術 近年、マイクロ波を利用する電子サイクロトロン共鳴プ
ラズマCVD装置(Electron Cyclotr
onResonance Plasma  Enhan
ced Chemical  Vapour  De−
position Apparatus、以下ECR−
CVD装置と略称する)による薄膜の製造が行われるよ
うになってきている。この方法によれば、比較的低いガ
ス圧力(10−’〜10−’Torr)でも高密度のプ
ラズマが得られ、低い基板温度でも良質の薄膜が得られ
ることが知られている。
2. Description of the Related Art In recent years, electron cyclotron resonance plasma CVD equipment (electron cyclotron resonance plasma CVD) using microwaves has been developed.
onResonance Plasma Enhan
ced Chemical Vapor De-
position Apparatus, hereinafter referred to as ECR-
Thin films are now being manufactured using CVD equipment (abbreviated as CVD equipment). It is known that according to this method, a high-density plasma can be obtained even at a relatively low gas pressure (10-' to 10-' Torr), and a high-quality thin film can be obtained even at a low substrate temperature.

以下図面を参照しながら、従来のECR−CVD装置に
よる薄膜の製造方法について説明する。
A method for manufacturing a thin film using a conventional ECR-CVD apparatus will be described below with reference to the drawings.

第2図は一般的な従来例の場合のECR−CVD装置の
模式図である。マイクロ波発振機9から出て導波管8を
経由してマイクロ波透過窓7を通過したマイクロ波は磁
場発生器6による磁界の存在するイオン化室13の中で
イオン化用ガス導入口IOより導入されたガスと反応し
てECRプラズマを発生させる。イオン引出し窓12を
通って反応処理室5に進入したイオンシャワーは反応ガ
ス導入口1)より導入されたガスと反応して基板1の上
に薄膜を成長させる。(例えば、日本物理学会誌22巻
1983年L210、松属、菊池) 発明が解決しようとする問題点 しかしながら上記のような製造方法では、基板は電気的
に絶縁されているか、または接地電位になっているため
、この状態での基板へのイオン入射エネルギーは、約2
0eVであり、固定されていた。
FIG. 2 is a schematic diagram of a typical conventional ECR-CVD apparatus. The microwaves that have come out of the microwave oscillator 9 and passed through the microwave transmission window 7 via the waveguide 8 are introduced from the ionization gas inlet IO into the ionization chamber 13 where a magnetic field from the magnetic field generator 6 exists. reacts with the gas generated to generate ECR plasma. The ion shower that has entered the reaction processing chamber 5 through the ion extraction window 12 reacts with the gas introduced from the reaction gas inlet 1) to grow a thin film on the substrate 1. (For example, Journal of the Physical Society of Japan, Vol. 22, 1983, L210, Matsutake, Kikuchi) Problems to be Solved by the Invention However, in the above manufacturing method, the substrate is electrically insulated or at ground potential. Therefore, the energy of ions incident on the substrate in this state is approximately 2
It was 0 eV and fixed.

しかしながら、基板へのイオン入射エネルギーは作製し
ようとする薄膜の性質に大きく影響を与える場合がある
ことが、ECR−CVD以外の装置で知られており、薄
膜の作製条件のひとつとして利用されうろことが予想さ
れる。例えば、スパッタリングにより、希土類−遷移金
属の化合物を作、  製する際に、基板バイアス゛の印
加が垂直磁化膜の作製に効果があることが知られている
However, it is known that in equipment other than ECR-CVD, the energy of ions incident on the substrate can have a significant effect on the properties of the thin film being fabricated, and the is expected. For example, it is known that application of a substrate bias is effective in producing a perpendicularly magnetized film when producing a rare earth-transition metal compound by sputtering.

本発明は上記問題点に鑑み、基板を電気的に絶縁し、そ
こに電位を与えるという簡単な操作で、各種の薄膜の特
性改善を可能にする薄膜の製造方法を提供するものであ
る。
In view of the above-mentioned problems, the present invention provides a method for manufacturing a thin film that makes it possible to improve the characteristics of various thin films by a simple operation of electrically insulating a substrate and applying a potential thereto.

問題点を解決するための手段 上記問題点を解決するために本発明の薄膜の製造方法で
は、基板ホルダーに電圧を与えて、基板へのイオン入射
エネルギーを制御し、薄膜の各種特性の改善をおこなわ
せるという手段を用いている。
Means for Solving the Problems In order to solve the above problems, the thin film manufacturing method of the present invention applies a voltage to the substrate holder to control the energy of ions incident on the substrate, thereby improving various properties of the thin film. I am using the method of making them do it.

作用 本発明は上記した構成によって、基板に電圧を与えてお
き、その電圧の種類(直流、交流、パルス)、電圧の大
きさ、極性(正負)などを適当に選ぶことにより、EC
Rプラズマ中のイオンの基板への衝撃を制御することが
可能となり、薄膜の各種特性の改善を容易に行うことが
できる。
Function The present invention uses the above-mentioned configuration to apply a voltage to the substrate, and then appropriately selects the type of voltage (DC, AC, pulse), voltage magnitude, polarity (positive or negative), etc. to perform EC.
It becomes possible to control the impact of ions in the R plasma on the substrate, and various properties of the thin film can be easily improved.

実施例 以下本発明の一実施例の薄膜の製造方法について、図面
を参照しながら説明する。第1図は本発明の一実施例の
薄膜の製造方法に用いるECR−CVD装置の模式図で
ある。導電性の基板支持台2に、電流導入端子4を通じ
て、電源3が接続されている。イオン引出し窓12から
出てくるECRプラズマ中のイオンの基板への入射エネ
ルギーは電源3により制御される。電源3は直流でも交
流でもよいが、電圧、電流もしくは電力を調整できるも
のを用い、作製しようとする薄膜の物性を制御できるよ
うにする。
EXAMPLE Hereinafter, a method for manufacturing a thin film according to an example of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of an ECR-CVD apparatus used in a thin film manufacturing method according to an embodiment of the present invention. A power source 3 is connected to the conductive substrate support 2 through a current introduction terminal 4. The energy of the ions in the ECR plasma coming out of the ion extraction window 12 and incident on the substrate is controlled by the power source 3. The power source 3 may be direct current or alternating current, but a power source that can adjust voltage, current, or power is used so that the physical properties of the thin film to be produced can be controlled.

本実施例では、マイクロ波発振機9の周波数は2.54
GHzとし、イオン化用ガス導入口10からは水素およ
び窒素を各々0〜50SCCM導入し、反応ガス導入口
1)より水素またはアルゴンをキャリアガスとしたガス
状のフェロセン(ビスシクロペンタジェニル鉄、化学式
は(Cs Hs ) z F e)を導入し、ガラス製
の基板1の上に炭化鉄薄膜を作製する。電源3には直流
電源を用い、その電圧を調整して、炭化鉄膜の磁気特性
の改善を行った。
In this embodiment, the frequency of the microwave oscillator 9 is 2.54
GHz, hydrogen and nitrogen are introduced at 0 to 50 SCCM each from the ionization gas inlet 10, and gaseous ferrocene (biscyclopentadienyl iron, chemical formula: (Cs Hs ) z Fe) is introduced to produce an iron carbide thin film on a glass substrate 1. A DC power source was used as the power source 3, and the voltage was adjusted to improve the magnetic properties of the iron carbide film.

その結果は第3図に示す用に、本発明の薄膜の製造方法
により、基板バイアス電圧を印加した炭化鉄薄膜では、
無印加の炭化鉄薄膜に比べて保磁力が向上することが判
明した。さらに、磁気ヒステリシス特性における磁化お
よび保磁力の角型比も向上させることが可能であり、こ
れは高密度磁気記録用媒体として、炭化鉄薄膜を用いる
場合に有利である。
The results are shown in FIG. 3. In the iron carbide thin film to which a substrate bias voltage was applied by the thin film manufacturing method of the present invention,
It was found that the coercive force was improved compared to the iron carbide thin film without any applied voltage. Furthermore, it is possible to improve the squareness ratio of magnetization and coercive force in magnetic hysteresis characteristics, which is advantageous when using an iron carbide thin film as a high-density magnetic recording medium.

以上のように本実施例によれば、基板ホルダーに電圧を
与えて、基板へのイオン入射エネルギーを制御し、薄膜
の各種特性の改善をおこなわせるという手段を用いるこ
とにより、炭化鉄薄膜の保磁力、角型比などの磁気特性
の改善をはかることができる。
As described above, according to this embodiment, the iron carbide thin film can be preserved by applying a voltage to the substrate holder to control the energy of ions incident on the substrate and improving various properties of the thin film. It is possible to improve magnetic properties such as magnetic force and squareness ratio.

また、上記実施例において、炭化鉄薄膜を用いたが、こ
れに限らずその他の種類の薄膜であっても良い。例えば
、鉄の一部を、クロムで置換し耐蝕性の向上をはかる場
合や、炭素の一部を窒素、ボロンなどで置換して特性の
改善をはかる場合にも、本発明の薄膜の製造方法は、有
効である。
Further, in the above embodiments, an iron carbide thin film is used, but the present invention is not limited to this, and other types of thin films may be used. For example, the thin film manufacturing method of the present invention can also be used when a portion of iron is replaced with chromium to improve corrosion resistance, or when a portion of carbon is replaced with nitrogen, boron, etc. to improve properties. is valid.

発明の効果 以上のように本発明では、基板ホルダーに電圧を与えて
、基板へのイオン入射エネルギーを制御し、薄膜の各種
特性の改善をおこなわせるという手段を用いているため
、ECR−CVD装置を用いる薄膜の製造方法として、
薄膜の各種特性の改善を容易に行えるという効果を有し
ている。
Effects of the Invention As described above, the present invention uses a method of applying a voltage to the substrate holder to control the energy of ions incident on the substrate to improve various properties of the thin film. As a thin film manufacturing method using
This has the effect that various properties of the thin film can be easily improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いるECR−CVD装置の
模式図、第2図は従来例の製造方法で用いるECR−C
VD装置の模式図、第3図は本発明の実施例による、基
板バイアス電圧と炭化鉄膜の磁気特性(保磁力HC%I
化と保磁力の角型比、各々S、5)k)の関係を示すグ
ラフである。 1・・・・・・基板、2・・・・・・基板支持台、3・
・・・・・電源、4・・・・・・電流導入端子、5・・
・・・・反応処理室、6・・・・・・磁場発生器、7・
・・・・・マイクロ波透過窓、8・・・・・・導波管、
9・・・・・・マイクロ波発振機、10・・・・・・イ
オン他用ガス導入口、1)・・・・・・反応ガス導入口
、12・・・・・・イオン引出し窓、13・・・・・・
イオン化室。 代理人の氏名 弁理士 中尾敏男 はか1名第3図 −too   −so    o    so    
to。 茅キ◇ぺ゛イアス償工(V)
Fig. 1 is a schematic diagram of an ECR-CVD apparatus used in an example of the present invention, and Fig. 2 is a schematic diagram of an ECR-CVD apparatus used in a conventional manufacturing method.
FIG. 3, a schematic diagram of a VD device, shows the relationship between the substrate bias voltage and the magnetic properties of the iron carbide film (coercive force HC%I) according to an embodiment of the present invention.
2 is a graph showing the relationship between S and 5)k) and the squareness ratio of coercive force, respectively. 1... Board, 2... Board support stand, 3.
...Power supply, 4...Current introduction terminal, 5...
... Reaction processing chamber, 6 ... Magnetic field generator, 7.
...Microwave transmission window, 8... Waveguide,
9...Microwave oscillator, 10...Ion and other gas inlet, 1)...Reaction gas inlet, 12...Ion extraction window, 13...
Ionization chamber. Name of agent Patent attorney Toshio Nakao Figure 3 - too - so o so
to. Kayaki◇Peace Compensation Worker (V)

Claims (2)

【特許請求の範囲】[Claims] (1)真空容器の中で電子サイクロトロン共鳴プラズマ
を発生させ原料ガスを分解して基板上に薄膜を堆積させ
る際に、上記基板を支持する基板ホルダーに電圧を与え
ておくことを特徴とする薄膜の製造方法。
(1) A thin film characterized in that when electron cyclotron resonance plasma is generated in a vacuum container to decompose a source gas and a thin film is deposited on a substrate, a voltage is applied to a substrate holder that supports the substrate. manufacturing method.
(2)原料ガスをフェロセン{(C_5H_5)_2F
e}とし、炭化鉄、窒化鉄、炭窒化鉄のいずれかの薄膜
を作製する特許請求の範囲第(1)項記載の薄膜の製造
方法。
(2) The raw material gas is ferrocene {(C_5H_5)_2F
e}, and the method for producing a thin film according to claim (1), wherein a thin film of iron carbide, iron nitride, or iron carbonitride is produced.
JP13518087A 1987-05-29 1987-05-29 Manufacture of thin film Pending JPS63297569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13518087A JPS63297569A (en) 1987-05-29 1987-05-29 Manufacture of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13518087A JPS63297569A (en) 1987-05-29 1987-05-29 Manufacture of thin film

Publications (1)

Publication Number Publication Date
JPS63297569A true JPS63297569A (en) 1988-12-05

Family

ID=15145706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13518087A Pending JPS63297569A (en) 1987-05-29 1987-05-29 Manufacture of thin film

Country Status (1)

Country Link
JP (1) JPS63297569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02249210A (en) * 1989-03-23 1990-10-05 Matsushita Electric Ind Co Ltd Soft magnetic thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02249210A (en) * 1989-03-23 1990-10-05 Matsushita Electric Ind Co Ltd Soft magnetic thin film

Similar Documents

Publication Publication Date Title
EP0300447B1 (en) Method and apparatus for treating material by using plasma
JPH0668152B2 (en) Thin film forming equipment
US5366586A (en) Plasma formation using electron cyclotron resonance and method for processing substrate by using the same
JPS63297569A (en) Manufacture of thin film
JP2564895B2 (en) Plasma processing device
JPS63297560A (en) Manufacture of thin film
US6223686B1 (en) Apparatus for forming a thin film by plasma chemical vapor deposition
JPS63277755A (en) Production of thin film
JP2000164563A (en) Plasma processing device
Shindo et al. Determination of negative-ion density in an electron cyclotron resonance c4f8 plasma
JPS611024A (en) Manufacturing apparatus of semiconductor circuit
US6060131A (en) Method of forming a thin film by plasma chemical vapor deposition
JP2765788B2 (en) Plasma CVD equipment
JP2965935B2 (en) Plasma CVD method
JP2892347B2 (en) Thin film formation method
JP2799414B2 (en) Plasma CVD apparatus and film forming method
JPH0614478Y2 (en) Thin film forming equipment
JP2834475B2 (en) Semiconductor thin film forming equipment
JPH08199355A (en) Sputtering device and sputtering
Uchikoga et al. Low-temperature anodic oxidation of silicon using a wave resonance plasma source
JPH02133573A (en) Hard-carbon film forming device
JPH0762261B2 (en) Vacuum processing device
JPS619577A (en) Plasma chemical vapor phase growing method
JPH0633270A (en) Vacuum treatment device
JPH0796711B2 (en) Thin film forming method and etching method