JPH0796711B2 - Thin film forming method and etching method - Google Patents

Thin film forming method and etching method

Info

Publication number
JPH0796711B2
JPH0796711B2 JP61046544A JP4654486A JPH0796711B2 JP H0796711 B2 JPH0796711 B2 JP H0796711B2 JP 61046544 A JP61046544 A JP 61046544A JP 4654486 A JP4654486 A JP 4654486A JP H0796711 B2 JPH0796711 B2 JP H0796711B2
Authority
JP
Japan
Prior art keywords
magnetic field
field strength
substrate
plasma
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61046544A
Other languages
Japanese (ja)
Other versions
JPS62205280A (en
Inventor
由雄 真鍋
常男 三露
攻 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61046544A priority Critical patent/JPH0796711B2/en
Publication of JPS62205280A publication Critical patent/JPS62205280A/en
Publication of JPH0796711B2 publication Critical patent/JPH0796711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高周波と磁場によるECRプラズマを用いた薄膜
形成方法及びエッチング方法に関するものであり、特に
磁場の強度分布に関するものである。
TECHNICAL FIELD The present invention relates to a thin film forming method and an etching method using ECR plasma with high frequency and magnetic field, and more particularly to magnetic field intensity distribution.

従来の技術 プラズマCVDやプラズマドライエッチングは半導体プロ
セスなどの薄膜プロセスにおける重要な基幹技術の一つ
であり、現在基板の処理温度の低温化や基板の低損傷化
を図るため、基板へのイオンの入射エネルギーを下げる
研究が盛んに行われている。この分野に関しては、例え
ば(「電子材料」編集部編「超LSI時代のプラズマ化
学」工業調査会、昭和58年出版p.117〜p.119)に基本的
な技術が述べられている。基板へのイオンの入射エネル
ギーを下げ、かつプラズマ放電を維持するためには、高
周波の周波数と磁場の強度と分布が重要な役割を果た
す。
Conventional technology Plasma CVD and plasma dry etching are one of the important key technologies in thin film processes such as semiconductor processes, and currently, in order to lower the processing temperature of the substrate and reduce the damage of the substrate, the ion A lot of research is being conducted to reduce the incident energy. Regarding this field, basic techniques are described in, for example, “Electronic Materials”, editorial department, “Plasma Chemistry in the VLSI Age”, Industrial Research Committee, published in 1983, p.117-p.119. The frequency of the high frequency and the strength and distribution of the magnetic field play important roles in reducing the energy of the ions incident on the substrate and maintaining the plasma discharge.

高周波の周波数を高くし、または磁場の強度を高周波周
波数で決まる電子サイクロトロン共鳴(ECR)条件にな
るようにすると、例えば、2.45GHzのマイクロ波の場
合、磁場の強度を0.0875Tにすれば容易にプラズマ放電
が維持できる。例えば、マイクロ波電力を200W程度の入
力で約10〜20eV程度の電子温度に達し、イオン化率の低
い気体でも充分活性化できる。また、適当な磁場分布を
持たせて、基板へのイオンの入射エネルギーが数十eV程
度に下げることができることが知られている。このよう
なプラズマを利用してCVDやエッチングを行うことが研
究されている。
If the frequency of the high frequency is increased or the strength of the magnetic field is set to the electron cyclotron resonance (ECR) condition determined by the high frequency, for example, in the case of 2.45 GHz microwave, it is easy to set the magnetic field strength to 0.0875T. Plasma discharge can be maintained. For example, microwave power reaches an electron temperature of about 10 to 20 eV with an input of about 200 W, and can be sufficiently activated even in a gas having a low ionization rate. It is also known that the incident energy of ions on the substrate can be lowered to about several tens of eV by giving an appropriate magnetic field distribution. The use of such plasma for CVD and etching has been studied.

さらに、活性化されたイオンや高励起された中性粒子
(ラジカル)も、真空槽の器壁との衝突によって、中性
粒子に戻ってしまう。また、これらの活性化された粒子
の器壁への衝突によって、器壁から出た不純物(炭素、
酸素および水素等)が混入してしまう。例えば、0.02m3
程度の容積を有する真空槽にCVDガスを導入し、マイク
ロ波電力を100W程度入力した場合、質量分析計によって
種々のガス種を分析してみると、CVDガス関連のピーク
に対して1/10に達する不純物のピークが観測された。
Furthermore, activated ions and highly excited neutral particles (radicals) also return to neutral particles due to collision with the chamber wall of the vacuum chamber. Also, due to the collision of these activated particles with the vessel wall, impurities (carbon,
Oxygen and hydrogen, etc.) are mixed in. For example, 0.02m 3
When a CVD gas is introduced into a vacuum chamber with a volume of about 100 W and a microwave power of about 100 W is input, various gas species are analyzed by a mass spectrometer. A peak of impurities reaching to was observed.

このために、不純物の混入を抑えるために、第2図に示
すようにマイクロ波とECR条件を満たす磁場(f=2.45G
HzのときにB0=0.0875Tである。)によってプラズマを
形成するプラズマ室4と、そのプラズマを導入し、基板
2上に膜形成を行なう膜形成室6とに構成される膜形成
方法が開示されている(特開昭57−133636号公報)。
For this reason, in order to suppress the mixing of impurities, as shown in Fig. 2, the microwave and magnetic field satisfying the ECR condition (f = 2.45G
At Hz, B 0 = 0.0875T. ), A plasma forming chamber 4 for forming plasma and a film forming chamber 6 for forming a film on the substrate 2 by introducing the plasma are disclosed (Japanese Patent Application Laid-Open No. 57-133636). Gazette).

以上のような膜形成方法では、膜形成室6の基板2上
に、ECR放電に直接晒されることなく、また不純物の混
入も少ない良質な膜形成ができる。
According to the film forming method as described above, a high quality film can be formed on the substrate 2 in the film forming chamber 6 without being directly exposed to ECR discharge and with less impurities mixed therein.

発明が解決しようとする問題点 しかし、上記のような構成では以下のような問題点があ
る。
Problems to be Solved by the Invention However, the above-mentioned configuration has the following problems.

基板面に対して垂直方向より、プラズマの発生とそれに
続く膜形成を行うので、基板面内に膜厚の不均一性が生
じる。
Since the generation of plasma and the subsequent film formation are performed from the direction perpendicular to the substrate surface, nonuniformity of the film thickness occurs within the substrate surface.

また、プラズマ室と膜形成室の2室構成のために、蒸着
速度が遅く、大面積化が困難である。
Further, because of the two-chamber structure of the plasma chamber and the film forming chamber, the deposition rate is slow and it is difficult to increase the area.

さらに、プラズマを膜形成室まで輸送するので、高励起
のイオンやラジカルが再結合等により中性化してしま
う。
Further, since the plasma is transported to the film forming chamber, highly excited ions and radicals are neutralized by recombination and the like.

本発明は、かかる点に鑑みてなされたもので磁場強度の
分布で、基板上に均一の膜厚を形成でき、また不純物の
混入を防ぎ、効率の良い薄膜形成方法及びエッチング方
法を提供するものである。
The present invention has been made in view of the above points and provides a thin film forming method and an etching method capable of forming a uniform film thickness on a substrate with a distribution of magnetic field strength, preventing impurities from entering, and efficiently. Is.

問題点を解決するための手段 上記の課題を解決するために、本発明の薄膜形成方法及
びエッチング方法では、磁場を基板に対してほぼ平行に
印加し、基板近傍領域の磁場強度をマイクロ波の周波数
で決まる電子サイクロトロン共鳴(ECR)条件を満たす
磁場強度以上にしてプラズマ領域を形成し、基板の外周
方向に離れた領域の磁場強度をECR条件を満たす磁場強
度未満にし、プラズマ室内に成膜用ガスを導入してECR
条件下で励起またはイオン化し、この励起またはイオン
化された粒子を前記基板上に堆積させ、または試料をエ
ッチングを行う構成となっている。
Means for Solving the Problems In order to solve the above problems, in the thin film forming method and etching method of the present invention, a magnetic field is applied substantially parallel to the substrate, and the magnetic field strength in the vicinity of the substrate is set to the microwave intensity. A plasma region is formed with a magnetic field strength that satisfies the electron cyclotron resonance (ECR) condition that is determined by the frequency, and the magnetic field intensity of the region that is distant in the outer peripheral direction of the substrate is less than the magnetic field intensity that satisfies the ECR condition for film formation in the plasma chamber. Introduce gas and ECR
The structure is such that it is excited or ionized under the conditions, the excited or ionized particles are deposited on the substrate, or the sample is etched.

作用 上記の構成により、本発明における薄膜形成方法及びエ
ッチング方法は、磁場を基板に対してほぼ平行に印加
し、基板近傍領域の磁場強度をECR条件を満たす磁場強
度以上したので、基板に対して平行な方向に均一なプラ
ズマ領域が形成できる。このために、基板に対して平行
な方向に均一な膜形成ができる。また、基板の外周方向
に離れた領域の磁場強度をECR条件を満たす磁場強度未
満にしたので、この領域ではECR放電は発生しない。こ
のために、プラズマ室内面はECR放電に直接晒されな
い。またプラズマは磁場強度の高い領域に集められるの
で、ECR放電中のイオンだけでなく、高励起の中性粒子
(ラジカル)を効率よく供給できる。とくに、ラジカル
は磁界によって制御できないので、本発明の構成による
ことで基板上にラジカルを供給でき、ラジカルによる器
壁の損傷も防止することができる。さらに、磁場強度は
ECR条件を満たしているので、イオンやラジカルを効率
よく形成できる。
With the above configuration, the thin film forming method and the etching method in the present invention apply a magnetic field almost parallel to the substrate, and the magnetic field strength in the substrate vicinity region is equal to or higher than the magnetic field strength satisfying the ECR condition. A uniform plasma region can be formed in the parallel direction. Therefore, a uniform film can be formed in the direction parallel to the substrate. Further, since the magnetic field strength of the region distant in the outer peripheral direction of the substrate is set to be less than the magnetic field intensity satisfying the ECR condition, ECR discharge does not occur in this region. Therefore, the inner surface of the plasma is not directly exposed to the ECR discharge. Further, since the plasma is collected in a region where the magnetic field strength is high, not only ions in the ECR discharge but also highly excited neutral particles (radicals) can be efficiently supplied. In particular, since the radicals cannot be controlled by the magnetic field, the structure of the present invention can supply the radicals onto the substrate and prevent damage to the vessel wall due to the radicals. Furthermore, the magnetic field strength is
Since the ECR conditions are satisfied, ions and radicals can be efficiently formed.

実施例 以下本発明について実施例とともに説明する。第1図
(a)は本発明の薄膜形成及びエッチングを行うプラズ
マ装置の概略図であり、第1図(b)にプラズマCVD装
置による窒化シリコン膜の形成の際の磁場強度を示す。
Examples Hereinafter, the present invention will be described together with examples. FIG. 1 (a) is a schematic view of a plasma apparatus for forming and etching a thin film according to the present invention, and FIG. 1 (b) shows magnetic field strength when a silicon nitride film is formed by a plasma CVD apparatus.

マイクロ波は2.45GHzを用い、プラズマ室1に導入し、
基板2をプラズマ室1中に配置し、プラズマ室1内にシ
ランガスと窒素ガスを導入し、全圧を0.08Paの圧力に保
った。また、マイクロ波電力は100〜500Wで行なった。
2.45GHz microwave is used, introduced into the plasma chamber 1,
The substrate 2 was placed in the plasma chamber 1, silane gas and nitrogen gas were introduced into the plasma chamber 1, and the total pressure was kept at 0.08 Pa. The microwave power was 100 to 500 W.

また、磁場の印加方法は基板に対してほぼ平行にし、印
加方法としては、プラズマ室1の外側に配置されたポー
ルピース8によって形成された。このポールピース8
は、コイル等(図示せず)間に挿入した金属(FeやFe,C
o等の合金)の平板によって、金属平板間の磁界を一様
にするものである。
The magnetic field was applied substantially parallel to the substrate, and the magnetic field was applied by the pole piece 8 placed outside the plasma chamber 1. This pole piece 8
Is a metal (Fe, Fe, C) inserted between coils (not shown).
Alloys such as o) are used to make the magnetic field between metal plates uniform.

ここで第1図(b)に示すように、磁場強度分布は基板
2付近で、ECR条件を満たす磁場強度(マイクロ波の周
波数が2.45GHzの場合、磁場強度は0.0875T)以上の0.1T
とし、プラズマ室1の器壁付近でECR条件を満たす磁場
強度未満の0.05Tにした。また、基板2からプラズマ室
の器壁までの磁場強度は単調に減少し、その途中でECR
条件を満たす磁場強度の領域がある。
Here, as shown in FIG. 1 (b), the magnetic field strength distribution is near the substrate 2, and the magnetic field strength satisfying the ECR condition (the magnetic field strength is 0.0875T when the microwave frequency is 2.45 GHz) and is 0.1T or more.
The magnetic field strength near the chamber wall of the plasma chamber 1 was set to 0.05 T, which is less than the magnetic field strength. Also, the magnetic field strength from the substrate 2 to the plasma chamber wall decreases monotonically, and ECR
There is a region of magnetic field strength that satisfies the condition.

なお、基板ホルダー3は直流または高周波の電解を印加
することができ、冷却及び加熱機構も備えている。本実
施例では電界も印加せず、基板加熱も冷却もしなかっ
た。
The substrate holder 3 can apply direct current or high frequency electrolysis, and is also provided with a cooling and heating mechanism. In this example, no electric field was applied, and neither substrate heating nor cooling was performed.

以上のような構成で基板2上に窒化シリコン膜を形成し
たところ、毎秒10〜30Aもの高速堆積ができ、この値は
従来の装置に比べて5倍も速かった。また、緻密さを緩
衝フッ酸(50%HF:46%NH4F=15:85)によるエッチング
速度も2A/minであり、この値は従来に装置に比べ1桁ほ
ど小さく、非常に緻密なことを意味する。
When the silicon nitride film was formed on the substrate 2 with the above-described structure, high-speed deposition of 10 to 30 A per second was possible, and this value was 5 times faster than the conventional device. In addition, the etching rate with buffer hydrofluoric acid (50% HF: 46% NH 4 F = 15:85) is 2 A / min, which is smaller than that of conventional equipment by an order of magnitude. Means that.

また、膜形成中プラズマ室の器壁はECR放電に晒される
ことがなく、温度上昇もなかった。
Moreover, the wall of the plasma chamber was not exposed to ECR discharge during film formation, and the temperature did not rise.

なお、ここでは、プラズマ装置をプラズマCVDとして説
明したが導入ガスにエッチングガスを用いてエッチング
してもよく、実験の結果基板はECR放電に直接晒される
ことなくエッチングができた。また、磁場を印加する手
段としてポールピースを用いたが、磁場の強度分布が本
発明の磁場分布を形成できるものであれば何を用いても
よい。マイクロ波の周波数やその導入方法は、実施例に
束縛されるものでなくECR放電を作れるものであれば何
でもよい。
Although the plasma apparatus is described as plasma CVD here, etching may be performed by using an etching gas as an introduction gas, and as a result of the experiment, the substrate could be etched without being directly exposed to ECR discharge. Although the pole piece is used as the means for applying the magnetic field, any means may be used as long as the strength distribution of the magnetic field can form the magnetic field distribution of the present invention. The microwave frequency and the introduction method thereof are not limited to those in the embodiment, and may be any as long as the ECR discharge can be generated.

発明の効果 以上の説明から明らかなように本発明の薄膜形成方法及
びエッチング方法は、磁場強度分布を本発明の分布にす
ることにより、均一な膜厚の薄膜形成ができ、かつマイ
クロ波電力を効率よく吸収させることができ、さらに不
純物の混入を防ぐことができる。まず、磁場を基板に対
してほぼ平行に印加し、基板近傍領域の磁場強度をECR
条件を満たす磁場強度以上にしたので、均一なプラズマ
領域を形成でき、このために均一な膜厚を有する膜形成
ができる。また、基板の外周方向に離れた領域の磁場強
度をECR条件を満たす磁場強度未満にしたので、プラズ
マ室の基壁が直接ECR放電に晒されることがないので、
不純物の混入を防ぐことができる。さらに、磁場強度は
ECR条件を満たしているので、イオンやラジカルを効率
よく形成できる。
EFFECTS OF THE INVENTION As is clear from the above description, the thin film forming method and the etching method of the present invention can form a thin film having a uniform film thickness by using the distribution of the magnetic field strength of the present invention, and can reduce the microwave power. It is possible to efficiently absorb the impurities and prevent impurities from being mixed. First, a magnetic field is applied almost parallel to the substrate, and the magnetic field strength near the substrate is measured by ECR.
Since the magnetic field strength is set to satisfy the condition, a uniform plasma region can be formed, and thus a film having a uniform film thickness can be formed. Further, since the magnetic field strength of the region distant in the outer peripheral direction of the substrate is set to be less than the magnetic field strength satisfying the ECR condition, the base wall of the plasma chamber is not directly exposed to the ECR discharge,
Mixing of impurities can be prevented. Furthermore, the magnetic field strength is
Since the ECR conditions are satisfied, ions and radicals can be efficiently formed.

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b)は本発明の実施例の薄膜形成を行
うプラズマ装置の縦断面概略図、磁場強度分布図、第2
図は従来のプラズマ装置の縦断面概略図である。 1……プラズマ室、2……基板、3……基板ホルダー、
4……従来の装置のプラズマ室、5……電磁石、6……
膜形成室、7……プラズマ窓、8……ポールピース。
1 (a) and 1 (b) are schematic vertical sectional views of a plasma apparatus for forming a thin film according to an embodiment of the present invention, a magnetic field strength distribution diagram, and a second diagram.
The figure is a schematic vertical sectional view of a conventional plasma apparatus. 1 ... Plasma chamber, 2 ... Substrate, 3 ... Substrate holder,
4 ... Plasma chamber of conventional device, 5 ... Electromagnet, 6 ...
Film forming chamber, 7 ... Plasma window, 8 ... Pole piece.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】内部に基板を有するプラズマ室内にマイク
ロ波及び前記基板に対してほぼ平行に磁場を印加する工
程と、前記基板近傍領域の磁場強度をマイクロ波の周波
数で決まる電子サイクロトロン共鳴条件を満たす磁場強
度以上にしプラズマ領域を形成する工程と、前記プラズ
マ室内の前記基板の外周方向に離れた領域の磁場強度を
マイクロ波の周波数で決まる電子サイクロトロン共鳴条
件を満たす磁場強度未満にする工程と、前記プラズマ室
内に成膜用ガスを導入し前記プラズマ領域内で前記成膜
用ガスを励起またはイオン化し、この励起またはイオン
化された粒子を前記基板上に堆積させる工程とを有する
薄膜形成方法。
1. A step of applying a microwave and a magnetic field substantially parallel to the substrate in a plasma chamber having a substrate therein, and an electron cyclotron resonance condition for determining the magnetic field strength in the region near the substrate by the frequency of the microwave. A step of forming a plasma region at a magnetic field strength equal to or higher than a satisfying magnetic field strength, and a step of making the magnetic field strength of a region distant in the outer peripheral direction of the substrate in the plasma chamber less than the magnetic field strength satisfying the electron cyclotron resonance condition determined by the frequency of the microwave Introducing a film forming gas into the plasma chamber, exciting or ionizing the film forming gas in the plasma region, and depositing the excited or ionized particles on the substrate.
【請求項2】内部に試料を有するプラズマ室内にマイク
ロ波及び前記基板に対してほぼ平行に磁場を印加する工
程と、前記試料近傍領域の磁場強度をマイクロ波の周波
数で決まる電子サイクロトロン共鳴条件を満たす磁場強
度以上にしプラズマ領域を形成する工程と、前記プラズ
マ室内の前記試料の外周方向に離れた領域の磁場強度を
マイクロ波の周波数で決まる電子サイクロトロン共鳴条
件を満たす磁場強度未満にする工程と、前記プラズマ室
内にエッチングガスを導入し前記プラズマ領域内で前記
エッチング用ガスを励起またはイオン化し、この励起ま
たはイオン化された粒子によりエッチングを行う工程と
を有するエッチング方法。
2. A step of applying a magnetic field substantially parallel to the microwave and the substrate in a plasma chamber having a sample therein, and an electron cyclotron resonance condition in which the magnetic field strength in the sample vicinity region is determined by the microwave frequency. A step of forming a plasma region with a magnetic field strength equal to or higher than the satisfying magnetic field strength, and a step of making the magnetic field strength of a region distant in the outer circumferential direction of the sample in the plasma chamber less than the magnetic field strength satisfying the electron cyclotron resonance condition determined by the frequency of the microwave And a step of introducing an etching gas into the plasma chamber to excite or ionize the etching gas in the plasma region, and perform etching with the excited or ionized particles.
JP61046544A 1986-03-04 1986-03-04 Thin film forming method and etching method Expired - Lifetime JPH0796711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61046544A JPH0796711B2 (en) 1986-03-04 1986-03-04 Thin film forming method and etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61046544A JPH0796711B2 (en) 1986-03-04 1986-03-04 Thin film forming method and etching method

Publications (2)

Publication Number Publication Date
JPS62205280A JPS62205280A (en) 1987-09-09
JPH0796711B2 true JPH0796711B2 (en) 1995-10-18

Family

ID=12750247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61046544A Expired - Lifetime JPH0796711B2 (en) 1986-03-04 1986-03-04 Thin film forming method and etching method

Country Status (1)

Country Link
JP (1) JPH0796711B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2532401Y2 (en) * 1991-04-16 1997-04-16 ソニー株式会社 Bias ECR plasma CVD equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334463A (en) * 1976-09-10 1978-03-31 Oki Electric Ind Co Ltd Manufacture for semiconductor device
JPH0521986A (en) * 1991-07-11 1993-01-29 Matsushita Electric Ind Co Ltd Tape-feeder driving apparatus

Also Published As

Publication number Publication date
JPS62205280A (en) 1987-09-09

Similar Documents

Publication Publication Date Title
US5376223A (en) Plasma etch process
EP0300447B1 (en) Method and apparatus for treating material by using plasma
US20020069971A1 (en) Plasma processing apparatus and plasma processing method
JPH0635323B2 (en) Surface treatment method
JP3336975B2 (en) Substrate processing method
JP3753194B2 (en) Plasma processing method and apparatus
JP3499104B2 (en) Plasma processing apparatus and plasma processing method
JPH02281734A (en) Treating method of surface by plasma
JPS6136589B2 (en)
JPH088235B2 (en) Plasma reactor
JPH07263408A (en) Plasma etching method
US6582617B1 (en) Plasma etching using polycarbonate mask and low-pressure high density plasma
JPS6113634A (en) Plasma processor
JPH0796711B2 (en) Thin film forming method and etching method
JPH0521983B2 (en)
JP2003077904A (en) Apparatus and method for plasma processing
JPH0796713B2 (en) Thin film forming method and etching method
JP2000164580A (en) Plasma processing system method therefor
JPS6267822A (en) Plasma processor
JP2661906B2 (en) Plasma processing equipment
JP3368743B2 (en) Plasma processing apparatus and plasma processing method
JPH0796712B2 (en) Thin film forming method and etching method
JP2001176870A (en) Method for forming nitride film
JP3071450B2 (en) Microwave plasma processing equipment
JPH0340422A (en) Film formation device