JPH0242702A - Soft magnetic thin film and magnetic head using such thin film - Google Patents

Soft magnetic thin film and magnetic head using such thin film

Info

Publication number
JPH0242702A
JPH0242702A JP8034289A JP8034289A JPH0242702A JP H0242702 A JPH0242702 A JP H0242702A JP 8034289 A JP8034289 A JP 8034289A JP 8034289 A JP8034289 A JP 8034289A JP H0242702 A JPH0242702 A JP H0242702A
Authority
JP
Japan
Prior art keywords
iron
thin film
layers
iron carbide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8034289A
Other languages
Japanese (ja)
Inventor
Toru Hori
徹 堀
Masaki Aoki
正樹 青木
Kenichi Fujii
謙一 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8034289A priority Critical patent/JPH0242702A/en
Publication of JPH0242702A publication Critical patent/JPH0242702A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a soft magnetic thin film having high saturation magnetic flux density and having both high durability and high permeability by laminating layers of iron carbide and iron alternately. CONSTITUTION:Layers of iron 12 and layers of iron carbide 11 having a concentration of C in a range corresponding to positive magnetostrictive constants are laminated alternately. According to such an arrangement, even if carbon is incorporated in the iron carbide layers 11 in an amount enough to present sufficient durability at the sacrifice of saturation magnetic flux thereof, the presence of the pure iron layers 12 ensures sufficient saturation magnetic flux and instability of the pure iron layers 12 can be compensated by the adjacent iron carbide layers 11. Further, the negative magnetostriction of the pure iron layers 12 and the positive magnetostriction of the iron carbide layers 11 are cancelled each other, whereby the soft magnetic thin film thus obtained is allowed to have sufficiently high permeability also. Accordingly to the invention, consequently, the soft magnetic thin film having high saturation magnetic flux density is allowed to have both high durability and high permeability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気ヘッドや磁気抵抗素子等に用いられる軟
磁性薄膜、特に高保持力の高密度磁気記録用の媒体に対
して優れた記録再生特性を有する軟磁性薄膜、およびこ
れを用いた磁気ヘッドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides excellent recording and reproducing properties for soft magnetic thin films used in magnetic heads, magnetoresistive elements, etc., particularly for high-coercivity, high-density magnetic recording media. The present invention relates to a soft magnetic thin film having a soft magnetic thin film and a magnetic head using the same.

従来の技術 従来磁気ヘッドの材料としては、金属酸化物のフェライ
トが広く使われてきた。近年はそれよりも飽和磁束密度
の高いパーマロイにッケルー鉄系合金)やセンダスト(
鉄−アルミニウム−シリコン系合金)も使われている。
Prior Art Ferrite, a metal oxide, has been widely used as a material for conventional magnetic heads. In recent years, permalloy with higher saturation magnetic flux density, Kkeru iron-based alloy) and Sendust (
Iron-aluminum-silicon alloys) are also used.

さらに最近では、飽和磁束密度が1.0〜1.4テスラ
のアモルファス材料(コバルト−ジルコニウム系非晶質
合金)が開発され、8ミリVTRなどのメタルテープ対
応ヘッド用に使われ始めている。
More recently, an amorphous material (cobalt-zirconium amorphous alloy) with a saturation magnetic flux density of 1.0 to 1.4 Tesla has been developed and is beginning to be used for heads compatible with metal tapes such as 8 mm VTRs.

記録密度向上の要求に答えて、このような飽和磁束密度
の高い磁性材料が次々に登場してきたが、媒体の方の進
歩も目覚ましく、メタルテープの出現によって従来の酸
化物テープの保持力600〜7005eに対して150
0〜20 ”000 eの保磁力を持つ媒体が得られる
ようになった。
In response to demands for increased recording density, magnetic materials with high saturation magnetic flux density have appeared one after another, but advances in media have also been remarkable, and with the advent of metal tapes, the coercive strength of conventional oxide tapes has increased from 600 to 600. 150 for 7005e
Media with coercivity of 0 to 20''000 e can now be obtained.

次世代の大容量磁気記録媒体ではさらに大きな保持力を
持つ媒体も開発中であり、このような高保持力の磁気記
録媒体に十分記録させるためには1.5テスラ以上の飽
和磁束密度を有する磁気へラドコア用磁性材料が必要で
あるといわれている(例えばr日立1第49巻第6号8
〜9ページ〕。
Next-generation high-capacity magnetic recording media with even higher coercivity are currently being developed, and in order to record sufficiently on such high-coercivity magnetic recording media, it is necessary to have a saturation magnetic flux density of 1.5 Tesla or more. It is said that a magnetic material for magnetic helad core is necessary (for example, Hitachi 1 Vol. 49 No. 8
~9 pages].

飽和磁束密度の高い物質としては、2.2テスラという
純鉄がある。ところが純鉄は透磁率が低いため、そのま
までは磁気ヘッド材料として使えない。そこで炭化鉄系
多層膜が研究され、高い飽和磁束密度と透磁率を兼ね備
えた軟磁性薄膜が報告されている〔例えばrジャーナル
 オプ アポライド フィジックス Journal 
of AppliedPhysics J Vo 1.
63. No、  8. Ap r i l。
An example of a material with a high saturation magnetic flux density is pure iron with a density of 2.2 Tesla. However, pure iron has low magnetic permeability, so it cannot be used as a magnetic head material. Therefore, iron carbide-based multilayer films have been studied, and soft magnetic thin films that have both high saturation magnetic flux density and magnetic permeability have been reported [for example, R Journal Op Apollide Physics Journal
of Applied Physics J Vo 1.
63. No, 8. April.

1988、pp、3203〜3205;r日本応用磁気
学会JVOI、12.No、3,1988゜pp、46
0〜464〕。しかし耐蝕性などの点で問題があり、実
用化されるまでには至っていない。
1988, pp, 3203-3205; r Japan Society of Applied Magnetics JVOI, 12. No. 3, 1988゜pp, 46
0-464]. However, it has not been put into practical use due to problems such as corrosion resistance.

発明が解決しようとする課題 上記のように飽和磁束密度が1.5テスラ以上の磁性材
料では、これまで高い耐久性と透磁率を兼ね備えたもの
が得られないという課題があった。
Problems to be Solved by the Invention As mentioned above, there has been a problem in that magnetic materials having a saturation magnetic flux density of 1.5 Tesla or more have not been able to have both high durability and magnetic permeability.

本発明は上記課題に鑑み、高い耐久性と透磁率を兼ね備
えた、飽和磁束密度の高い軟磁性薄膜、およびそれを用
いた磁気ヘッドを提供するものである。
In view of the above problems, the present invention provides a soft magnetic thin film having both high durability and magnetic permeability, and a high saturation magnetic flux density, and a magnetic head using the same.

課題を解決するための手段 上記課題を解決するために本発明の軟磁性薄膜は、鉄の
層と、正の磁歪常数をもつ04度範囲の炭化鉄の層とが
交互に配置され、かつ炭化鉄の単層の厚さが3〜800
nm、鉄の単層の厚さが0.5〜60nmであるという
構成を備えたものである。
Means for Solving the Problems In order to solve the above problems, the soft magnetic thin film of the present invention has iron layers and iron carbide layers having a positive magnetostriction constant in the range of 04 degrees arranged alternately, and Single layer thickness of iron is 3~800mm
nm, and the thickness of the iron single layer is 0.5 to 60 nm.

作用 本発明は上記した構成によって、炭化鉄層に飽和磁束を
犠牲にして十分な耐久性が出せるだけの炭素を入れても
、純鉄層の存在により十分な飽和磁束を維持でき、また
純鉄層の不安定性もそれをはさんだ炭化鉄層によって補
える。ざらに純鉄層の負の磁歪と、炭化鉄層の正の磁歪
とが相殺して、十分に高い透磁率をも兼ね備えることが
できる。
Effect of the present invention With the above-described structure, even if enough carbon is added to the iron carbide layer to provide sufficient durability at the expense of sacrificing the saturation magnetic flux, sufficient saturation magnetic flux can be maintained due to the presence of the pure iron layer. The instability of the layer can be compensated for by the iron carbide layer sandwiching it. The negative magnetostriction of the pure iron layer and the positive magnetostriction of the iron carbide layer roughly cancel each other out, making it possible to have sufficiently high magnetic permeability.

実施例 以下本発明の第1の一実施例の軟磁性薄膜について、図
面を参照しながら説明する。
EXAMPLE Hereinafter, a soft magnetic thin film according to a first embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の第1および第2の実施例の軟磁性薄膜
における炭化鉄と純鉄との層状構造を示した断面図であ
る。第一図において、11は炭化鉄、12は純鉄である
FIG. 1 is a cross-sectional view showing the layered structure of iron carbide and pure iron in soft magnetic thin films of first and second embodiments of the present invention. In Figure 1, 11 is iron carbide and 12 is pure iron.

本実施例の軟磁性yJ膜は、3タ一ゲツト式の高周波マ
グネトロンスパッタ装置を用いて制作し、各層の膜厚は
スパッタ時間によって制御し、また各層の膜厚によらず
全膜厚が2nm程度になるように層数を調節しである。
The soft magnetic yJ film of this example was produced using a three-target high-frequency magnetron sputtering device, and the film thickness of each layer was controlled by the sputtering time, and the total film thickness was 2 nm regardless of the film thickness of each layer. Adjust the number of layers to achieve the desired level.

また本実施例の全ての軟磁性薄膜は、成膜後320℃で
1時間アニールしである。
Furthermore, all the soft magnetic thin films of this example were annealed at 320° C. for 1 hour after film formation.

以上のような構成を持った軟磁性iii膜について、以
下第1表および第3図から第11図を用いてその特徴を
説明する。
The characteristics of the soft magnetic III film having the above structure will be explained below using Table 1 and FIGS. 3 to 11.

まず第1表は、純鉄層の膜厚が3nm、炭化鉄層の膜厚
が30nm、炭化鉄層の炭素濃度がモル百分率で9%の
本実施例の軟磁性薄膜と、純鉄の単層膜および炭素濃度
がモル百分率でそれぞれ3%と27%の炭化鉄単層膜と
の特性を比較した表である。
First, Table 1 shows the soft magnetic thin film of this example in which the thickness of the pure iron layer is 3 nm, the thickness of the iron carbide layer is 30 nm, and the carbon concentration of the iron carbide layer is 9% in molar percentage, and the soft magnetic thin film of pure iron. It is a table comparing the characteristics of a layer film and a single layer film of iron carbide having a carbon concentration of 3% and 27%, respectively, in terms of molar percentage.

第1表において、比透磁率は20MHzにおける値であ
り、耐候性は3%塩水噴霧中に200時間放置した後の
薄膜の飽和磁束密度と放置前の飽和磁束密度との比で表
しである。
In Table 1, the relative magnetic permeability is the value at 20 MHz, and the weather resistance is expressed as the ratio of the saturation magnetic flux density of the thin film after being left in 3% salt water spray for 200 hours to the saturation magnetic flux density before being left.

(以 下 余 白) 第1表 第1表から明らかなように本実施例では、単層膜では得
ることのできない、高い飽和磁束密度と透磁率と耐久性
とを兼ね備えた軟磁性薄膜を実現することができる。
(Left below) Table 1 As is clear from Table 1, this example realized a soft magnetic thin film that has high saturation magnetic flux density, magnetic permeability, and durability that cannot be obtained with a single layer film. can do.

第3図、第4図および第5図はそれぞれ、純鉄層の厚さ
を3nmに固定して炭化鉄層の膜厚を0.7nm〜20
00nmまで変化させた場合の飽和磁束密度、保磁力お
よび20MHzでの比透磁率の変化を示した図である。
3, 4, and 5, the thickness of the pure iron layer is fixed at 3 nm, and the thickness of the iron carbide layer is varied from 0.7 nm to 20 nm.
FIG. 3 is a diagram showing changes in saturation magnetic flux density, coercive force, and relative magnetic permeability at 20 MHz when changing it to 00 nm.

このとき炭化鉄層中の炭素濃度はモル百分率で24%で
あり、同じものを単層で制作した場合の磁歪常数は、5
.2X104である。
At this time, the carbon concentration in the iron carbide layer is 24% in mole percentage, and the magnetostriction constant when the same layer is made as a single layer is 5.
.. It is 2×104.

第3図、第4図および第5図から明らかなように、3n
mの純鉄層と、炭素濃度がモル百分率で24%の炭化鉄
層とを積層した場合、炭化鉄層の膜厚が3〜800 n
mの時に良好な軟磁気特性を備えた磁性薄膜を実現する
ことができる。
As is clear from FIGS. 3, 4 and 5, 3n
When a pure iron layer of m and an iron carbide layer with a carbon concentration of 24% in molar percentage are laminated, the thickness of the iron carbide layer is 3 to 800 n.
A magnetic thin film with good soft magnetic properties can be realized when m.

第6図、第7図および第8図はそれぞれ、炭化鉄層の厚
さを30nmに固定して純鉄層の膜厚を0.5nm〜2
000nmまで変化させた場合の飽和磁束密度、保磁力
および20MHzでの比透磁率の変化を示した図である
。このとき炭化鉄層中の炭素濃度はモル百分率で24%
であり、同じものを単層で制作した場合の磁歪常数は、
5.2X104である。
6, 7, and 8, the thickness of the iron carbide layer is fixed at 30 nm, and the thickness of the pure iron layer is varied from 0.5 nm to 2.
FIG. 2 is a diagram showing changes in saturation magnetic flux density, coercive force, and relative magnetic permeability at 20 MHz when changing the magnetic flux density to 000 nm. At this time, the carbon concentration in the iron carbide layer is 24% in molar percentage.
, and the magnetostriction constant when the same material is made in a single layer is:
It is 5.2×104.

第6図、第7図および第8図から明・らかなように、膜
厚が30nmで炭素濃度がモル百分率で24%の炭化鉄
層と、純鉄の層とを積層した場合、純鉄屑の膜厚が0.
5〜60nmの時に良好な軟磁気特性を備えた磁性薄膜
を実現することができる。
As is clear from FIGS. 6, 7, and 8, when an iron carbide layer with a thickness of 30 nm and a carbon concentration of 24% in molar percentage and a layer of pure iron are laminated, pure iron The film thickness of the debris is 0.
When the thickness is 5 to 60 nm, a magnetic thin film with good soft magnetic properties can be realized.

第9図および第10図はそれぞれ、炭化鉄中の炭素濃度
を変化させた場合の1100n厚の炭化鉄単層の磁歪常
数と、同じ膜厚1100nの炭化鉄層と、膜厚3nmの
純鉄層との積層膜の、保磁力および透磁率との関係を示
した図である。
Figures 9 and 10 show the magnetostriction constant of a single layer of iron carbide with a thickness of 1100n when the carbon concentration in the iron carbide is changed, an iron carbide layer with the same thickness of 1100n, and pure iron with a thickness of 3nm, respectively. It is a figure showing the relationship between coercive force and magnetic permeability of a laminated film with layers.

第9図および第10図から明らかなように、膜厚が10
0 n rnの炭化鉄層と、3nm純鉄の層とを積層し
た場合、炭化鉄層の磁歪常数が正、特に0.5〜8.0
X104の時に良好な軟磁気特性を備えた磁性薄膜を実
現することができる。
As is clear from FIGS. 9 and 10, the film thickness is 10
When a 0 n rn iron carbide layer and a 3 nm pure iron layer are laminated, the magnetostriction constant of the iron carbide layer is positive, especially from 0.5 to 8.0.
When X104, a magnetic thin film with good soft magnetic properties can be realized.

第11図は、純鉄屑の厚さを3nmに固定して炭化鉄層
の膜厚を0.7nm〜2000nmまで変化させたそれ
ぞれの薄膜を、3%塩水噴霧中に200時間放置して、
放置前の各薄膜の飽和磁束密度と放置後のそれぞれの飽
和磁束密度との比を表した図である。このとき炭化鉄層
中の炭素濃度はモル百分率で24%であり、同じものを
単層で制作した場合の磁歪常数は、5.2x104であ
る。
Figure 11 shows that each thin film, in which the thickness of pure iron scrap was fixed at 3 nm and the thickness of the iron carbide layer was varied from 0.7 nm to 2000 nm, was left in a 3% salt water spray for 200 hours.
FIG. 3 is a diagram showing the ratio of the saturation magnetic flux density of each thin film before being left to stand and the saturation magnetic flux density of each thin film after being left to stand. At this time, the carbon concentration in the iron carbide layer is 24% in mole percentage, and the magnetostriction constant when the same layer is made as a single layer is 5.2x104.

第11図から明らかなように、3nmの純鉄屑と、炭素
濃度がモル百分率で24%の炭化鉄層とを積層した場合
、炭化鉄層の膜厚が3nm以上の場合に良好な耐候性を
備えた磁性薄膜を実現することができる。
As is clear from FIG. 11, when pure iron scrap with a thickness of 3 nm and an iron carbide layer with a carbon concentration of 24% in molar percentage are laminated, good weather resistance is achieved when the thickness of the iron carbide layer is 3 nm or more. It is possible to realize a magnetic thin film with

以上の結果から、鉄の層と、正の磁歪常数を持つC濃度
範囲の炭化鉄の層とが交互に配置され、かつ炭化鉄の各
層の厚さが3〜800nm、純鉄の各層の厚さが0.5
〜60nmに設定することにより、高い耐久性と透磁率
を兼ね備えた、飽和磁束密度の高い軟磁性薄膜を提供す
ることができる。
From the above results, it is clear that iron layers and iron carbide layers with a positive magnetostriction constant and a C concentration range are arranged alternately, and that each iron carbide layer has a thickness of 3 to 800 nm, and that each pure iron layer has a thickness of 3 to 800 nm. Saga 0.5
By setting the thickness to 60 nm, it is possible to provide a soft magnetic thin film with high saturation magnetic flux density that has both high durability and magnetic permeability.

以下本発明の第2の一実施例の磁気へンドについて、図
面を参照しながら説明する。
A magnetic head according to a second embodiment of the present invention will be described below with reference to the drawings.

第12図は、本発明の第2の実施例の磁気ヘッドの一部
の断面図である。第12図において31は表面を充分に
研磨・洗浄したセラミック基板である。32は本発明の
軟磁性薄膜で、膜厚が30nmで炭素濃度がモル百分率
で24%の炭化鉄層と、膜厚が5nmの純鉄の層とを積
層したもので、積層数は炭化鉄層が91層、純鉄層が9
01Jである。なお軟磁性薄膜32はセラミツク基板3
1上全面にスパッタリング方によって形成された後、イ
オンミリング法あるいはウェフトエツチング法などによ
り所定の磁気コア形状にパターニングする。33,34
.35はそれぞれ5i02などのギャップ材・有機絶縁
層、導体コイルであり、順次スパッタリング法などの成
膜法により全面に堆積された後、イオンミリング法ある
いはウェットエツチング法などにより所定の形状にパタ
ーニングしたものである。36は31と同じ軟磁性薄膜
を同じ層数だけ形成したものである。37は保護膜でA
l2O2などの絶縁層を全面に堆積させたものである。
FIG. 12 is a cross-sectional view of a portion of a magnetic head according to a second embodiment of the present invention. In FIG. 12, numeral 31 is a ceramic substrate whose surface has been sufficiently polished and cleaned. 32 is a soft magnetic thin film of the present invention, which is a lamination of an iron carbide layer with a thickness of 30 nm and a carbon concentration of 24% in molar percentage, and a layer of pure iron with a thickness of 5 nm, and the number of laminated layers is iron carbide. 91 layers, 9 pure iron layers
It is 01J. Note that the soft magnetic thin film 32 is formed on the ceramic substrate 3.
1 by sputtering, and then patterned into a predetermined magnetic core shape by ion milling, wet etching, or the like. 33, 34
.. 35 is a gap material such as 5i02, an organic insulating layer, and a conductor coil, which are sequentially deposited on the entire surface by a film forming method such as sputtering method, and then patterned into a predetermined shape by ion milling method or wet etching method. It is. 36 has the same soft magnetic thin film as 31 formed in the same number of layers. 37 is a protective film A
An insulating layer such as l2O2 is deposited over the entire surface.

以上のように構成された第12図に示す堆積物を所定の
形状に切り出し、ヘッド先端側39を研磨して磁気ギャ
ップ38を形成して、一つの薄膜磁気ヘッドとする。
The deposit shown in FIG. 12 constructed as described above is cut into a predetermined shape, and the head tip side 39 is polished to form a magnetic gap 38 to form one thin film magnetic head.

上記磁気ヘッドの磁気特性を、同一条件で別の基板上に
形成した薄膜によって測定した結果、飽和磁束密度は1
.92テスラ、磁化困難方向の保持力は0.130e、
29MHzにおける比透磁率は3900と優れた特性を
示すことが確認された。
The magnetic properties of the above magnetic head were measured using a thin film formed on another substrate under the same conditions, and the saturation magnetic flux density was 1.
.. 92 Tesla, coercive force in the direction of difficult magnetization is 0.130e,
It was confirmed that the relative magnetic permeability at 29 MHz was 3900, showing excellent characteristics.

また上記ヘッドの電磁変換特性を従来のコバルト系非晶
質合金薄膜ヘッドと比較すると、再生出力が約25%向
上することを確認した。また摂氏60゛C1相対湿度9
0%の常温常湿槽中で、従来のコバルト系非晶質合金薄
膜を用いたへンドの再生出力が30%ダウンするまで放
置したところ、本実施例の磁気ヘッドの再生出力にはほ
とんど変化がみられなかった。
Furthermore, when the electromagnetic conversion characteristics of the above head were compared with those of a conventional cobalt-based amorphous alloy thin film head, it was confirmed that the reproduction output was improved by about 25%. Also, Celsius 60゛C1 relative humidity 9
When the reproduction output of a conventional head using a cobalt-based amorphous alloy thin film was left in a room temperature and humidity chamber at 0% until the reproduction output decreased by 30%, there was almost no change in the reproduction output of the magnetic head of this example. was not seen.

以上のように本実施例によれば、本発明の軟磁性薄膜を
透磁層に使用することにより、飽和磁束密度が1.92
テスラと高く、かつ高い透磁率と耐蝕性とを兼ね備えた
磁気ヘッドを提供することができる。
As described above, according to this example, by using the soft magnetic thin film of the present invention in the magnetically permeable layer, the saturation magnetic flux density is 1.92.
It is possible to provide a magnetic head that has a high magnetic permeability and corrosion resistance as high as Tesla.

以下本発明の第3の一実施例の軟磁性薄膜について、図
面を参照しながら説明する。
A soft magnetic thin film according to a third embodiment of the present invention will be described below with reference to the drawings.

第2図は本発明の第3の実施例の軟磁性薄膜における炭
化鉄と純鉄と酸化珪素などの非磁性体の層との層状構造
を示した断面図である。第2図において、21は炭化鉄
、22は純鉄、23は酸化珪素などの非磁性体である。
FIG. 2 is a sectional view showing a layered structure of iron carbide, pure iron, and a layer of nonmagnetic material such as silicon oxide in a soft magnetic thin film according to a third embodiment of the present invention. In FIG. 2, 21 is iron carbide, 22 is pure iron, and 23 is a nonmagnetic material such as silicon oxide.

本実施例においては、膜厚が30層mで炭素濃度がモル
百分率で24%の炭化鉄層と、膜厚が5nmの純鉄の層
と膜厚が3nmの酸化珪素の層とをそれぞれ90層ずつ
積層したもので、第2の実施例と全く同様の薄膜磁気ヘ
ッドを形成し、電磁変換特性を第2の実施例の薄膜ヘッ
ドと比較すると、高周波領域で再生出力がさらに20%
向上することを確認した。
In this example, an iron carbide layer with a film thickness of 30 m and a carbon concentration of 24% in molar percentage, a pure iron layer with a film thickness of 5 nm, and a silicon oxide layer with a film thickness of 3 nm are each made of 90 m of iron carbide. A thin-film magnetic head that is exactly the same as the second embodiment is formed by laminating layers one by one, and when comparing the electromagnetic conversion characteristics with the thin-film head of the second embodiment, the reproduction output in the high frequency region is increased by an additional 20%.
It was confirmed that there was an improvement.

また摂氏60゛C1相対温度90%の常温常湿槽中で従
来のコバルト系非晶質合金薄膜を用いたヘッドの再生出
力が30%ダウンするまで放置したところ、本実施例の
磁気ヘッドも、第2の実施例のヘッドと同様に再生出力
にはほとんど変化がみられなかった。
Furthermore, when a conventional head using a cobalt-based amorphous alloy thin film was left in a normal temperature and humidity chamber at a relative temperature of 90% at 60° Celsius until its reproduction output decreased by 30%, the magnetic head of this example also showed As with the head of the second example, almost no change was observed in the reproduction output.

発明の効果 以上のように本発明は、鉄の層と、正の磁歪常数を持つ
C濃度範囲の炭化鉄の層とが交互に配置され、かつ炭化
鉄の単層の厚さが3〜800nm、鉄の単層の厚さが0
.5〜60nmであるという構成を備えることにより、
炭化鉄屑に飽和磁束を犠牲にして十分な耐久性が出せる
だけの炭素を入れても、純y、Nの存在により十分な飽
和磁束を維持でき、また純鉄屑の不安定性もそれをはさ
んだ炭化鉄層によって捕える。さらに純鉄層の負の磁歪
と、炭化鉄層の正の磁歪とが相殺して、十分に高い透磁
率をも兼ね備えることができる。即ち高い耐久性と透磁
率を兼ね備えた、飽和磁束密度の高い軟磁性薄膜を実現
することができる。
Effects of the Invention As described above, the present invention provides a method in which iron layers and iron carbide layers having a positive magnetostriction constant and a C concentration range are arranged alternately, and the thickness of the single iron carbide layer is 3 to 800 nm. , the thickness of the iron single layer is 0
.. By having a configuration of 5 to 60 nm,
Even if enough carbon is added to iron carbide scrap to provide sufficient durability at the expense of saturation magnetic flux, sufficient saturation magnetic flux can be maintained due to the presence of pure Y and N, and the instability of pure iron scrap also prevents this. It is captured by the iron carbide layer. Furthermore, the negative magnetostriction of the pure iron layer and the positive magnetostriction of the iron carbide layer cancel each other out, so that it can also have a sufficiently high magnetic permeability. That is, it is possible to realize a soft magnetic thin film with high saturation magnetic flux density that has both high durability and magnetic permeability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の軟磁性薄膜における炭
化鉄と純鉄との層状構造を示した断面図、第2図は本発
明の第1の実施例の軟磁性薄膜における炭化鉄と純鉄と
の層状構造を示した断面図、第3図は純鉄石の厚さを固
定したときの、炭化鉄層の膜厚と飽和磁束密度との関係
を示した図、第4図は純鉄屑の厚さを固定したときの炭
化鉄層と保磁力との関係を示した図、第5図は純鉄屑の
厚さを固定したときの炭化鉄扇の膜厚と比透磁率の変化
を示した図、第6図は炭化鉄屑の厚さを固定したときの
純鉄層の膜厚と飽和磁束密度との関係を示した図、第7
図は炭化鉄屑の厚さを固定したときの純鉄屑の膜厚と保
磁力との関係を示した図、第8図は炭化鉄層の厚さを固
定したときの純鉄屑の膜厚と20MHzでの比透磁率と
の関係を示した図、第9図は炭化鉄中の炭素濃度を変化
させた場合の100100nの炭化鉄単層の磁歪常数と
、同じ膜厚1100nの炭化鉄層と、膜厚3nmの純鉄
層との積層膜の、保磁力との関係を示した図、第1O図
は炭化・鉄中の炭素濃度を変化させた場合の1100n
厚の炭化鉄単層の磁歪常数と、同じ膜厚1100nの炭
化鉄層と、膜J!f−3nmの純鉄層との積FipIi
4の、透磁率との関係を示した図、第11図は純鉄層の
厚さを固定して炭化鉄層の膜厚を変化させた薄膜を、3
%塩水噴霧中に200時間放置して、放置前の各薄膜の
飽和磁束密度と放置後のそれぞれの飽和磁束密度との比
を表した図、第12図は本発明の第2の実施例の磁気ヘ
ッドの一部の断面図である。 11・・・・・・炭化鉄、12・・・・・・純鉄、21
・・・・・・炭化鉄、22・・・・・・純鉄、23・・
・・・・酸化珪素などの非磁性体、31・・・・・・セ
ラミック基板、32・・・・・・本発明の軟磁性薄膜、
33・・・・・・ギャンプ材、34・・団・有機絶縁層
、35・・・・・・導体コイル、36・・・・・・31
と同じ軟磁性薄膜、37・・・・・・保護膜、38・・
・・・・磁気ギャップ、39・・・・・・ヘッド先端。 代理人の氏名 弁理士 粟野重孝 はか1名ε顆 1%雪 第 3 図 第4図 IO100/σ0ρ 炭化欽1厚(グm) 区 \ N 炭化鉄層厚(仇幌) 渠 図 蓚 図 炭化欽層湿 (4慴9 純鉄層厚(1処p 第 区 第8図 1O/θO (屯 欽7曹1  (竹aノ OO 純鉄層厚 (べ帆ジ 藁 図 盲 10図 磁歪S前数 (to”) 透歪常数 (jO″p 第11因 第12I711 炭化tvIF4(用机)
FIG. 1 is a cross-sectional view showing the layered structure of iron carbide and pure iron in a soft magnetic thin film according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the carbonization in the soft magnetic thin film according to the first embodiment of the present invention. Figure 3 is a cross-sectional view showing the layered structure of iron and pure iron, and Figure 4 is a diagram showing the relationship between the thickness of the iron carbide layer and the saturation magnetic flux density when the thickness of pure iron stone is fixed. Figure 5 shows the relationship between the iron carbide layer and coercive force when the thickness of pure iron scrap is fixed, and Figure 5 shows the film thickness and relative permeability of the iron carbide fan when the thickness of pure iron scrap is fixed. Figure 6 is a diagram showing the relationship between the thickness of the pure iron layer and the saturation magnetic flux density when the thickness of iron carbide scrap is fixed, and Figure 7 is a diagram showing the change in the saturation magnetic flux density.
The figure shows the relationship between the thickness of pure iron scrap and coercive force when the thickness of iron carbide scrap is fixed. Figure 8 shows the film of pure iron scrap when the thickness of iron carbide layer is fixed. Figure 9 shows the relationship between thickness and relative magnetic permeability at 20 MHz. Figure 9 shows the magnetostriction constant of a single layer of iron carbide of 100100n when the carbon concentration in iron carbide is changed, and the magnetostriction constant of a single layer of iron carbide of the same thickness of 1100n. Figure 1O shows the relationship between the coercive force and the coercive force of a laminated film of a pure iron layer with a thickness of 3 nm.
The magnetostriction constant of a single layer of iron carbide with a thickness of 1100 nm, the iron carbide layer with the same thickness of 1100 nm, and the film J! Product FipIi with f-3 nm pure iron layer
Figure 11 shows the relationship between magnetic permeability and magnetic permeability of 3.
Figure 12 shows the ratio of the saturation magnetic flux density of each thin film before being left to the saturation magnetic flux density after being left in salt water spray for 200 hours. FIG. 3 is a cross-sectional view of a portion of the magnetic head. 11... Iron carbide, 12... Pure iron, 21
...Iron carbide, 22...Pure iron, 23...
... Non-magnetic material such as silicon oxide, 31 ... Ceramic substrate, 32 ... Soft magnetic thin film of the present invention,
33...Gump material, 34...Group/organic insulating layer, 35...Conductor coil, 36...31
Same soft magnetic thin film as 37...protective film, 38...
...Magnetic gap, 39...Head tip. Name of agent Patent attorney Shigetaka Awano 1 person ε condyle 1% snow No. 3 Fig. 4 IO100/σ0ρ Carbonization 1 thickness (gm) Ward \ N Iron carbide layer thickness (Qippao) Drainage map Carbonization Qin layer moisture (4 慴9 Pure iron layer thickness (1 place p Section 8 Figure 1 O/θO Number (to”) Transparent strain constant (jO″p 11th factor 12I711 Carbonization tvIF4 (desk)

Claims (4)

【特許請求の範囲】[Claims] (1)炭化鉄の層と鉄の層とを交互に積層することを特
徴とする軟磁性薄膜。
(1) A soft magnetic thin film characterized by alternately laminating iron carbide layers and iron layers.
(2)鉄の層と、正の磁歪常数を持つC濃度範囲の炭化
鉄の層とが交互に配置され、かつ炭化鉄の各層の厚さが
3〜800nm、純鉄の各層の厚さが0.5〜60nm
であることを特徴とする軟磁性薄膜。
(2) Iron layers and iron carbide layers with a positive magnetostriction constant and a C concentration range are arranged alternately, and each iron carbide layer has a thickness of 3 to 800 nm, and each pure iron layer has a thickness of 3 to 800 nm. 0.5-60nm
A soft magnetic thin film characterized by:
(3)透磁層の少なくとも一部に請求項(1)または(
2)のいずれかに記載の軟磁性薄膜が使用されることを
特徴とする磁気ヘッド。
(3) Claim (1) or (
A magnetic head characterized in that the soft magnetic thin film according to any one of 2) is used.
(4)請求項(1)または(2)のいずれかに記載の軟
磁性薄膜中に非磁性層を挿入することによって再生効率
を高めたことを特徴とする請求項(4)記載の磁気ヘッ
ド。
(4) The magnetic head according to claim (4), characterized in that reproduction efficiency is increased by inserting a nonmagnetic layer into the soft magnetic thin film according to either claim (1) or (2). .
JP8034289A 1988-04-28 1989-03-30 Soft magnetic thin film and magnetic head using such thin film Pending JPH0242702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8034289A JPH0242702A (en) 1988-04-28 1989-03-30 Soft magnetic thin film and magnetic head using such thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10637288 1988-04-28
JP63-106372 1988-04-28
JP8034289A JPH0242702A (en) 1988-04-28 1989-03-30 Soft magnetic thin film and magnetic head using such thin film

Publications (1)

Publication Number Publication Date
JPH0242702A true JPH0242702A (en) 1990-02-13

Family

ID=26421366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8034289A Pending JPH0242702A (en) 1988-04-28 1989-03-30 Soft magnetic thin film and magnetic head using such thin film

Country Status (1)

Country Link
JP (1) JPH0242702A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531331B2 (en) * 2000-05-31 2010-08-25 高橋 研 Magnetic thin film, manufacturing method thereof, evaluation method thereof, magnetic head using the same, magnetic recording apparatus and magnetic device
JP2020524721A (en) * 2016-12-19 2020-08-20 スリーエム イノベイティブ プロパティズ カンパニー Thermoplastic polymer composite containing soft ferromagnetic particle material and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285413A (en) * 1985-10-11 1987-04-18 Hitachi Ltd Ferromagnetic multilayer film and manufacture of same
JPS62285406A (en) * 1986-06-03 1987-12-11 Nec Home Electronics Ltd Composite soft magnetic thin film
JPS6380509A (en) * 1986-09-24 1988-04-11 Hitachi Ltd Magnetic superlattice film and magnetic head using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285413A (en) * 1985-10-11 1987-04-18 Hitachi Ltd Ferromagnetic multilayer film and manufacture of same
JPS62285406A (en) * 1986-06-03 1987-12-11 Nec Home Electronics Ltd Composite soft magnetic thin film
JPS6380509A (en) * 1986-09-24 1988-04-11 Hitachi Ltd Magnetic superlattice film and magnetic head using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531331B2 (en) * 2000-05-31 2010-08-25 高橋 研 Magnetic thin film, manufacturing method thereof, evaluation method thereof, magnetic head using the same, magnetic recording apparatus and magnetic device
JP2020524721A (en) * 2016-12-19 2020-08-20 スリーエム イノベイティブ プロパティズ カンパニー Thermoplastic polymer composite containing soft ferromagnetic particle material and method for producing the same

Similar Documents

Publication Publication Date Title
US5264981A (en) Multilayered ferromagnetic film and magnetic head employing the same
JPS60128605A (en) Amorphous magnetic alloy multilayer film and magnetic head using the same
US7419729B2 (en) Multilayered ferromagnetic laminate having alternating cobalt alloy and iron-nitrogen alloy films for use with magnetic heads
US6346338B1 (en) Combination magnetoresistive/inductive thin film magnetic head and its manufacturing method
US5452167A (en) Soft magnetic multilayer films for magnetic head
US5018038A (en) Thin film magnetic head with laminated metal and non magnetic film
EP0206658A2 (en) Magnetic head
EP0344278B1 (en) Laminated poles for recording heads
JP3155234B2 (en) Thin film magnetic head and method of manufacturing the same
US5247415A (en) Magnetic head having main and auxiliary magnetic paths
JPH06318516A (en) Soft magnetic multilayer film and magnetic head using same
JPH0242702A (en) Soft magnetic thin film and magnetic head using such thin film
US5386332A (en) Magnetic head for high-frequency, high density recording
US5862023A (en) Metal in gap magnetic head having metal magnetic film including precious metal layer
JP2502965B2 (en) Thin film magnetic head
JPH06215325A (en) Laminate type core of magnetic head
JPS61179509A (en) Magnetic material
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JPS61202310A (en) Composite type magnetic head
JPH0498608A (en) Magnetic head
JPH0738344B2 (en) Soft magnetic thin film
JP2696120B2 (en) Magnetic multilayer film
JP2790159B2 (en) Thin-film magnetic head
JPH05242433A (en) Magnetic head
JPH05151534A (en) Combined thin-film magnetic head