JPH0522283B2 - - Google Patents

Info

Publication number
JPH0522283B2
JPH0522283B2 JP62147475A JP14747587A JPH0522283B2 JP H0522283 B2 JPH0522283 B2 JP H0522283B2 JP 62147475 A JP62147475 A JP 62147475A JP 14747587 A JP14747587 A JP 14747587A JP H0522283 B2 JPH0522283 B2 JP H0522283B2
Authority
JP
Japan
Prior art keywords
magnetic
thin film
film
metal
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62147475A
Other languages
Japanese (ja)
Other versions
JPS63311611A (en
Inventor
Shigeru Kawahara
Mitsuhiro Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP14747587A priority Critical patent/JPS63311611A/en
Publication of JPS63311611A publication Critical patent/JPS63311611A/en
Publication of JPH0522283B2 publication Critical patent/JPH0522283B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 利用産業分野 この発明は、フエライト等の強磁性酸化物を主
体とし、作動ギヤツプ近傍に金属磁性体を用いた
複合型磁気ヘツドの改良に係り、前記強磁性酸化
物と金属磁性体との接合部に生じる相互拡散を防
止して磁気的な疑似ギヤツプをなくし、磁気特
性、例えば、再生出力の周波数特性のうねり等を
防止してフラツトな出力特性を有し、また、製造
性の良い構成からなり、高保磁力を有する記録媒
体を用いる各種の磁気記録再生装置に適した複合
型磁気ヘツドに関する。
[Detailed Description of the Invention] Field of Application This invention relates to an improvement of a composite magnetic head that is mainly composed of a ferromagnetic oxide such as ferrite and uses a magnetic metal material near the operating gap. It prevents mutual diffusion that occurs at the joint with the metal magnetic material, eliminates magnetic spurious gaps, prevents magnetic characteristics, such as undulations in the frequency characteristics of the reproduced output, and has flat output characteristics. The present invention relates to a composite magnetic head which has a structure with good manufacturability and is suitable for various magnetic recording and reproducing devices using recording media having high coercive force.

背景技術 近年、磁気記録分野では、記録信号の高密度化
の要望にともない、高保磁力を有する所謂メタル
系記録媒体が使用されてきている。例えば、
FDD,HDD,VTR、電算機用磁気テープ記憶装
置、S−DAT、スチルビデオフロツピー等多種
多様の記録形態の磁気記録再生装置に使用されつ
つある。
BACKGROUND ART In recent years, in the field of magnetic recording, so-called metal recording media having high coercive force have been used to meet the demand for higher density recording signals. for example,
It is being used in magnetic recording and reproducing devices for a wide variety of recording formats, such as FDDs, HDDs, VTRs, magnetic tape storage devices for computers, S-DATs, and still video floppies.

メタルテープのような高い残留磁束密度を持つ
磁気記録媒体に、磁気記録・再生する磁気ヘツド
は、その磁気ギヤツプに発生させる磁界強度を従
来より高くする必要があつた。
A magnetic head that magnetically records and reproduces information on a magnetic recording medium having a high residual magnetic flux density, such as a metal tape, has had to generate a magnetic field strength higher than before in its magnetic gap.

一方、単結晶フエライトの如き強磁性酸化物よ
りなる磁気コアを半割体として、その一対を突合
せ、突合せ部を磁気ギヤツプとした構成からなる
磁気ヘツドの場合、そのギヤツプを形成している
フエライトのBsがせいぜい6000Gと低いため、十
分な記録磁界強度が取れない問題があつた。
On the other hand, in the case of a magnetic head that consists of a magnetic core made of a ferromagnetic oxide such as single-crystal ferrite, which is split into halves, and a pair of halves are abutted against each other, with the abutting portion forming a magnetic gap, the ferrite forming the gap is Since Bs was as low as 6000G at most, there was a problem that sufficient recording magnetic field strength could not be obtained.

そこで、強磁性酸化物を主体とした磁気ヘツド
において、磁気ヘツドの磁気ギヤツプ近傍部を、
フエライトより飽和磁束密度Bsの高い金属磁性
薄膜にて構成した所謂複合型磁気ヘツドが種々提
案されている。
Therefore, in a magnetic head mainly made of ferromagnetic oxide, the area near the magnetic gap of the magnetic head is
Various so-called composite magnetic heads have been proposed that are constructed from metal magnetic thin films having a higher saturation magnetic flux density Bs than ferrite.

例えば、第3図a,bに示す従来の複合型磁気
ヘツドの媒体対向面の概略図にて説明すると、複
合型磁気ヘツドは、単結晶フエライトのような強
磁性酸化物よりなる一対の磁気コア半体片1,2
の各突合せ面1a,2aに、スパツタリング法の
如き真空薄膜形成技術を用いて金属磁性薄膜3,
4を形成したのち、該磁気コア半体片1,2を突
き合せて、磁気ギヤツプ5を形成する構成からな
る。
For example, referring to the schematic diagram of the medium facing surface of a conventional composite magnetic head shown in FIGS. Half piece 1, 2
A metal magnetic thin film 3, is formed on each abutting surface 1a, 2a using a vacuum thin film forming technique such as a sputtering method.
After the magnetic core halves 1 and 2 are formed, a magnetic gap 5 is formed by butting the magnetic core halves 1 and 2 together.

また、かかる構成からなる複合型磁気ヘツドの
金属磁性薄膜には、次のような特性が要求され、
下記要求を満たす材料として、Fe−Al−Si系の
金属磁性薄膜がある。
In addition, the metal magnetic thin film of the composite magnetic head with such a configuration is required to have the following characteristics:
An Fe-Al-Si metal magnetic thin film is a material that satisfies the following requirements.

フエライト材のBsより高いBsを有すること 耐摩耗性にすぐれていること 熱的安定性にすぐれていること 高い周波数(例えば、10MHz)での透磁率が
すぐれていること 従来技術の問題点 前述の金属磁性薄膜にFe−Al−Si系合金膜を
用いた複合型磁気ヘツドは、メタルテープの使用
に対応する諸条件を満足するすぐれた磁気ヘツド
として多用されている。しかし、以下の問題があ
つた。
Has a Bs higher than that of ferrite materials Has excellent wear resistance Has excellent thermal stability Has excellent magnetic permeability at high frequencies (e.g. 10MHz) Problems with conventional technology The above-mentioned A composite magnetic head using an Fe--Al--Si alloy film as a metal magnetic thin film is widely used as an excellent magnetic head that satisfies various conditions for the use of metal tapes. However, the following problems arose.

第4図の磁気ヘツドの模式図にて説明すると、
磁気コア1,2の突合せ面上に、金属磁性薄膜
3,4を被着形成し、ガラス等を用いて高温にて
磁気ヘツドコアを形成する際に、金属磁性薄膜と
磁気ヘツドコアとの相互拡散、薄膜形成条件やコ
ア1,2と薄膜3,4の熱膨張係数の差等によ
り、金属磁性薄膜の被着初期層の磁気特性が劣化
し、磁気コア1,2との接合部1b,2bに磁気
的な不連続が生じ、このような複合型磁気ヘツド
で再生した時、接合部1b,2bが疑似ギヤツプ
として働き、第6図(従来法、ピークb)に示す
ような疑似ピークが現われ、再生出力の周波数特
性にうねりを生じる問題があつた。
To explain using the schematic diagram of the magnetic head in Fig. 4,
When forming the metal magnetic thin films 3 and 4 on the abutting surfaces of the magnetic cores 1 and 2 and forming the magnetic head core at high temperature using glass or the like, mutual diffusion between the metal magnetic thin films and the magnetic head core occurs. Due to the thin film formation conditions and the difference in thermal expansion coefficient between the cores 1 and 2 and the thin films 3 and 4, the magnetic properties of the initial layer of the metal magnetic thin film deteriorate, and the bonding parts 1b and 2b with the magnetic cores 1 and 2 deteriorate. When a magnetic discontinuity occurs and such a composite magnetic head is used for reproduction, the junctions 1b and 2b act as a pseudo gap, and a pseudo peak as shown in FIG. 6 (conventional method, peak b) appears. There was a problem in which the frequency characteristics of the reproduced output were distorted.

また、磁気コア1,2の突合せ面の金属磁性薄
膜の被着予定面に加工歪層があると、接合部1b
に磁気的な不連続が生じて前記と同様に疑似ギヤ
ツプとして働くことが判明した。
Furthermore, if there is a processed strain layer on the abutting surface of the magnetic cores 1 and 2 on which the metal magnetic thin film is to be deposited, the joining portion 1b
It was found that a magnetic discontinuity occurs in the magnetic field, which acts as a pseudo gap in the same way as described above.

このような疑似ギヤツプ生成問題に対しては、
一般には、アジマスロスを利用し、疑似ギヤツプ
となる接合部1b,2bと磁気ギヤツプ5とが非
平行になるように、例えば、第3図に示す如く、
所定のアジマス角を設けることにより対処してい
た。
For this kind of pseudo-gap generation problem,
In general, azimuth loss is used to make the joints 1b and 2b, which form a pseudo gap, and the magnetic gap 5 non-parallel, for example, as shown in FIG.
This problem has been dealt with by providing a predetermined azimuth angle.

しかしながら、前記第3図に示すような構造で
は、該金属磁性薄膜を20μm程度に厚く被着形成
する必要があり、膜剥離による歩留低下、あるい
は被着形成に長時間を要して生産性が悪いなどの
問題があつた。
However, in the structure shown in FIG. 3, it is necessary to deposit the metal magnetic thin film to a thickness of about 20 μm, which reduces yield due to film peeling or takes a long time to form the deposit, reducing productivity. There were problems such as poor quality.

発明の目的 この発明は、高抗磁力Hcを有する磁気記録媒
体に高密度記録再生するのに適した複合型磁気ヘ
ツドを目的とし、金属磁性薄膜と磁気ヘツドコア
との相互拡散を防止して所謂疑似ギヤツプの生成
を防止し、量産にすぐれかつ信頼性が高く、耐摩
耗性の良好な複合型磁気ヘツドを目的とする。
Purpose of the Invention The object of the present invention is to provide a composite magnetic head suitable for high-density recording and reproducing on a magnetic recording medium having a high coercive force Hc, by preventing mutual diffusion between a metal magnetic thin film and a magnetic head core. The objective is to create a composite magnetic head that prevents the formation of gaps, is suitable for mass production, is highly reliable, and has good wear resistance.

発明の構成 発明者らは、複合型磁気ヘツドにおける金属磁
性薄膜と磁気ヘツドコアとの相互拡散の防止を目
的に種々検討した結果、強磁性酸化物等からなる
基板上に最初にCr薄膜を成膜し、次いで、Fe−
Al−Si合金膜を成膜すれば、下地のCr薄膜の結
晶配向に沿つたFe−Al−Si合金膜(いわゆるエ
ピタキシヤル成長によるFe−Al−Si合金膜)が
形成されると考えられ、初期層の結晶配向の乱れ
が少なく、熱処理により容易にFe−Al−Si合金
膜の軟磁気特性が向上することを知見した。
Structure of the Invention As a result of various studies aimed at preventing mutual diffusion between the metal magnetic thin film and the magnetic head core in a composite magnetic head, the inventors first formed a Cr thin film on a substrate made of ferromagnetic oxide, etc. Then, Fe-
It is thought that if an Al-Si alloy film is formed, an Fe-Al-Si alloy film (a so-called Fe-Al-Si alloy film by epitaxial growth) will be formed along the crystal orientation of the underlying Cr thin film. It has been found that the crystal orientation of the initial layer is less disturbed and the soft magnetic properties of the Fe-Al-Si alloy film can be easily improved by heat treatment.

すなわち、この発明は、強磁性酸化物を主体と
する磁気コアの少なくとも作動ギヤツプ近傍部に
金属磁性体を有する複合型磁気ヘツドにおいて、
無歪高平坦度面となした強磁性酸化物表面に、
100Å〜1000Å厚みのCr薄膜、Fe−Al−Si系合金
薄膜の順に積層された金属薄膜体を有することを
特徴とする複合型磁気ヘツドである。
That is, the present invention provides a composite magnetic head in which a magnetic core mainly composed of ferromagnetic oxide has a metallic magnetic material at least in the vicinity of the operating gap.
The ferromagnetic oxide surface has a strain-free high flatness surface,
This is a composite magnetic head characterized by having a metal thin film body in which a Cr thin film and a Fe-Al-Si alloy thin film with a thickness of 100 Å to 1000 Å are laminated in this order.

この発明の複合磁気ヘツドは、例えば、Ni−
ZnフエライトやMn−Znフエライトなどの強磁性
酸化物よりなる磁気コア半体片の突合せ面となる
表面を、メカノケミカル研摩、フロートポリツシ
ユ等の無歪加工により高精度平坦面で無歪の面に
加工した後、該面上に100Å〜1000Å厚みのCr薄
膜を被着形成し、さらに、Fe−Al−Si系合金薄
膜、所謂センダスト膜を被着形成し、所定形状に
加工したのち、該磁気コア半体片を突き合せて磁
気ギヤツプを形成した構成からなることを特徴と
する。
The composite magnetic head of the present invention includes, for example, Ni-
The abutting surfaces of the magnetic core halves made of ferromagnetic oxides such as Zn ferrite and Mn-Zn ferrite are made into high-precision, flat and strain-free surfaces through stress-free processing such as mechanochemical polishing and float polishing. After processing it into a predetermined shape, a Cr thin film with a thickness of 100 Å to 1000 Å is deposited on the surface, and then a Fe-Al-Si alloy thin film, so-called sendust film, is deposited on the surface and processed into a predetermined shape. It is characterized by a structure in which magnetic core halves are butted together to form a magnetic gap.

発明の効果 この発明の特徴であるFe−Al−Si系合金薄膜
とCr薄膜の2層構造の金属薄膜体を、強磁性酸
化物磁気コア面に設けることにより、薄膜の応力
を緩和する効果があり、熱処理後の該合金膜の剥
離を防止できると共に前記磁性コアとFe−Al−
Si系合金薄膜との接合力の向上に有効である。
Effects of the Invention By providing a metal thin film body with a two-layer structure of an Fe-Al-Si alloy thin film and a Cr thin film, which is a feature of this invention, on the ferromagnetic oxide magnetic core surface, the effect of relaxing the stress in the thin film can be obtained. This can prevent the alloy film from peeling off after heat treatment, and the magnetic core and Fe-Al-
This is effective in improving the bonding strength with Si-based alloy thin films.

また、熱処理によるFe−Al−Si系合金薄膜と
強磁性酸化物との間の相互拡散が生じ難く、強磁
性酸化物磁気コア表面層の磁気特性が劣化しない
効果があり、高抗磁力Hcを有する磁気記録媒体
に高密度記録再生するのに適した複合型磁気ヘツ
ドが得られ、所謂疑似ギヤツプを実質的になく
し、周波数特性のうねりが著しく減少する効果が
得られる。
In addition, mutual diffusion between the Fe-Al-Si alloy thin film and the ferromagnetic oxide due to heat treatment is difficult to occur, and the magnetic properties of the ferromagnetic oxide magnetic core surface layer are not deteriorated, resulting in a high coercive force Hc. A composite magnetic head suitable for high-density recording and reproducing on a magnetic recording medium can be obtained, and the effect of substantially eliminating so-called pseudo gaps and significantly reducing waviness in frequency characteristics can be obtained.

また、金属薄膜体は比較的薄い膜でよく、その
被着形成に時間を要せず生産性にすぐれ、かつ信
頼性が高く、耐摩耗性の良好な複合型磁気ヘツド
が得られる。
In addition, the metal thin film body may be a relatively thin film, and it is possible to obtain a composite magnetic head with excellent productivity, high reliability, and good abrasion resistance since it does not require much time to form the metal film.

発明の好ましい実施態様 この発明において、複合型磁気ヘツドの構成
は、金属薄膜体が無歪高平坦度面となした強磁性
酸化物表面に被着されるCr薄膜とさらにその上
に被着されるFe−Al−Si系合金薄膜との積層構
成であれば、公知のいかなる構成も利用できる。
Preferred Embodiments of the Invention In the present invention, a composite magnetic head has a structure in which a metal thin film is deposited on a ferromagnetic oxide surface with a strain-free high flatness surface, and a Cr thin film is further deposited on top of the ferromagnetic oxide surface. Any known structure can be used as long as it has a laminated structure with an Fe-Al-Si alloy thin film.

また、この発明において、磁気コア主体となる
強磁性酸化物には、Ni−ZnフエライトやMn−
Znフエライトなどの単結晶フエライト、HIP処
理された焼結フエライトが利用できる。
In addition, in this invention, the ferromagnetic oxide that is the main component of the magnetic core includes Ni-Zn ferrite and Mn-
Single-crystal ferrite such as Zn ferrite and HIP-treated sintered ferrite can be used.

また、最外層に設けるFe−Al−Si系合金薄膜
は、所謂センダスト合金であり、従来より複合型
磁気ヘツドに多用されており、磁気ヘツドの用途
等に応じて、公知の組成が適宜選定し得るが、3
〜10wt%Al,6〜15wt%Si,80〜90wt%Feの範
囲の合金が用いられることが多く、また、必要に
応じて、Cr,Ta,Ni,Co,Mo,Zr,希土類元
素などを添加するのもよい。
The Fe-Al-Si alloy thin film provided in the outermost layer is a so-called sendust alloy, which has been widely used in composite magnetic heads, and a known composition can be selected as appropriate depending on the purpose of the magnetic head. I get it, but 3
An alloy in the range of ~10wt%Al, 6~15wt%Si, 80~90wt%Fe is often used, and if necessary, Cr, Ta, Ni, Co, Mo, Zr, rare earth elements, etc. It is also good to add.

磁気コア半体を構成する強磁性酸化物の表面
に、Cr薄膜とさらにその上にFe−Al−Si系合金
薄膜を成膜するが、その被着方法としては、各種
スパツタリング法、真空蒸着、イオンプレーテイ
ング等の公知の気相成膜方法が利用できる。
A thin Cr film and a thin Fe-Al-Si alloy film are formed on the surface of the ferromagnetic oxide that constitutes the magnetic core half.The deposition methods include various sputtering methods, vacuum evaporation, Known vapor phase film forming methods such as ion plating can be used.

好ましい被着方法、条件としては、いずれの方
法においても、到達真空度は高い程好ましく、少
なくとも10-6Torr台以下の高真空にする必要が
あり、望ましくは2×10-6Torr以下、さらに望
ましくは1×10-6Torr以下が良い。
As for preferred deposition methods and conditions, in any method, the higher the degree of vacuum achieved, the better, and it is necessary to maintain a high vacuum of at least 10 -6 Torr or less, preferably 2 × 10 -6 Torr or less, and more preferably Preferably it is 1×10 -6 Torr or less.

スパツタリング法を用いる場合には、アルゴン
ガス等の不活性ガスをスパツタリングガスとして
用いるが、この圧力はスパツタ装置の構造によつ
て適宜選定すれば良い。
When using the sputtering method, an inert gas such as argon gas is used as the sputtering gas, and the pressure may be appropriately selected depending on the structure of the sputtering device.

この発明において、強磁性酸化物表面に被着形
成するCr薄膜の膜厚は100Å〜1000Åと薄いた
め、強磁性酸化物の表面状態、例えば、残留歪応
力や粗度等に強く影響され、磁気特性が悪化する
可能性があり、前記Cr薄膜の効果を発揮させる
には、強磁性酸化物表面粗度は、好ましくは100
Å以下、さらに好ましくは40Å以下がよい。
In this invention, since the thickness of the Cr thin film deposited on the ferromagnetic oxide surface is as thin as 100 Å to 1000 Å, it is strongly influenced by the surface condition of the ferromagnetic oxide, such as residual strain stress and roughness. In order to exhibit the effect of the Cr thin film, the surface roughness of the ferromagnetic oxide is preferably 100
The thickness is preferably 40 Å or less, more preferably 40 Å or less.

かかる強磁性酸化物表面の無歪。高平坦度状態
を得る方法としては、メカノケミカル研摩、フロ
ートポリツシング、ダイヤモンド研摩の後メカノ
ケミカル研摩する方法、あるいはダイヤモンド研
摩の後メカノケミカル研摩し、さらにフロートポ
リツシングする方法が良い。また、逆スパツタリ
ング法を用いるのもよい。
Strain-free surfaces of such ferromagnetic oxides. A good method for obtaining a high flatness state is mechanochemical polishing, float polishing, diamond polishing followed by mechanochemical polishing, or diamond polishing followed by mechanochemical polishing followed by float polishing. It is also good to use a reverse sputtering method.

また、この発明において、メカノケミカル研磨
法としては、粒径0.1μm以下のMgO,ZrO2,Al2
O3,SiO2等の単独または混合微粉末を、純水中
に0.5wt%〜20wt%懸濁させた懸濁液を用い、該
懸濁液中において、例えば、硬質クロス、はん
だ、Sn等からなる円盤型ポリツシヤーを回転可
能に配設して、被加工材をこの懸濁液中でポリツ
シヤー表面に所定荷重で当接させ、両者を相対的
に回転させて研摩を行なうが好ましい。
In addition, in this invention, as a mechanochemical polishing method, MgO, ZrO 2 , Al 2 with a particle size of 0.1 μm or less
Using a suspension of 0.5wt% to 20wt% of O 3 , SiO 2 , etc. alone or mixed fine powder in pure water, for example, hard cloth, solder, Sn, etc. It is preferable that a disc-shaped polisher consisting of a polisher is rotatably disposed, the workpiece is brought into contact with the polisher surface in this suspension under a predetermined load, and the two are rotated relative to each other to perform polishing.

前記研摩方法において、ポリツシヤー材及び回
転速度、荷重圧力は微細粉末の粒径や純水中の懸
濁量、被加工材等の条件により適宜選定すればよ
いが、ラツプ圧力;0.01Kg/cm2〜1Kg/cm2、回転
速度;10m/min〜100m/min、の条件が好まし
い。また、前記単独または混合微細粉末粒径は
0.1μmを越えると、引つかき疵が生じるため、粒
径0.1μm以下が好ましい。
In the polishing method, the polisher material, rotation speed, and load pressure may be appropriately selected depending on conditions such as the particle size of the fine powder, the amount of suspension in pure water, and the workpiece material . Conditions of ~1 Kg/cm 2 and rotational speed of 10 m/min to 100 m/min are preferable. In addition, the particle size of the single or mixed fine powder is
If the particle size exceeds 0.1 μm, scratches will occur, so the particle size is preferably 0.1 μm or less.

この発明において、Cr薄膜とFe−Al−Si合金
膜とからなる金属薄膜体厚みは、合金磁性膜の磁
気特性、ヘツドの生産性、信頼性より、0.2μm〜
30μm、望ましくは、0.5μm〜20μmである。
In this invention, the thickness of the metal thin film consisting of the Cr thin film and the Fe-Al-Si alloy film is 0.2 μm or more, based on the magnetic properties of the alloy magnetic film, head productivity, and reliability.
30 μm, preferably 0.5 μm to 20 μm.

この発明の特徴であるCr薄膜は、前述の如く、
Fe−Al−Si系合金膜と強磁性酸化物との相互拡
散を防止し、Fe−Al−Si系合金膜の成膜初期層
の結晶配向を促す目的のために、まず、bcc構造
であること、そして前記効果を得るためには、少
なくとも100Å厚みが必要であるが、Cr薄膜自体
が疑似ギヤツプとならないために、1000Å厚み以
下とする必要がある。さらに、望ましくは、200
Åから500Åの範囲である。
As mentioned above, the Cr thin film, which is a feature of this invention, is
In order to prevent mutual diffusion between the Fe-Al-Si alloy film and the ferromagnetic oxide and to promote crystal orientation in the initial layer of the Fe-Al-Si alloy film, we first adopted a bcc structure. In order to obtain the above effect, a thickness of at least 100 Å is required, but in order to prevent the Cr thin film itself from forming a pseudo gap, it is necessary to make the thickness 1000 Å or less. Furthermore, preferably 200
It ranges from Å to 500 Å.

またFe−Al−Si系合金膜の厚みは、高保磁力
媒体に十分に飽和記録するためには、0.1μm以下
が必要であり、高い磁気特性(透磁率、保磁力)
を安定して確保でき、かつ優れた加工性を得るに
は、30μm以下、望ましくは10μm以下である。
In addition, the thickness of the Fe-Al-Si alloy film must be 0.1 μm or less for sufficient saturation recording on high coercive force media, and has high magnetic properties (magnetic permeability, coercive force).
In order to stably ensure this and obtain excellent workability, the thickness is 30 μm or less, preferably 10 μm or less.

また、上記金属薄膜体は、強磁性酸化物からな
る磁気コア半体対のギヤツプ近傍部の一方の磁気
コア半体だけに形成されても良いし、両方に形成
されても良い。
Further, the metal thin film may be formed only on one of the magnetic core halves in the vicinity of the gap of a pair of magnetic core halves made of ferromagnetic oxide, or may be formed on both.

また、磁気コア半体対の両方に形成される場
合、それぞれの金属薄膜体の膜厚構成は、上記し
た膜厚範囲内ならば良く、統一する必要はない。
Furthermore, when the magnetic core halves are formed on both pairs of magnetic core halves, the film thickness structure of each metal thin film body may be within the above-mentioned film thickness range and does not need to be unified.

このようにして二層に被着された金属薄膜体中
のセンダスト膜の磁気特性を向上させる目的で必
要に応じて熱処理を行うとよい。
In order to improve the magnetic properties of the sendust film in the metal thin film body thus deposited in two layers, heat treatment may be performed as necessary.

熱処理は、成膜後加工前に行なつても良く、ま
た、磁気ヘツドの形状に加工してから行なつても
良いし、さらにまた磁気ヘツドコアの半体対のボ
ンデイング加工を行なう際にガラス溶着のための
加熱を熱処理と併用しても良い。
Heat treatment may be performed after film formation and before processing, or may be performed after processing into the shape of the magnetic head, or may be performed during glass welding when bonding the magnetic head core halves. Heating for this purpose may be used in combination with heat treatment.

熱処理の温度と時間は、金属合金膜の磁気特性
を向上させるのに十分な温度と時間を適宜選定す
ると同時に、磁気コア半体を構成する強磁性酸化
物との熱膨張係数差、磁気コア半体を構成する強
磁性酸化物の耐熱性、強磁性酸化物とCr薄膜と、
Fe−Al−Si系合金膜との3者間の相互拡散を同
時に考慮して選定すべきであつて、使用した強磁
性酸化物、及び金属合金膜の組成によつて適宜選
定する必要がある。
The temperature and time of the heat treatment should be appropriately selected to improve the magnetic properties of the metal alloy film, while also considering the difference in thermal expansion coefficient between the ferromagnetic oxide and the magnetic core half. The heat resistance of the ferromagnetic oxide that makes up the body, the ferromagnetic oxide and Cr thin film,
The selection should take into consideration the mutual diffusion between the three elements with the Fe-Al-Si alloy film, and should be selected appropriately depending on the ferromagnetic oxide used and the composition of the metal alloy film. .

通常熱処理温度は300℃以上、800℃以下が好ま
しく。さらに400℃以上、600℃以下がより好まし
い。時間は1分以上、10時間以下が好ましく、さ
らには10分以上、2時間以下がより好ましい。
Usually, the heat treatment temperature is preferably 300°C or higher and 800°C or lower. More preferably, the temperature is 400°C or higher and 600°C or lower. The time is preferably 1 minute or more and 10 hours or less, and more preferably 10 minutes or more and 2 hours or less.

冷却速度も熱処理温度、時間と同様に使用した
強磁性酸化物、及び金属合金膜の組成によつて適
宜選定する必要があるが、 通常、1℃/hr以上、10000℃/hr以下が好ま
しいが、50℃/hr〜600℃/hrの範囲がより好ま
しい。
The cooling rate also needs to be selected appropriately depending on the composition of the ferromagnetic oxide used and the metal alloy film, as well as the heat treatment temperature and time, but it is usually preferably 1°C/hr or more and 10000°C/hr or less. , a range of 50°C/hr to 600°C/hr is more preferable.

雰囲気は、金属合金膜及び強磁性酸化物の磁気
特性を著しく劣化させるものでなければどのよう
な雰囲気でも良いが、真空または不活性ガスまた
は窒素ガス中が好ましい。
Any atmosphere may be used as long as it does not significantly deteriorate the magnetic properties of the metal alloy film and the ferromagnetic oxide, but vacuum, inert gas, or nitrogen gas is preferable.

図面に基づく発明の開示 第1図はこの発明による複合型磁気ヘツドの傾
視説明図である。
DISCLOSURE OF THE INVENTION BASED ON THE DRAWINGS FIG. 1 is a perspective explanatory view of a composite magnetic head according to the present invention.

この発明による複合磁気ヘツドは、第1図に示
す如く、例えば、Mn−Zn系フエライト等の強磁
性酸化物からなる磁気コア半体10,11の無歪
加工を施した磁気ギヤツプ12近傍部の面上に、
Cr薄膜13、強磁性薄膜14とCr薄膜13′、強
磁性薄膜14′がスパツタリング等の真空薄膜形
成技術によつて、それぞれ被着形成され多層構造
をなしており、前記ギヤツプ12は、強磁性薄膜
上に被着形成されたSiO2等の非磁性材15によ
り形成されており、また、コイル巻線用窓16を
形成し、ガラス17によつてコア10,11半体
対が接合されている。
As shown in FIG. 1, the composite magnetic head according to the present invention has magnetic core halves 10 and 11 made of a ferromagnetic oxide such as Mn-Zn ferrite, which are processed without strain, and a portion near a magnetic gap 12. on the surface,
The Cr thin film 13, the ferromagnetic thin film 14, the Cr thin film 13', and the ferromagnetic thin film 14' are respectively deposited and formed by a vacuum thin film forming technique such as sputtering to form a multilayer structure. It is formed of a non-magnetic material 15 such as SiO 2 deposited on a thin film, and also forms a window 16 for coil winding, and the pair of core halves 10 and 11 are joined by a glass 17. There is.

実施例 Mn−Zn単結晶フエライトからなる磁性基板の
一主面を、ダイヤモンドパウダーを用いて、鏡面
したのち、逆スパツタリングを施し、前記主面を
高精度な無歪面に仕上げた。
Example One main surface of a magnetic substrate made of Mn--Zn single-crystal ferrite was polished to a mirror surface using diamond powder, and then reverse sputtering was performed to finish the main surface into a highly accurate strain-free surface.

この際、ダリステツプ(テーラーホブソン社
製)表面段差測定器による測定では、粗度40Å以
下であつた。また、表面歪層の除去状態は、エリ
プソメトリーによつて確認した。
At this time, the roughness was measured to be 40 Å or less using a surface step measuring device (manufactured by Taylor Hobson). Further, the state of removal of the surface strain layer was confirmed by ellipsometry.

上記の無歪加工された磁性基板の主面上に、
RF2極マグネトロンスパツタリング装置によつ
て、99.9%Cr膜を0.03μm厚みで被着形成し、さ
らにFe−Al−Si膜を1.5μm厚みに被着形成した。
On the main surface of the above strain-free processed magnetic substrate,
A 99.9% Cr film was deposited to a thickness of 0.03 μm using an RF two-pole magnetron sputtering device, and a Fe-Al-Si film was further deposited to a thickness of 1.5 μm.

Fe−Al−Si膜の被着形成後、800℃の熱処理を
施した。
After the Fe-Al-Si film was deposited, heat treatment was performed at 800°C.

なお、前記のスパツタリング条件は、それぞれ
投入電力1kW、Arガス圧力5×10-3Torrであつ
た。
The sputtering conditions described above were an input power of 1 kW and an Ar gas pressure of 5 x 10 -3 Torr.

800℃の熱処理を施した後のCr膜とFe−Al−Si
膜の反応状況を、Fe−Al−Si組成であるAlのX
線像にて調査した結果を、第2図a図に示す。
Cr film and Fe-Al-Si after heat treatment at 800℃
The reaction situation of the film was determined by
The results of the line image investigation are shown in Figure 2a.

また、比較のため、Mn−Zn単結晶フエライト
表面を高精度な無歪面に仕上げた後、前記スパツ
タリング条件にて、Fe−Al−Si膜を被着形成し、
その後、800℃の熱処理を施した場合のFe−Al−
Si薄膜とフエライトとの反応状況を、Fe−Al−
Si組成であるAlのX線像にて調査した結果を、
第2図b図に示す。
For comparison, after finishing the Mn-Zn single-crystal ferrite surface into a highly accurate strain-free surface, a Fe-Al-Si film was deposited under the sputtering conditions described above.
After that, Fe−Al− was subjected to heat treatment at 800℃.
Fe−Al−
The results of an investigation using X-ray images of Al, which has a Si composition,
It is shown in Figure 2b.

次に、前記基板上に磁気ギヤツプを形成するた
めのAl2O3膜をRF2極マグネトロンスパツタリン
グ装置にて、0.1μm厚みに被着形成して3層の複
合型磁性基板を得る。さらに、トラツクを形成す
るためのトラツク溝及び記録再生のための巻線用
巻線溝を多数形成した。
Next, an Al 2 O 3 film for forming a magnetic gap was deposited on the substrate to a thickness of 0.1 μm using an RF two-pole magnetron sputtering device to obtain a three-layer composite magnetic substrate. Furthermore, a large number of track grooves for forming tracks and winding grooves for winding wires for recording and reproduction were formed.

さらに、複合磁性基板を所定寸法の複数の半体
状態に切り出し、巻線溝を有する半体と巻線溝を
有しない半体を、真空熱処理によつてガラスボン
デイングし、同時に、金属合金膜の磁気特性を向
上させた後、スライシングし、所定寸法、形状と
なるように外形加工を施し、チツプ化した。
Furthermore, the composite magnetic substrate is cut into multiple halves with predetermined dimensions, and the half with the winding groove and the half without the winding groove are glass bonded by vacuum heat treatment, and at the same time, a metal alloy film is formed. After improving its magnetic properties, it was sliced, processed to have a predetermined size and shape, and made into chips.

次に、第5図に示すように、コンポジツトヘツ
ド化し、電磁変換特性を測定した。
Next, as shown in FIG. 5, a composite head was formed and the electromagnetic conversion characteristics were measured.

また、比較のために、従来法のFe−Al−Si膜
のみによるコンポジツトヘツドも作製し、電磁変
換特性を測定した。
For comparison, a composite head using only a conventional Fe--Al--Si film was also fabricated and its electromagnetic conversion characteristics were measured.

第6図は従来法およびこの発明によるコンポジ
ツトヘツドの再生波形の模式図であり、aは磁気
ギヤツプからの出力で、bはセンダスト膜と磁気
コア半体の間の磁気的不連続による疑似ギヤツプ
による出力である。
FIG. 6 is a schematic diagram of reproduction waveforms of the composite head according to the conventional method and the present invention, where a is the output from the magnetic gap, and b is the pseudo-gap due to the magnetic discontinuity between the sendust film and the magnetic core half. This is the output by

出力比b/aの測定の結果、本発明のb/aは
0.02、従来法のb/aは0.2であり、本発明によ
るヘツドの場合の方は、疑似ギヤツプの効果は実
質的に問題とならない程度に著しく減少し、良好
な記録再生特性を有することが確認できた。
As a result of measuring the output ratio b/a, the b/a of the present invention is
0.02, b/a of the conventional method was 0.2, and it was confirmed that in the case of the head according to the present invention, the effect of the pseudo gap was significantly reduced to the extent that it was practically no problem, and it had good recording and reproducing characteristics. did it.

また、当然の結果として、本発明によるコンポ
ジツトヘツドの再生周波数特性のうねりは大幅に
改善され、1dB以下であつた。
Furthermore, as a natural result, the waviness of the reproduction frequency characteristics of the composite head according to the present invention was significantly improved and was less than 1 dB.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による複合型磁気ヘツドの斜
視説明図である。第2図は実施例における基板フ
エライトとその表面上の薄膜との反応状況をFe
−Al−Si組成であるAlのX線像にて調査した結
果を示す写真である。 第3図a,b及び第4図は従来の複合型磁気ヘ
ツドの説明図である。第5図はコンポジツトヘツ
ドの斜視説明図である。第6図は磁気ヘツドの出
力周波数特性の模式図である。 10,11……磁気コア半体、12……磁気ギ
ヤツプ、13……第1磁性膜、14……第2磁性
膜、15……非磁性体、16……コイル巻線用
窓、17……ガラス。
FIG. 1 is a perspective view of a composite magnetic head according to the present invention. Figure 2 shows the reaction situation between the substrate ferrite and the thin film on its surface in the example.
It is a photograph showing the results of an investigation using an X-ray image of Al having a -Al-Si composition. FIGS. 3a, 3b and 4 are explanatory diagrams of a conventional composite magnetic head. FIG. 5 is a perspective view of the composite head. FIG. 6 is a schematic diagram of the output frequency characteristics of the magnetic head. DESCRIPTION OF SYMBOLS 10, 11...Magnetic core half, 12...Magnetic gap, 13...First magnetic film, 14...Second magnetic film, 15...Nonmagnetic material, 16...Window for coil winding, 17... ...Glass.

Claims (1)

【特許請求の範囲】[Claims] 1 強磁性酸化物を主体とする磁気コアの少なく
とも作動ギヤツプ近傍部に金属磁性体を有する複
合型磁気ヘツドにおいて、無歪高平坦度面となし
た強磁性酸化物表面に、100Å〜1000Å厚みのCr
薄膜、Fe−Al−Si系合金薄膜の順に積層された
金属薄膜体を有することを特徴とする複合型磁気
ヘツド。
1. In a composite magnetic head having a magnetic core mainly composed of ferromagnetic oxide and a magnetic metal material at least in the vicinity of the operating gap, a ferromagnetic oxide surface with a thickness of 100 Å to 1000 Å Cr
A composite magnetic head characterized by having a metal thin film body laminated in this order: a thin film and a Fe-Al-Si alloy thin film.
JP14747587A 1987-06-12 1987-06-12 Composite type magnetic head Granted JPS63311611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14747587A JPS63311611A (en) 1987-06-12 1987-06-12 Composite type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14747587A JPS63311611A (en) 1987-06-12 1987-06-12 Composite type magnetic head

Publications (2)

Publication Number Publication Date
JPS63311611A JPS63311611A (en) 1988-12-20
JPH0522283B2 true JPH0522283B2 (en) 1993-03-29

Family

ID=15431229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14747587A Granted JPS63311611A (en) 1987-06-12 1987-06-12 Composite type magnetic head

Country Status (1)

Country Link
JP (1) JPS63311611A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827907B2 (en) * 1989-01-10 1996-03-21 松下電器産業株式会社 Porcelain head and method of manufacturing the same
JPH0827909B2 (en) * 1989-04-14 1996-03-21 日立金属株式会社 Magnetic head manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129918A (en) * 1983-01-13 1984-07-26 Seiko Epson Corp Magnetic head
JPS61172203A (en) * 1985-01-26 1986-08-02 Sony Corp Magnetic head
JPS6257115A (en) * 1985-09-05 1987-03-12 Sanyo Electric Co Ltd Production of magnetic head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129918A (en) * 1983-01-13 1984-07-26 Seiko Epson Corp Magnetic head
JPS61172203A (en) * 1985-01-26 1986-08-02 Sony Corp Magnetic head
JPS6257115A (en) * 1985-09-05 1987-03-12 Sanyo Electric Co Ltd Production of magnetic head

Also Published As

Publication number Publication date
JPS63311611A (en) 1988-12-20

Similar Documents

Publication Publication Date Title
US5585984A (en) Magnetic head
JPH0624044B2 (en) Composite type magnetic head
US5247415A (en) Magnetic head having main and auxiliary magnetic paths
US5386332A (en) Magnetic head for high-frequency, high density recording
JP2780588B2 (en) Stacked magnetic head core
JPH0522283B2 (en)
JP2775770B2 (en) Method for manufacturing soft magnetic thin film
JPH0522284B2 (en)
JP2586041B2 (en) Composite magnetic head
JP2519554B2 (en) MIG type magnetic head
JPS6015807A (en) Magnetic head
JP2798315B2 (en) Composite magnetic head
JP2643425B2 (en) Magnetic head
JP3452594B2 (en) Manufacturing method of magnetic head
JP3147434B2 (en) Magnetic head
JPS63112809A (en) Magnetic head
JPS63302406A (en) Magnetic head
JPH0555036A (en) Soft magnetic thin film and its manufacture, soft magnetic multilayer film and its manufacture as well as magnetic head
JPH0254405A (en) Magnetic head
JPH03203008A (en) Production of laminated film of fe-si-al ferromagnetic alloy for magnetic head
JPH03266207A (en) Production of mig type magnetic head
JPH03152706A (en) Composite magnetic head
JPH08255308A (en) Production of composite magnetic head
JPH02185707A (en) Composite type magnetic head and production thereof
JPH08241813A (en) Soft magnetic thin film material for magnetic head