JPS6257115A - Production of magnetic head - Google Patents

Production of magnetic head

Info

Publication number
JPS6257115A
JPS6257115A JP19638085A JP19638085A JPS6257115A JP S6257115 A JPS6257115 A JP S6257115A JP 19638085 A JP19638085 A JP 19638085A JP 19638085 A JP19638085 A JP 19638085A JP S6257115 A JPS6257115 A JP S6257115A
Authority
JP
Japan
Prior art keywords
ferrite
reverse sputtering
magnetic head
plate
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19638085A
Other languages
Japanese (ja)
Other versions
JPH0334604B2 (en
Inventor
Kozo Ishihara
宏三 石原
Masaru Doi
勝 土井
Yoshiaki Shimizu
良昭 清水
Kazuo Ino
伊野 一夫
Takuji Ono
大野 卓爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP19638085A priority Critical patent/JPS6257115A/en
Publication of JPS6257115A publication Critical patent/JPS6257115A/en
Publication of JPH0334604B2 publication Critical patent/JPH0334604B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a head having good quality without having a pseudo gap by applying electric power of a prescribed value between a pair of electrode plates one of which a ferrite material is imposed and executing reverse sputtering in an Ar atmosphere under prescribed conditions. CONSTITUTION:The 1st plate 6 for an anode and the 2nd plate 7 for a cathode are provided in a vacuum vessel 5 and the ferrite 1 is imposed on the 2nd plate 7. About 19mTorr Ar atmosphere is maintained in the vessel 5 and reverse sputtering is executed by applying 0.01-0.12W/cm<2> electric power to the inside of the vessel 5 from an external AC power source 8. Then adhesive power is intensified by the effect of forming adequate lattice defects acting as the center for nuclear formation in the initial stage of film formation and the effect of removing the impurities sticking to the substrate surface. The magnetic head, as shown in the figure, consisting of the ferrite materials 1a, 1b provided with the thin films 3a, 3b consisting of a magnetic metallic material with a gap spacer 2 in-between is thus manufactured.

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ)産業上の利用分野 本発明はVTR等に使用する磁気ヘッドの製造方法に関
する。 (ロ)従来の技術 現在家庭用VTRに用いられている磁気テープけCO−
γFe2O8から成るものが主に使用されているが、8
ミリビデオと称する小型のVTRでは抗磁力の高い田c
=1400〜1500エルステッド)メタルテープが用
いられる。その理由は記録再生装置を小型化するために
は記録密度を高める必要性のあることから信号の記録波
長を短かくすることができる記録媒体が要求されてきた
ためである。一方、このメタルテープに記録する従来の
フェライトのみからなる磁気ヘッドではフェライトの飽
和磁束密度が高々5500ガウス程度であることから磁
気飽和現象か発生するためメタルテープの性能を充分に
めかすことができない。 そこで磁気飽和現象の最も生じ易い作動ギャップ近傍部
分をフェライトより飽和磁化の大きな金属磁性材料
(A) Industrial Application Field The present invention relates to a method of manufacturing a magnetic head used in a VTR or the like. (b) Conventional technology The magnetic tape holder currently used in home VTRs
γFe2O8 is mainly used, but 8
A small VTR called MilliVideo has a high coercive force.
= 1400 to 1500 oersted) metal tape is used. The reason for this is that in order to miniaturize recording and reproducing devices, it is necessary to increase the recording density, so a recording medium that can shorten the recording wavelength of a signal has been required. On the other hand, in conventional magnetic heads made only of ferrite for recording on metal tapes, the saturation magnetic flux density of ferrite is about 5,500 Gauss at most, so a magnetic saturation phenomenon occurs, making it impossible to fully demonstrate the performance of metal tapes. Therefore, the area near the operating gap where magnetic saturation phenomenon is most likely to occur is made of a metal magnetic material with higher saturation magnetization than ferrite.

【例
えば、パーマロイ、センダスト、アモルファス磁性体】
で構成した磁気ヘッド(複合型磁気ヘッドと呼ぶ〕が提
案されている。例えば特開昭60−103511号公報
はその1つである。第3図はこれを示しており、(la
)(lb)はフェライトコア半休、(2)は5i02膜
よりなるギャップスペーサ、(3a)(3b)は前記金
属磁性材料よりなる薄膜、(4)はガラス、(6)は巻
線孔である。 祈る磁気ヘッドの場合、フェライト上に前記金属薄膜を
成膜するのにスパッタリング法を用いることが多い。そ
して、金属薄膜を成膜したフェライトに溝加工を施した
り接合加工、スライング加工等を施して後、ヘッド化さ
れる訳であるが、これらの工程中(特に溝加工時)に金
属Vvi膜が剥れることがあるが、成膜前のフェライト
面の清浄度によっても、その剥れ易さは大きく異なる。 従って、フェライト面を成膜直前にアルゴンイオンで念
たくこと、所謂逆スパッタリングによってクリーニング
処理を施こすことが従来、行なわれていた。この処理に
よって付着力は大幅に強くなる。 (ハ)発明が解決しようとする問題点 しかし、このようにして加工完了した複合型の磁気ヘッ
ドではフェライトと金属薄膜との境界に擬似ギャップの
影響が出てくる。そこで、フェライトとセンダクトとの
付着力を弱めることなく擬似ギャップの発生を極力おさ
えることが重要な11題となる。 に)問題点を解決するための手段 本発明では逆スパッタリングを、約19mTorrの雰
囲気中で一方にフェライト材を載置した一対の電極間に
電力を加えると共にその電力を0、 OI W/ c 
m”以上0. l 2 W/ cm 以下に選んだ条件
のもとで行なう。   “ (句作用 実験的に電力が0.12 W/ cm以下であればフェ
ライトの表面の結晶性が崩れない。また、電力が小さ過
ぎると放電が不安定となり持続できなくなるが、0.0
1W/ 0m2以上であれば放電の安定性、従って逆ス
パッタリングの安定接続性を得ることができる。 (へ)実施例 第1図は逆スパツタを行なう装置の模式図であり、真空
容器(5)中に陽極用の第1プレート(6)と陰極用の
第2プレート(7)を配すると共に第2プレー)+71
上にフェライト(1)を載置し、漆器(5)は約19m
Torrのアルゴン雰囲気になす。祈る状態で外部交流
電源(8)より容器(5)内部に電力を与える。一般に
成膜前のフェライト表面に逆スパツタを施こすと、膜形
成の初期段階に核形成の中心として作用する適度の格子
欠陥を基板表面に作る効果や基板物質表面の電子を変位
させることによって核のできる場所を余分に作る効果お
よび基板表面に吸着し念不純物を取シ除く効果等によっ
て付着力は増強される。同時にフェライト表面の結晶性
は逆スパッタリングの電力が大き過ぎると大幅に乱され
非晶質化することが分った。フェライトの非晶質化は、
その部分の非磁性化を意味するので、後で金属薄膜を付
着したときフェライトと金属薄膜との間に擬似ギャップ
ができることになる。そこでスパッタ装置のアルゴン圧
力を19mTorrに保ち、電力を変えてフェライト表
面の結晶状態を電子線回折法によって測定した。第2図
の写真は、その結果を示す電子顕微鏡写真である。同図
(A)はフェライト表面をO,l 2 W/ cm  
の電力で逆スパツタした場合の電子線回折の様子を示す
。 (B)は逆スパツタを行なわない場合の同様の図である
。 (C)は0.06W/cm2の電力で逆スパツタした場
合、および(D)は0.19 W/ c m”の電力で
逆スパツタした場合をそれぞれ示している。囚と(B)
を比べるといずれもフェライト表面の結晶性の乱れが全
熱ない。(Qも(B)と比較してフェライトの結晶性の
乱れはない。しかしながら、(D)Ifi、(B)と比
較すると明暗が不鮮明で縦線間隔が広がっていることか
ら結晶性が乱されていることがわかる。このような結晶
性の乱れは非晶質を生じていることを表わ1−でいるか
ら、祈るフェライトを用いた場合には擬似ギャップのあ
る磁気ヘッドが形成されることになり不都合である。 しかし、囚や(C)に示すことから分るように0.12
W/cm2以下の電力であればフェライトの表面の結晶
性を崩していないので、擬似ギャップの形成は抑えられ
る。 一方、容器f151中の高周波放電において高気圧のと
きは高周波による電子の捕捉によって放電を持続できる
が低気圧になると電子の捕捉がはずれてきて電極に吸い
とられて電子の損失が増加し、ダウンゼンドの第2係数
γがすでにイオンの捕捉ス°′減っているので電離を十
分に行なうためには高い電界が必要となる。実験ではア
ルゴンの19mTorr雰囲気中で電力が0.OIW/
cm2以上であれば放電が安定に持続することを確認し
た。   −(ト)発明の効果 本発明によれば放電が安定であるので好適な逆スパッタ
リングが可能であって、フェライト表面のチリ、ホ、コ
リ、汚れなどはきれいに払拭されるので後に施される金
属薄膜の付着力が増強される。また、フェライト表面の
結晶性が乱されて非晶質化するということか抑えられる
ので、擬似ギャップの存在しない良質の磁気ヘッドを得
ることができる。
[For example, permalloy, sendust, amorphous magnetic material]
A magnetic head (referred to as a composite magnetic head) constructed with
) (lb) is a ferrite core half-open, (2) is a gap spacer made of 5i02 film, (3a) and (3b) are thin films made of the metal magnetic material, (4) is glass, and (6) is a winding hole. . In the case of magnetic heads, sputtering is often used to form the metal thin film on ferrite. Then, after the ferrite on which the metal thin film has been formed is subjected to groove processing, bonding processing, swing processing, etc., it is made into a head, but during these steps (especially during groove processing), the metal Vvi film is Although it may peel off, the ease with which it peels differs greatly depending on the cleanliness of the ferrite surface before film formation. Therefore, in the past, the ferrite surface was cleaned with argon ions immediately before film formation, or a cleaning process was performed by so-called reverse sputtering. This treatment significantly increases adhesion. (c) Problems to be Solved by the Invention However, in the composite magnetic head processed in this manner, the influence of a pseudo gap appears at the boundary between the ferrite and the metal thin film. Therefore, it is important to suppress the occurrence of pseudo gaps as much as possible without weakening the adhesion between the ferrite and the senduct. In the present invention, reverse sputtering is performed in an atmosphere of about 19 mTorr by applying power between a pair of electrodes with a ferrite material placed on one of them and reducing the power to 0, OI W/c.
This is carried out under the conditions selected as follows: m'' or more and 0.12 W/cm or less. Also, if the power is too small, the discharge becomes unstable and cannot be sustained, but 0.0
If it is 1 W/0 m2 or more, it is possible to obtain stable discharge and therefore stable connectivity for reverse sputtering. (f) Example Figure 1 is a schematic diagram of an apparatus for performing reverse sputtering, in which a first plate (6) for an anode and a second plate (7) for a cathode are arranged in a vacuum container (5). 2nd play) +71
Ferrite (1) is placed on top, and lacquerware (5) is approximately 19m long.
Place in a Torr argon atmosphere. In the praying state, power is applied to the inside of the container (5) from an external AC power source (8). In general, when reverse sputtering is applied to the ferrite surface before film formation, it has the effect of creating moderate lattice defects on the substrate surface that act as nucleation centers in the initial stage of film formation, and nucleation by displacing electrons on the surface of the substrate material. The adhesion force is enhanced by the effect of creating an extra space for adhesion to the substrate surface and the effect of removing impurities by adsorption to the substrate surface. At the same time, it was found that the crystallinity of the ferrite surface is significantly disturbed and becomes amorphous when the reverse sputtering power is too high. The amorphization of ferrite is
This means that that part is made non-magnetic, so when a thin metal film is later deposited, a pseudo gap will be created between the ferrite and the thin metal film. Therefore, the argon pressure of the sputtering device was maintained at 19 mTorr, the power was changed, and the crystal state of the ferrite surface was measured by electron beam diffraction. The photograph in FIG. 2 is an electron micrograph showing the results. The figure (A) shows the ferrite surface at O, l 2 W/cm
This shows the electron beam diffraction when reverse sputtering is performed with a power of . (B) is a similar diagram when reverse sputtering is not performed. (C) shows the case of reverse sputtering with a power of 0.06 W/cm2, and (D) shows the case of reverse sputtering with a power of 0.19 W/cm.
Comparing the above, in both cases there is no disturbance in the crystallinity of the ferrite surface. (In Q, there is no disturbance in the crystallinity of ferrite compared to (B). However, compared to (D) Ifi and (B), the brightness is unclear and the distance between vertical lines is widened, so the crystallinity is disturbed. It can be seen that such disordered crystallinity indicates that an amorphous state has occurred. Therefore, if ferrite is used, a magnetic head with a pseudo gap is formed. However, as shown in Figure 1 and (C), 0.12
If the power is W/cm2 or less, the crystallinity of the ferrite surface is not destroyed, so the formation of a pseudo gap can be suppressed. On the other hand, in high-frequency discharge in the container f151, when the pressure is high, the discharge can be sustained by capturing electrons by the high-frequency waves, but when the pressure becomes low, the electrons are no longer captured and are absorbed by the electrodes, increasing the loss of electrons and causing downsend. Since the second coefficient γ of ion trapping speed has already been reduced, a high electric field is required to achieve sufficient ionization. In the experiment, the power was 0.5 mTorr in an argon atmosphere. OIW/
It was confirmed that the discharge could continue stably if it was at least cm2. -(g) Effects of the invention According to the invention, since the discharge is stable, suitable reverse sputtering is possible, and dust, dirt, grime, etc. on the ferrite surface are wiped cleanly, so that the metal to be applied later The adhesion of the thin film is enhanced. Furthermore, since the crystallinity of the ferrite surface is prevented from being disturbed and turned into an amorphous state, a high-quality magnetic head without pseudo gaps can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法を説明するためのスパッタ装
置の模式図であり、第2図は本発明を説明するための顕
微鏡写真である。第3図は本発明が対象とする磁気ヘッ
ドの斜視図である。 (1)・・・フェライト、(la)(lb)・・・フェ
ライトコア半L (21・・・キャップスペーサ、(3
a)(3b)・・・金属薄膜、(6)・・・第1グレー
ト、(7)・・・第2プレート、f8+・・・外部交流
電源。
FIG. 1 is a schematic diagram of a sputtering apparatus for explaining the manufacturing method of the present invention, and FIG. 2 is a micrograph for explaining the present invention. FIG. 3 is a perspective view of a magnetic head to which the present invention is directed. (1)... Ferrite, (la) (lb)... Ferrite core half L (21... Cap spacer, (3
a) (3b)...metal thin film, (6)...first grate, (7)...second plate, f8+...external AC power supply.

Claims (1)

【特許請求の範囲】[Claims] (1)ギャップスペーサを挾んで金属磁性材料よりなる
薄膜を付設したフェライト材よりなる磁気ヘッドを製造
するに際し、前記フェライト材に前記薄膜を施こす前に
アルゴンを用いて逆スパッタリングを行なうようにした
磁気ヘッドの製造方法において、約19mTorrのア
ルゴン雰囲気中で一方にフェライト材を載置した一対の
電極プレート間に電力を加えると共にその電力を0.0
1W/cm^2以上0.12W/cm^2以下に選んで
逆スパッタリングすることを特徴とする磁気ヘッドの製
造方法。
(1) When manufacturing a magnetic head made of ferrite material to which a thin film made of a metal magnetic material is attached between gap spacers, reverse sputtering is performed using argon before applying the thin film to the ferrite material. In a method for manufacturing a magnetic head, electric power is applied between a pair of electrode plates on which a ferrite material is placed on one side in an argon atmosphere of approximately 19 mTorr, and the electric power is reduced to 0.0 mTorr.
A method for manufacturing a magnetic head, characterized in that reverse sputtering is performed at a rate of 1 W/cm^2 or more and 0.12 W/cm^2 or less.
JP19638085A 1985-09-05 1985-09-05 Production of magnetic head Granted JPS6257115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19638085A JPS6257115A (en) 1985-09-05 1985-09-05 Production of magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19638085A JPS6257115A (en) 1985-09-05 1985-09-05 Production of magnetic head

Publications (2)

Publication Number Publication Date
JPS6257115A true JPS6257115A (en) 1987-03-12
JPH0334604B2 JPH0334604B2 (en) 1991-05-23

Family

ID=16356905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19638085A Granted JPS6257115A (en) 1985-09-05 1985-09-05 Production of magnetic head

Country Status (1)

Country Link
JP (1) JPS6257115A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311611A (en) * 1987-06-12 1988-12-20 Sumitomo Special Metals Co Ltd Composite type magnetic head
EP0299480A2 (en) * 1987-07-14 1989-01-18 Sanyo Electric Co., Ltd. Magnetic head and method of manufacturing thereof
US5195004A (en) * 1987-07-14 1993-03-16 Sanyo Electric Co., Ltd. Method of manufacturing a magnetic core half
US5278716A (en) * 1987-07-14 1994-01-11 Sanyo Electric Co. Magnetic head with suppressed generation of pseudogap

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311611A (en) * 1987-06-12 1988-12-20 Sumitomo Special Metals Co Ltd Composite type magnetic head
JPH0522283B2 (en) * 1987-06-12 1993-03-29 Sumitomo Spec Metals
EP0299480A2 (en) * 1987-07-14 1989-01-18 Sanyo Electric Co., Ltd. Magnetic head and method of manufacturing thereof
JPH01133204A (en) * 1987-07-14 1989-05-25 Sanyo Electric Co Ltd Magnetic head and production
US4953049A (en) * 1987-07-14 1990-08-28 Sanyo Electric Co., Ltd. Metal-in-gap head with heat resistant layers
US5195004A (en) * 1987-07-14 1993-03-16 Sanyo Electric Co., Ltd. Method of manufacturing a magnetic core half
US5278716A (en) * 1987-07-14 1994-01-11 Sanyo Electric Co. Magnetic head with suppressed generation of pseudogap

Also Published As

Publication number Publication date
JPH0334604B2 (en) 1991-05-23

Similar Documents

Publication Publication Date Title
US4621030A (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPS6257115A (en) Production of magnetic head
US4705613A (en) Sputtering method of making thin film head having improved saturation magnetization
JP2550486B2 (en) Method of manufacturing magnetic head
JPH05342534A (en) Production of thin-film magnetic head
JPH03232109A (en) Production of thin-film magnetic head
JPH0321971B2 (en)
JP2529313B2 (en) Magnetic head
JPH0668816B2 (en) Magnetic head manufacturing method
JPS62162213A (en) Thin film magnetic head
KR0119801B1 (en) Complex magnetic head manufacture method
JPH04341910A (en) Recording/reproduction separate type thin film head
JPH04268205A (en) Production of thin-film magnetic head
JPS63173208A (en) Magnetic head and its manufacture
JPH025206A (en) Production of magnetic head
JPS62212934A (en) Production of vertical magnetic recording medium
JPS6134708A (en) Manufacture of magnetic head
JPS62175918A (en) Manufacture of magnetic head
JPS58115628A (en) Production of magnetic recording medium
JPH07272212A (en) Thin-film magnetic head and its production
JPH0636221A (en) Magnetic head and its manufacture
JPH0729115A (en) Manufacture of magnetic head
JPH0320808B2 (en)
JPH05342519A (en) Magnetic head
JPH04313804A (en) Production of magnetic head

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term